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Abstract: Bivariate Binary Logistic Regression (BBLR) is a logistic model that has two response variables where each variable
depends on two categories with the response variables being correlated with each other. In this research, a development study will
be conducted on a Bivariate Binary Logistic Regression model using the second order (S-BBLR). Furthermore, the S-BBLR will
be applied to the problem of Sustainable Development Goals (SDGs) related to the Human Development Index (HDI) and Public
Health Development Index (PHDI) data in East Java, Indonesia. The parameter estimation process uses the Maximum Likelihood
Estimator (MLE) method. The problem in estimate the parameters of this model is that MLE cannot find an implicit analytical
solution, so an iteration method will be used in the form of Berndt Hall-Hall-Hausman (BHHH) in the iteration process. Hypothesis
test for the S-BBLR model include simultaneous and partial tests performed using the Maximum Likelihood Ratio (MLRT) and

the Wald method. Based on the analysis, it was found that the percentage of poor people, the pure participation rate (APM), and
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the number of public health centers had a significant impact on PHI and PHDI with a classification accuracy of 86.84%.
Keywords: Berndt Hall-Hall-Hausman (BHHH); bivariate binary logistic regression (BBLR); human development
index (HDI); maximum likelihood; poverty; public health development index (PHDI); sustainable development goals
(SDGs); quality of life.

2010 AMS Subiject Classification: 62P10.

1. INTRODUCTION

Analysis of regression is a statistical analysis method used to describe the relationship model
between two or more variables [1]. In the relationship model, the variables used are grouped into
two, namely response and predictor variables [2]. In general, regression analysis is grouped into
four, namely Parametric Regression [3], Nonparametric Regression [4], Semiparametric
Regression [5], and Logistic Regression [6]. In this study, logistic regression will be used.

Logistic regression is a regression model commonly used to model the relationship between a
qualitative (category) response variable and one or more predictors [7], [8]. The logistic regression
model can be used for the classification and prediction of response variables [9]. Modeling with
logistic regression depends on the category and the number of categories on the response variable
[10]. A logistic regression model that has a response variable with two categories is called a binary
logistic regression model [9], [11]. Several previous studies have reviewed and developed binary
logistic regression models, including: [7], [12]-[14].

The binary logistic regression model currently under development is limited to only one
response variable every predictor variable used. In the application and in the real case, it is very
likely that the binary logistic regression model will have multiple response variables. Furthermore,
a binary logistic regression model using one response variable can be developed into a binary
logistic regression model with two response variables called Bivariate Binary Logistics Regression
(BBLR) [15]-[17]. There are several studies on the BBLR model that have been studied and
developed by researchers. Ananth and Preisser [18] discussed the estimation of bivariate logistic

regression parameters using the Maximum Likelihood Estimator (MLE). Bel, Fok, and Paap [19]
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discussed a multivariate logit model with three estimation methods, Stratified Importance
Sampling, Composite Conditional Likelihood (CCL), and Generalized Method of Moments. And
others have been completed by [15], [20]-[23].

The latest research that developed the First-order Bivariate Binary Logistic Regression (F-
BBLR) model was carried out by [22]. A Bivariate binary logistic regression model with order one
is one of a family of multivariate logit models that can be used to model the relationship between
two binary response variables that are correlated with one or more predictor variables [15], [22],
[24]. The bivariate binary logistic regression model, it has two binary responses that are correlated
with the polynomial model, and the model response follows a multinomial distribution [22].

In this study, a Second-order Bivariate Binary Logistic Regression (S-BBLR) model will be
developed. In the F-BBLR model, the predictor variable has degree one. Meanwhile, in the S-
BBLR model, the predictor variable will be raised to the power of the quadratic or second-order.
The underlying reason for this further study is to prove and explain that the second-order bivariate
binary logistic regression (S-BBLR) model will produce better model accuracy in the classification
process than the first-order bivariate binary logistic regression model. This is also supported by
the real case in data that mostly has certain conditions, for example non-linear patterns.

The S-BBLR model applies to data on economic issues, namely the Human Development Index
(HDI) and Public Health Development Index (PHDI) data in East Java, Indonesia. The human
development index (HDI) is a comparative indicator of life expectancy, education, and living
standards in all countries. The HDI is used as an indicator to assess aspects of the quality of
development and to classify countries as developed, developing, and or underdeveloped countries
[25]. The Ministry of Health creates an index, the Public Health Development Index (PHDI). PHDI
is a collection of health indicators that can be easily and directly measured to explain health-related
problems [26].

In this study, the parameter estimation method used is the Maximum Likelihood Estimator
(MLE) with an iterative process using the Berndt Hall-Hall-Hausman (BHHH) method.

Hypothesis testing to test the significance of the simultaneous parameters using the Maximum
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Likelihood Ratio Test (MLRT) and to test the partial significance using the Wald method. The
BHHH iteration method is a development and modification of the Fisher Scoring method, where
the BHHH method will add the rule of many numbers. One of the advantages of the BHHH
iteration method is that it only uses the first derivative [27]. It is hoped that the second-order
bivariate binary logistic regression model proposed in this study, supported by the right variables,

can be an alternative model capable of analyzing economic and health problems.

2. PRELIMINARIES
A. Contingency Table

A contingency table or what is often called cross-tabulation is a table that contains data on the
number, frequency, or several classifications (category). In this study, a contingency table will be
used. The contingency table is a classification of observation objects based on two variables and
each variable is classified into two groups. Table 1 is a presentation of objects classified according

to row variables (Factor A) and column variables (Factor B).

Factor B
Factor A Total
B, B,
A n, n, N, =Ny +N,
A2 n,, n,, N, =Ny +Ny
Total Ny =Ny +N, | N, =N, 4Ny, n

TABLE 1. Contingency Table of Factor A and Factor B

B. Multinomial Distribution
The multinomial distribution is a generalization of the binomial distribution into three or more

categories. Suppose that each of the m predictor variables, identical studies can produce result in

one of the ¢ categories. If the result of trial i is category k, then Y =1, otherwise y; =0
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otherwise, with k =1,2,...,c and j=1,2,...,m. The multinomial distributions as follows:

P(Y,=¥.,Y, =Y, Yoy = Yousm, 7) =[ m }lel 7 ... omlimk (1)
i Yo Yo
where 7. =1-7 —7, =74, Yo =M=y, =Y, —.= Y4, ¥; =0,1,2,...,m.
E(Y,)=m, Var(Y,) =mz, (1-7,),Cov(Y,Y,.) for j= ]’ 2)
For example, if m=1. Equation (1) as follows:
PY, =YY, =Yoo Yoo =Veui L) =nlim) . aliml 3)

Where y,,Y,,.... Y., isOorl

C. Independence Test

The Independence test is a test that is carried out to find out associations between categories by
using y* test statistics. Based on the two-dimensional contingency table, the hypothesis that
underlies association testing are:

H, : no association between categories

H, : two categories are associated

with test statistics as follows:

2
Quune = 2. iw , where m; = LY (4)

2
i=1l j=1 m, n

ij ++

Based on the test statistic, reject H, when Q. > %, -

D. Binary Logistic Regression

Binary logistic regression is a data analysis method that is used to find relationships between
the response variables that are binary, or whether response variables have two categories with a
value of 0 or 1. If the response variable produces two categories, then the response variables follow

the Bernoulli distribution, the probability function shows in Equation (5).
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f(y)=r*(1-z)";y=01thenf(y)=1-zandify=1thenf(y)=7 (5)

The equation of the binary logistic regression model with K response variables can be expressed

in Equation (6).
_ exp(Bo+BXut ByXo tot BX)
7(X)=1 6)
+exp( By + X + BoXo .ot BXy)
The model in Equation (6) is transformed by a logit transformation, as follows:
7(x)
g(x)=In =7 () = B, + BX + BoXy + ot B X, (7)

Given a random sample Y,,Y,,...,Y, with Bernoulli distribution with 7 parameter, then the

model of logistic regression can be expressed as the following equation:

logit[ 7(x)]= In[LXi)} =p"x (8)

1—7z(Xi)
where:
XiT:[l i X ees in]

ﬂT:[ﬂo ﬂl ﬂz :Bk]

The estimation parameters use the Maximum Likelihood Estimation (MLE) method and the

hypothesis test by the Maximum Likelihood Ratio Test (MLRT) method.

E. The First-Order Bivariate Binary Logistic Regression (F-BBLR)
The Bivariate Logistic Regression (BBLR) model is one of a family of multivariate logit models

used to modeling the relationship between two binary responses that correlate with one or more

predictor variables. Let Y, and Y, be two bivariate binary responses and y=[Y,, Y, YOl]T IS

a vector of responses. The probabilities of observations for variables Y, and Y, are presented in

Table 2.
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Y, =1 Y,=0 Total
Y, =1 7 7o £
Y, =0 oy oo 1-m
Total T, 1-nx, 1

TABLE 2. Probabilities of Y, and Y,
Based on [24], Table 2 are random variables Y,,,Y,,Y,, andY, . Because of
Ty + Ty + Ty + 7y =1 and 7y, =1- 7, — 7, — 7y, then random variable Y,,,Y,,,Y,,, and Y,, are
multinomial distribution with their probabilities =,,, 7., 7, and 7z,.
Let y=[Y, Yo Y01]T, SOy~ M(l;;zll,;rlo,ﬁm). Based on Equation (8), the probability

function vy is defined as follows:

1

1
P(Yll = Yi1: Y10 = Y10 Yo = yOl) :Hnﬂgﬁh ,0< TTgn <1 9)

g=0 h=0
Yqn =0,59,h=0L Yy, =1-Y;, = Yo — Yor; and 7y =1— 7, — 715 — 7, -

where:

Yqn Is the value of Y, which represents the elements of the response vector
Ty = P(Y1 =0,Y,= h) where are the marginal probabilities of Y, and Y, respectively

Let x=[1 X, X, .. X,] isavectorwithdimensions (k+1),so the bivariate binary

logistic regression (BBLR) is given as follow:

@, (x) =logit(z,(x))

:'”(13(1&]

=ﬂ01+ﬂ11X1+1821X2+---+ﬂk1Xk (10)
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=x'B,
¢,(x) = logit(7,(x))
_ 7, (%)
B In(l_”z(X)J
:ﬂoz +:812X1 +ﬂ22X2 +---+:8kzxk
= XTﬂz
os(x)=In(y(x))
_ In{ﬂll(x)ﬂoo(x)j

75 (X) 771 (X)

(11

= Loz + Lz X+ Lo Xy +oc4 [ X,

=x'A, (12)
Where S, B,, B, is aparameter vector, ﬂl(X) and ﬂz(X) is a marginal probability of response
variable, and y/(x) is the odds ratio of the response variable which shows that the response

variables are correlated.

F. Berndt Hall-Hall-Hausman Algorithm
The Berndt Hall-Hall-Hausman (BHHH) method is a modification of the Fisher Scoring method,

with modification 1 to H and for the information matrix is as follows:

B 2 2 2 ]
e al(f) [P0 . _[2e)
06 26,00, 26,00,
2| 2| 2|
_ 52|(9) -E o'1(8) -E 0 (f) .. —-E a_w)
1=l | agaeo @1 | agaek (13)
2 2 2
[0 (A1) . . al(f)
106,00, 06,00, o6, )|

The Information matrix is modified to a Hessian matrix in Equation (14).
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" ﬂ){ir" (ﬁ)} al, (ﬂ)] "

1| op op’

The iteration process using the B-HHH method is as follows:

Bl = By~ H(BS) 9 (Bl forr=01.2,.. (15)
Where Bé;;,f ) and ,B}E,jﬁh is the MLE parameter of the BLR model iteration r+1and .
H ( ﬁéggh )71 show the inverse of the Hessian matrix of the MLE parameter of the BLR model at the
I —thiteration and ¢ ( p ) is the first derivative of log-likelihood function. Iteration process will

<g.

be stop if the convergence condition is H B - g0

3. RESEARCH METHODOLOGY
A. Data

In this study the data that used are secondary data, published by Badan Pusat Statistik (BPS) in
East Java Province and the Health Research and Development Agency (BALITBANGKES) of the
Ministry of Health. The unit of observation used is all Regencies/Cities in East Java Province, up

to 38 Regencies/Cities.

B. Research Variable

The variables used in this study are two response variables and three predictors, and presented

in Table 3.
Research
Variable Variable Name Category Dummy
Variable
Moderate HDI =
HDI values included in the 0
Response interval 60 < HDI < 70
Y, Human Development Index (HDI) -
Variable High HDI =
HDI values included in the 1
interval 70 < HDI < 80
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Low PHDI
Low PHDI is a Regency/City that 0
has an IPKM value less than the
v Public Health Development Index average IPKM in East Java
? (PHDI) High PHDI
High PHDI is a Regency/City that |
has an IPKM more than or equal
to the average IPKM in East Java.
Xl Percentage of Poor Population - -
Predictor The Pure Participation Rate for 13-15
X, ] ]
Variable Years Age Group
X, The Number of Public Health Centers - -

TABLE 3. Research Variable

C. Analysis Procedure

Performing modeling for the second-order bivariate binary logistic regression (S-BBLR) model

with the following stages. Suppose the first response variable is denoted by Y, and the second

response variable is Y, , then the S-BBLR model can be expressed as follows:

m(x) = logit(7; (X))

IS
17 ()

2 2 2
= Lo + LuXi + PioXoi + oot BuXa + BinXi + BriaaXoi oot PuaXia + PraXuXai +
PraaXiXsi + ot oKX + BrasXoiXar + PraaXoiXai + oo+ Lo XoiX + oo+ B 1 X1 X

771(Xi*) = Xi*Tﬂl

7,(x) = logit (7, (X))

=In —”;(X‘*)
1-m,(%)

2 2 2
= ﬁZO + 1821X1i + IBZZXZi +..+ ﬁZkai + 18211X1i + 18222X2i +..+ ﬂZkaki + 18212X1ix2i
+IBZl3X1iX3i +..t IBZlkxliin + ﬁZZBXZiX3i + IBZZ4X2iX4i +..t IBZZKXZiin +o.t ﬂZ,k—l,kai—lxki

17,(X) = X" B,
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() =In(y ()

7 (X)) 7 (X))
=In| ———F—<
70 (X ) 7 (X))
2 2 2
= ﬁBO + ﬂSlxli + ﬂBZXZi +..+ ﬂSkai + ﬁSllxli + ﬂBZZXZi +..+ ﬂ?:kkxki + ﬂ?:lZXliXZi
+ﬂ3l3xlix3i +"'+1831kxlixki + ﬂ323x2ix3i +ﬂ324x2ix4i +"'+ﬂ32kx2ixki t..+ ﬁS,k—l,kai—lei
* *T
773(Xi ) =X ﬂs

where:

B.B,. B; s avector parameter.

ﬂ1:|:,310 ﬂll ﬁlZ ﬂlk ﬁlll ﬂ122 ﬂlkk ﬂnz 18113 ﬂllk ﬂ123 ﬂ124 ﬁle ﬂl,k—l,k:'T
ﬂz:[ﬂzo 1621 1622 ﬁZk ﬂle ﬂZZZ ﬂzkk ﬂZlZ ﬂ213 ﬂ21k ﬂ223 ﬂ224 IBZZK ﬂz,kfl,k].r

ﬂS :[ﬂ30 ﬂ?:l ﬂ32 e ﬂ?:k ﬂ311 ﬂ322 " ﬂ3kk ﬂ312 ﬁ313 e ﬁ?:lk ﬂ323 ﬂ324 " ﬁsz ﬁ?:,k—l,k]T
7, (x;) and z;(x) is a marginal probability of response variable, and v (x;) is the odds

ratio of the response variables which shows that the response variables are correlated.

P(Y1i=1‘xr)=ﬂf(xr)=%
P(Y, =0 X?)Zl—”f(X:)ZWtX?TA)
P(Y, =1)x) =73 7)_1+e);z£>)g?€2ﬂ)2)
P(Y, =0 ) =1-m5(x) 1+exp?xi”ﬂz)

The joint probability density function of the variables Y, and Y, is:

P(Ylli = Yu1is Yioi = Yaoir Youi = You ) = (71':1()(i*))ylli (”;o (Xi*))y1Oi (72';)‘1()(?))),01i (72';0 (Xi*))yOOi (16)
1. Calculating parameter estimation using the MLE Method

a. The forming likelihood function with the MLE method.
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L(Bly)=]11f(vlB) (17)
i=1
b. Maximize the likelihood function
I(B)=InL(B) (18)
c. Determine the first partial derivative of the log-likelihood function to the parameter.
T
ag] [ap] [aB)T
_ 19
o) H o } # | | B 4
d. If a non-closed-form equation is obtained, then we use BHHH iterations with the formula:
A(r+1 ~(r ~(T -1 ~(r
'Bt()hhh) = 'Bt()h)hh - H( t()h)hh) g(ﬂt()h)hh)' forr=012,.. (20)

with:
mHa'(ﬂ)T P(MI {a(ﬂ)H
B oBy B3

H(m{iaz"(”)}

~ opop’

Pup) i) A (B)]

B BB ik

A [P0 AW A
g | Pk B |
o (8) 2 (p) 2% (6)

| 08By OB, oB |

2. Simultaneous hypothesis testing

a. Determine the test hypothesis.
HO . ﬂhl :ﬂhz =... :ﬁhk :ﬂhll :ﬁhZZ =... :ﬁhkk :ﬂh12 :ﬂh13 = ... =
B = Pras = Pros = = Proa = - = Prax = Pk =0 h=123

H, :thereisatleastone g, =0, g=12,..k h=123
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b. Determine the parameter set and the likelihood function under the population and under

H, .

c. Forming and maximizing the log-likelihood function under the population and under H, .

d. Forming Odds Ratio.
L(®)
A=——+
L(Q) (21)

e. Determine GZ:—ZInA:Z[In L(f))—ln L(a))}

f. Determine the distribution G® and rejection area H, .

3. Partial hypothesis testing

a. Determine the test hypothesis
H, : By =0

H : Bp#0, 9=12,.,k h=12.3

1

b. Determine Z test statistics and rejection area H, .

4. MAIN RESULTS
4.1 Theoretical Study
In this section, it is explained the results of research regarding parameter estimation and
hypothesis testing.
A. The Second-Order Bivariate Binary Logistic Regression (S-BBLR) Model Parameter

Estimation

The second-order bivariate binary logistic regression (S-BBLR) model has 3(k+1)
parameters, with (k +1) regression parameter which shows a correlation between the response

variables and 2(k +1) regression parameter which shows a relationship between predictor

variables and response variables. The estimation of the parameters of the S-BBLR model that
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cannot be obtained analytically will be approached with the iteration process using BHHH.

Let y, =Yy Yaul =[Ya Y You] ,i=12,...n besamples of the same independent and
identical random vectors  with a  multinomial distribution shown by
y, ~M(1,7zfl(x:),7zfo(x:),ﬁgl(xf),;rgo(x:)) where 7, (%), 750 (X ) 7700 (X7 ). 70 (X7) IS the
probability of each random variable Y,;;,Y,,;, Yy, andY,, that load g . The joint probability

distribution fuction defined as:
f(¥:18)=P (Y = Yusr:Yioi = Yaoi Youi = Youi Yoor = Yoo )
= (0" (0™ ()™ i)
Based on the probability function in Equation (22), then the form the likelihood function as follows:
L(B)=T]1(%18)
= ]‘1[ P (Y = Yo Yaor = Yaoir You = Youi ) (23)

(s ) (s ) (2 69 ()

*

* * Yy i - . . o . .
Let (ﬂ'gh (Xi )) v =(7rghi)ygh for g,h=0,1;i=12,..,n, so the likelihood function in Equation

(22)

(24).

Li (ﬂ) _ H(]Z';l)ym (72_;() )ywi (ﬁgl)YOu (72_;0 )yooi (24)
Futhermore, the likelihood function is easier to maximize in the form In L ( p ) and expressed
by 1(B).
L(B)=InL(B)
= Z(ylli IN 72135 + Yigr IN 7y + You, IN 7y + Yoor IN 77;0i)
i-1

(25)

Based on the definition [28], the gradient vector of the log-likelihood function in Equation (25) as

follows:
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9(B)= {

B

al(,e)}T {al(,e)}T [al(ﬂ)}TT

op!

ops

(26)

Let n=n,(% )7, =m,(X ), and n, =75(x) , so it takes the form of g=[n, 7, 7,]

* * * * T . . . * . a
7Z'=|:7Z'11 Ty Ty 7z00] . Then, determine the vector derivative from 1 to z ,thatis 77* .

or

Because of the vector z~ has four elements, while vectors 7 only have three elements, to get

on
on

- symmetrical, for example 7, =Inx

*

++ 2

with 7., =7, + 7, + 7Ty, + 7T . So that it is obtained

n=[ne m 773]T.Let D, is a matrix whose elements are vectors 7 to z :

i ony Ony, 0ny 0y 1 -
om, Om, Om, Omy
ony on o o

D, = Omy  Omy  Omgy  Omyy _

on, On, On, On,
Omy  Omy  Omgy Oy
on, Oy o, oy

_a”{n Oy Oty Oftgy ]

Based on Equation (27) obtained the inverse of the matrix as follows:

7014 710i 7 01i P ooi

where A, =

7, (1—7r; )72'; (

*

1-7,

andAi=i*+{+{+l
)a

701 % o1 70111 7100 A
* * i
AW AW
7101 7 ooi _ T Mo _A
* * i
(1_ i ) Ay Ay
* * * * L
i i To1i oo _A
* * i
Tryily; (1_ 7T )Ali
__ T0i%ooi __ To1i%ooi A
* * I
(1_”2i)A1i (l_”n)Ali

i i o oo

1 1 1 ]
1 1 1
7, ., _1_”; 1 7,
. 1 1 1 | 27
" 1-7, Ty 1 70 7
1 1 1 1
_ﬂfli T oy Moo

(28)
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Gradient vector from the log-likelihood function in the Equation (25) can be write as:

al(B)
: =——, 29
%(8)=—3 7 (29)
Based on equations (24) to (27), the gradient vector elements are obtained in the following
equation:

9(8)= ol (B) _ a(yni IN 7233 + Vi IN 7307 + Yous IN o3 + Yoo |n7f;oi)
' P, P,
_ Yui Oy + Yioi 07y + You 0o . Yooi O%ogi

”Ili B, ”1*0i op, ”;n B, 7[;0i op,

g (B)= i( Yiuou ~ You n Yioi%ooi — Yooi Froi } X

- e (30)
Ay 75 1-7y
9,(8)= al(B) _ a(ylli IN 72,5 + Yo N 7oy + You N 7y + Vo, In”;oi)
' op, op,
Y 07, Yo O You O, Yoo Oy
”lli aﬂZ ﬂ-loi aﬂZ ﬂ-Oli aﬂz ”00i aﬂZ
g (8)= i( Yuuiioi _*yloiﬂl*li + You oo ~ y*OOiﬂgli ]X 31
Ay i 1-7m;
g (ﬂ) = ol (ﬂ) _ a(ylli In ”Ili + ¥y IN ”IOi + Yoy IN ﬂ’-gli * Yooi In]z-;Oi)
' op, op,
Y 07, Yo 0% You O, Yoo Oy
ﬂ'-lli aﬂ3 ﬂ’loi aﬂB ﬂ-Oli aﬁS 7Z-OOi aﬂ:i
Yiui Yioi  You | Yaoi
o) Y- o Y @
T Toi Toai o oo
T T o 1 1 1 1Y
With A, =— ﬂllifrloif(’””om . and A, :( e j ,i=12,...n.
i (1_7[1i)7[2i (1_”2i)Ai i Twoi o oo
Based on [28], there is a relationship between the gradient vector and the Hessian matrix:
E(9(8))=0 : var(g(B))=E(9(B)d" (B)). (33)

Furthermore, the Hessian matrix has a relationship with the Information matrix:

1(B)=-H(B) (34)
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Meanwhile [29] show that there is a relationship between the gradient vector and the information

matrix:

Var(g(B))=nl(B) (35)

Based on Equation (33) to (35), the Hessian matrix is obtained as follows:

H(p) = [i{ai (ﬂ)] A7) ]

=

_ {I:Zn:i( Vi o ~ You Pru + Yioi oo ~ Yoo o Jx. +i
Ay |

i=1 Ty 17y Ay

(ylliﬂl*Oi ~ yloiﬂ-l*li n YOli”;m - yOOiﬂ-Sli ]X LA [h_ Yioi  Youi n Yioi ]X :I (36)
* * i TR * > i

7 1-m; i Toi o Tooi

i( Y1aiosi — Youi i + Y10io0i — ¥00i”10i jxi +i
Ali ﬂ-Zi 1 - ﬂ-Zi 1i

[)’m”;m ~ leiﬂ-Ili + YOli”;m ~ YOOi”;ﬁ ]X A [h_ Yioi Yo + Yioi ]X }}
* i T i

ar 1-m; Tt Toi o Tooi

After obtaining the gradient vector and the Hessian matrix, it is possible to perform a numerical
iteration process using the Berndt Hall-Hall-Hausman (B-HHH) method to obtained the MLE of
the S-BBLR model parameters.

A(r+l ~(T (T -1 s
'Bl(thh) ~ B - H( [()h)hh) g(ﬂéh)hh), forr=012,. (37)

Where ,BAé,:f)]h and ,ﬁé;;ﬁ) is the MLE parameter of the S-BBLR model at the r-th and r+1
iterations, g( ﬁé;ﬂh) is the gradient vector for the S-BBLR model parameter MLE at the r-th

A -1
iteration, and H ( ﬁé;ﬂh) is the inverse of the Hessian matrix. The iteration process will stop if

.. . A(r+1 ~
the convergence condition is H Bl — gl

‘ <¢&,where ¢ isa very small positive number.

B. Hypothesis Testing
Hypothesis testing on the S-BBLR model consists of a simultaneous testing and a partial

testing. Testing the parameters of the S-BBLR model simultaneously using the Maximum
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Likelihood Ratio Test (MLRT) method. The hypotheses used for the simultaneous test are:
H, CPu=Be == P = B = Pz = = P = Pre = Pz = =
B = Bozs = Boos == Boos == Bk = By =0 h=12,3
H, - there is at least one S, #0, g=12,...k h=12,3
Determination of test statistics using the MLRT method begins with determining the set of model

parameters below H;: o, = { Bors Boz» ﬂOB} . Next, form the likelihood function below H,:

o) =TT((7)™ (7)™ () () o

i=1

Let f = [ ﬁ01 ,802 ﬁ’03J is the MLE for the parameter H,, then the likelihood function is

obtained below H;:

L(ﬁ*)zmax L(w,)

B ew,

L * O\ Yuai * ) Yioi * 1\ Youi * | Yooi (39)
:H((ﬂ'ni) (”mi) (”ou) (”ooa) )
i-1
The log-likelihood function below H,, as follows:
l(@,)=InL(w,)
(40)

n
i=1

= Z(YM IN 72335 + Yioi IN a5 + Youi IN 7735 + Yoor IN ”om)

Determine the maximum log-likelihood function by:

R . . R R A
6|(a)2) {yni T 4 Yii Zoi 4 Youi Zoii 4 Yooi 7700i}

aﬂOl i=1 ﬁlli 8ﬂOl 7%10i aﬁOl 7%01i aﬂm 7%00i aﬁOl

O:Zn: [h 7%11i7%01i 1j+ Yioi 7%10i7%00i 11+ Youi (_ 7%11i7%01i 1} +
i=1 7%11i 7%2iAi 7%10i (1_7%2i)Ai 7%01i 7%2iAi
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A . . R .
a) {Ym Ty, y10i Toi + Yoi Zoui N Yooi Zooi }
8,302 i=L (i 6ﬂoz Ty OBy 7oy OBy Zooi OB,

0 Zn: [ylll 7711/[01. l] Yioi 101 coi 1|+ M[_ﬁniﬁon 1) "
gl T LY Ty, (1_7%2i)Ai T T

o)

. . . .
2 {Ym Ty " Yioi i n Yoi o + Yooi ”om}

aﬁ03 - i=L | i aﬂ03 7%10i aﬂ03 7%Oli aﬂ03 7%00i aﬂ03

-1
n . ) . - 1 1 1 1

O: (¥lll_¥l°l_¥01l+¥0mj(’\ + - + - + - J
i=L |\ i Twi Tou  Tooi J\ i i o oo

where:

* * * * _1
A, =— 7[11i*7[10i7fOli7[00i _ and A, :(i*ju ]; + ]; + ]; j , i=12,...,n.
i (1_771i )ﬂ'zi (1_7Tzi )Ai i Moi Toii oo

(aZi _\/agi +b2i )
o w71
Ty = 2(‘//| _1) W, #

A* AK

Tfty W=l

with a, =1+(7 + 7, )(v; -1), b =4y, (v, ~1) £ ;.

AKx AK AKx
Toi = Ty — Ty

AK

Toti = 7o — Ty

oy = 1= 705 — 70y + 7y
After getting the maximum likelihood function below H,, then determining the set of model

parameters under the population, namely:
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QZ :{ﬂlk’ﬂlkk’ﬂllk’ﬂ12k""ﬂl,k—l,k’ﬂZk’ﬂZkk’ﬁZlk’ﬁ22k""ﬂ2,k—1,k’ﬁ3k’ﬂ3kk’ﬁ3lk7ﬂ32k""ﬂ3,k—1,k}‘

Next, form the likelihood function under the population:

L(2,) =1£[(7r&si e ) (41)
i=1

A A A A T
For example, B :[ﬂf B B ] is the MLE for the parameter in the population, then the

maximum likelihood function under the population:

L(,é): max L(€,)

BeQ,

n (42)
= [T (A Ak e 2 )
i=1
where:
(aSi_\/a’ji+b3i) .
o e
i = Z(y/i —1) Vi
fffﬁ;. W=l
with 3y :1+(7%1i +7%2i)(l//i _1)1 by, =4y, (‘/’i _1)7%li7%2i
R n AT * AT *
v, = 7311i7500i ’ 7%; _ eXp<ﬁlAXi )* . dan ﬁ_; _ eXp(ﬂzAXi )* ’
T00i % o1i 1+ EXp<ﬁ1T X; ) 1+ exp(ﬂ; X; )
7%10i = 7%1i - 7%11i
7%01i = 7%2i _7%11i
7%00i =1- 7%1i - 7%2i + 7%11i
Based on Equations (39) to (42), the odds ratio is obtained as follows:
n * \ Vi %\ Ywoi * \ Yoti * ) Yooi
L(ﬁ*) H((ﬂ'ni) (ﬂloi) (71'01i) (7[00i) )
Ay=—rm=E—— - (43)

L( A) 2 Vi 4 Y0i 4 Yoti A Yooi
B H(”ui 710 7oti ooi )

i=1

Next, determine the text statistics for the simultaneous test hypothesis in Equation (44):
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GZ=-InA,=-In LL((";)) =2/ InL(B)-IL(8)] (44)

For the large samples, G22 statistics can be approximated by a Chi-Square distribution with df
degree of freedom, where df is the difference between the number of parameters under the
population and the number of parameters under H, . Rejected area of H, 1is G > ;((Za' )

If the simultaneous test result is rejected H,, run a partial test to determine the effect of the

predictor variables on the response variable individually. The hypothesis in the partial test are as

follows:

H, : ﬂgh =0

H, D Bp#0, 9=12,...k h=123

The test statistics for hypothesis testing in the partial test is the Wald test in Equation (45).

A

(7
Z=——2— ~ N(0]) (45)
Var(th)”%

Where Var(égh) obtained from the diagonal element to (gh +l) from the covariance-variance

A

matrix Cov(é) , Cov(é) =[I (0)}1 = —[H (é)}l The rejected area of H, is |Z| >Z,.

4.2 Data Application

A. Description of Research Data

The variables in this study consist of two response variables, HDI (Y,) with Y, =0 for the
moderate HDI and Y, =1 for the high HDI. The PHDI (Yz) with Y, =0 for the low PHDI and

Y, =1 for the high PHDI.
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Y, =1 Y,=0 Total
Y, =1 19 1 20
Y, =0 8 10 18
Total 27 11 38

TABLE 4. Contingency Table of HDI and PHDI

B. Correlation

Before conducting an analysis using Bivariate Binary Logistic Regression (BBLR) model, it
is important to first examine the correlation value between the response variables and also the
correlation value between the predictor variables.

1. Correlation between Response Variables

To measure the correlation between response variables, the odds ratio value is used (). The

criterion used is if the odds ratio (l//) between the response variables is y >1, so it can be

concluded if there is a positive correlation between the response variables.

CI95% for

~<
I
[N
—_
O
p—

23.7500 2.5914 <y < 217.6691

TABLE 5. Correlation Value between Response Variables

Based on Table 5, it can be concluded that there is a positive correlation between the variables

HDI (Y,) and PHDI (Y,).
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2. Correlation between Predictor Variables
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Furthermore, multicollinearity testing between predictor variables will be carried out using

the Variance Inflation Factor (VIF) value.

Predictor Variables VIF
X, 1.2034
X, 1.1574
X, 1.0439

TABLE 6. Multicollinearity Test between Predictor Variables

Based on Table 6, it can be seen that all predictor variables ( X, — X;) have a VIF value of less

than 10, so it can be concluded that there is no multicollinearity problem between predictor

variables.

C. The First-Order Bivariate Binary Logistic Regression (F-BBLR)

In this section, an analysis will be carried out using the First-Order Bivariate Binary Logistics

Regression (F-BBLR) model. The F-BBLR model is a non-spatial model (global model), so each

location is assumed to be homogeneous.

1. Parameter Estimation

The estimation of the parameters in the F-BBLR model using the B-HHH iteration is shown

in Table 7.
Variable | Parameter | Estimate | Standard Error Z-value
Intercept B -4.9740 9.2150e-08 | -5.3977e+07
Xi B -0.6271 9.3434e-07 | -6.7114e+05
X, B 0.1657 8.1077e-06 2.0437e+04
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Variable | Parameter | Estimate | Standard Error Z-value
Xs B -0.2169 4.5947e-06 | -4.7197e+04

Intercept B 7.6812 1.3379e-08 5.7411e+08
Xi B -0.3027 1.5179¢-07 | -1.9943¢+06
X2 Do -0.0052 1.1863¢-06 | -4.3660e+03
X3 Bos 0.1430 6.1852e-07 2.3119¢+05

Intercept B -4.9736 1.8548e-11 | -2.6814e+11
Xi B -0.5816 1.9739e-10 | -2.9463e+09
Xz B 0.1685 1.6692e-09 1.0093¢+08
X3 Bis -0.0147 7.1771e-10 | -2.0481e+07

TABLE 7. The Results of Parameter Estimation by F-BBLR model

Based on the parameter estimation results in Table 7, we can calculate the classification accuracy
of the F-BBLR model. The classification accuracy in this study used the Apparent Error Rate

(APER) criteria. This APER value indicates the proportion of observations that are misclassified

by the F-BBLR model.

The accuracy of the classification of the F-BBLR model in classifying HDI (Y;) and PHDI (Y,)

1- APER =1-0.2631=0.7369

in the Regency/City of East Java Province is 73.69%.

2. Hypothesis Testing

In the F-BBLR model, parameters are tested simultaneously and partially. The hypothesis used

for the simultaneous test is as follows:
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H, L Bu=0,=05:;=0;h=123

H :there is at least one B, #0; g=12,3 h=123

1
The result of the calculation, the value of test statistics G?is 205.0470. From the chi-square
distribution table obtained the value of ;((20’1;9) is 16.6480. Because of the value of G? is more

2

than Xo9)> SO the decision is rejected H, . It can be concluded that at least, there is one predictor

variables which significant effect on HDI and PHDI in the Regency/City of East Java Province.
Furthermore, partial parameter testing is carried out to find out significant predictor variables
on the model with the tested hypothesis are:

H, : ﬂgh=0

H . Bp#0, 9=123 h=123

1
Based on Table 7, it can be seen that the value of the test statistics |Z| for all estimates parameters
more than Z,,,,,, so the decision is rejected H, and it can be concluded that all predictor

variables have a significant effect on the F-BBLR model on level significance « =10%.

D. The Second-Order Bivariate Binary Logistic Regression (S-BBLR)
1. Parameter Estimation

The estimation of the parameters in the S-BBLR model using the B-HHH iteration is shown

in Table 8.
Variable | Parameter | Estimate Standard Error Z-value
Intercept Bio -320.8553 6.2103e-19 | -5.1665e+20
X; Bu 0.4276 9.9406e-18 | 4.3014e+16
X B 7.4275 6.0121e-17 1.2354e+17
X3 Bis -2.4389 1.9149¢-17 -1.2736+17
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Variable | Parameter | Estimate Standard Error Z-value
XiXi B 0.0075 1.5426e-16 | 4.8582¢+13
X2Xo B -0.042 5.8342e-15 | -6.8375¢e+12
X3X3 Bias 0.0042 5.5319e-16 | 7.6026e+12
XiX, L -0.0162 9.6476e-16 | -1.6756e+13
X X3 B 0.0137 2.7808e-16 | 4.9201e+13
X>X3 Bios 0.0226 1.8443¢-15 1.2247¢+13

Intercept B -337.6334 | 2.6280e-15 | -1.2842e+17

X1 B 12.1478 2.9693e-14 4.0912e+14
X, B 7.4284 2.4801e-13 | 2.9952e+13
X3 Bos -6.5615 6.5230e-14 | -1.0059¢+14
XiXi B -0.0739 3.4613e-13 | -2.1358¢+11
XX, B -0.0403 2.34093e-11 | -1.7218e+09
X3X3 Poss 1.2550e-04 | 1.6447e-12 | 7.6302e+07
XXz Do -0.1382 2.7939%-12 | -4.9462¢+10
X1X3 Bors 0.0763 7.3547e-13 1.0374e+11
X2X3 Lo 0.0650 6.1472e-12 1.0568e+10
Intercept B -347.2447 1.5628e-22 | -2.2219e+24
X; L 10.8319 2.4776e-21 | 4.3718e+21
X, o 7.2744 1.3459¢-20 5.4048¢+20
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Variable | Parameter | Estimate | Standard Error Z-value

X3 P -4.5231 5.1737e-21 -8.7425e+20
Xi1X1 By -0.0481 3.9552e-20 -1.2173e+18
X>Xs B -0.0361 1.1601e-18 -3.1135e+16
X3X3 Bazs 0.0018 1.5225¢e-19 1.1664e+16
X1Xz B -0.1276 2.1010e-19 -6.0730e+17
X1 X3 B 0.0640 8.4207¢-20 | 7.5989e+17
X2X3 B 0.0424 4.4966e-19 | 9.4383e+16

TABLE 8. The Results of Parameter Estimation by S-BBLR

Based on the parameter estimation results from the S-BBLR model, we can calculate the
classification accuracy. The same thing as in the F-BBLR model, in this study using the Apparent
Error Rate (APER) criteria. The APER value was obtained from the S-BBLR model.

1- APER=1-0.1315=0.8684 (47)
The classification accuracy of the S-BBLR model in classifying HDI and PHDI in the
Regency/City of East Java Province is 86.84%.

2. Hypothesis Testing

The results of simultaneous hypothesis testing on the S-BBLR model were obtained, with the

G? value statistic 0of 276.9620. From the chi-square distribution obtained the value of ;((20’1;27) is

36.7410. Because of the value of G? is more than x>

(0.:27) » 50 the decision is reject H,, .

Furthermore, partial parameter testing is carried out to find out significant predictor variables

on the model S-BBLR. Based on Table 8, it can be seen that the value of the test statistics |Z| for

all estimates parameters more than Z,,, , so the decision is reject H, and it can be concluded
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that all predictor variables have a significant effect on the S-BBLR model on level significance

a =10%.

E. Selection of the Best Model

Based on the results in Table 7 and 8, it can be seen that the S-BBLR model with the B-HHH
iteration method produces better classification accuracy than the F-BBLR model with the same
iteration method. The S-BBLR model can be written for modeling HDI and PHDI in the

Regency/City of East Java Province as follows:

= —320.8553+0.4276 X, + 7.4275X, — 2.4389 X, + 0.0075X ? —
0.042X 2 +0.0042X 2 —0.0162X, X, +0.0137X, X, + 0.0226 X, X,

= —337.6334+12.1478X, + 7.4284X,, — 6.5615X , + 0.0075X 2 —
0.042X 2 +0.0042X? —0.0162X,X,, + 0.0763X, X, + 0.065X, X,

Ug(X)zln(M]

o (X) 2y (X)
= —347.2447 +10.8319X, + 7.2744 X, +0.0018 X, —0.048 X 2 —
0.0361X22 + 0.0018X32 -0.1276 X, X, +0.064 X, X, + O.O424X2X3

In the S-BBLR model, the accuracy of the classification is 86.84%.

5. CONCLUSION

The study of parameter estimation and hypothesis testing on the second-order bivariate binary
logistic regression (S-BBLR) model which was then applied to the HDI and PHDI modeling
processes in East Java Province has been successfully carried out. Based on the analysis, it is
concluded that the second-order bivariate binary logistic regression (S-BBLR) model produces a

better classification accuracy than the first-order bivariate binary logistic regression model (F-
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BBLR), with an accuracy of 86.84%. Modeling HDI and PHDI from Regencies/Cities in East Java
Province with a S-BBLR model, the results obtained if all predictor variables have a significant

effect either simultaneously or partially.
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