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Abstract: It is proposed and studied a prey-predator system with a Holling type II functional response that merges 

predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's 

dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The 

persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor 

sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A 

limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system 

exhibits bi-stability between these 2 types of attractors. Fear also has a destabilizing effect on the dynamics of the 

system. 
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1. INTRODUCTION 

Because of its global importance and existence, the dynamical behavior of prey-predator systems 

is a popular topic in both ecology and mathematics. A functional response, which is defined as the 

amount of prey consumed per predator and per unit of time, is used to characterize prey-predator 

dynamics. It promotes the movement of food from the lower to the upper levels [1]. The prey-

predator model is diverse in that it focuses on interactions between two species with various sorts 

of functional responses [2-4]. 

All of the above-mentioned studies suggest prey-predator models that only include direct prey 

killing in the presence of predators and ignore the impact of predators on prey. According to certain 

experimental investigations, the presence of a predator can impact prey behavior even more 

profoundly than direct predation [5-7]. As a result, prey responded to the threat of predation by 

exhibiting a variety of anti-predator behaviors such as habitat alterations, foraging, attentiveness, 

and physiological changes. 

Fear of predators produces anti-predator defenses that inhibit prey population reproduction, as 

demonstrated in [8]. They presented a prey-predator model that incorporates the fear element into 

prey reproduction and discovered that fear stabilizes the system by removing periodic solutions; 

nevertheless, low levels of fear can cause the Hopf bifurcation. Many researchers have presented 

models in this area in the subsequent years; see for example [9-10] and the references therein. 

On the other hand, because prey hide in refuges to avoid predators, not all prey are caught by 

predators. The prey refuge must be included in the system in order to imitate the current 

circumstance. As a result, one of the key areas in biomathematics has been the study of a prey-

predator system with prey refuge, and many scholars have made important discoveries in this area; 

see for example [11-13] and the references therein. 

In light of the foregoing, several scholars have looked into the prey-predator system to see if it 

includes fear, shelter, or both. Panday et al., [14] has suggested a three-species food chain model 

that incorporates the cost of fear into a middle predator's predation rate. Fear, they discovered, has 

the ability to bring the model from chaos to a firm focus. Pal et al., [15] proposed the Leslie-Gower 
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prey-predator model, in which predators work together to catch prey. They hypothesized that prey 

population exhibits anti-predator behavior in response to the threat of predation. It's also been 

discovered that by ignoring the existence of periodic solutions, the fear factor can help to stabilize 

the prey-predator system. In a prey-predator system with a gestation time delay, Kumar and Dubey, 

[16] established a mathematical model to examine fear's influence on prey refuge. The fear effect 

on the prey is thought to cause Hopf-bifurcation in the system. With a Holling-type-II prey-

predator model integrating a prey refuge, Zhang et al., [17] studied the impact of anti-predator 

behavior due to predator fear. They discovered that at positive equilibrium, the fear effect reduces 

predator population density and stabilizes the system by excluding the occurrence of periodic 

solutions. Fear was studied in a Holling type II prey-predator model with prey refuge and 

supplementary food for the predator by Samaddar et al., [18]. They discovered that fear had the 

impact of not just reducing predator density but also driving the system toward stability. Fakhry 

and Naji, [19] proposed and investigated an ecological model based on a square-root prey-predator 

system with predator fear. They demonstrated that increasing the fear impact reduces predator 

density while having no effect on prey density and that the model remains in a positive equilibrium. 

Fear was examined by Ibrahim and Naji, [20] in a three-species Beddington–DeAngelis feeding 

chain model. It has been discovered that the presence of fear, up to a critical level, has a system-

stabilizing impact. Otherwise, it acts as a system-wide extinction factor. 

As a result, in this study, a Holling type II prey-predator system was developed and examined, 

which includes a fear impact due to the predator's presence and the prey's refuge, and is 

proportional to the number of direct interactions between the prey and predator populations. In 

contrast to all of the previous studies, the exponential fear function is believed to be utilized to 

represent the effect of fear on prey growth rate. The rest of the paper, on the other hand, is organized 

as follows: The mathematical formulation of the prey-predator system is discussed in the following 

section. Section three discusses the presence of possible steady-state points as well as their stability 

analyses. The local bifurcation analysis was covered in section four. The numerical simulation is 

found in section five. Section six concludes with a discussion and conclusion. 
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2. MATHEMATICAL MODEL 

In this part, a mathematical model of the Holling type II prey-predator is developed, with predator-

dependent refugia and prey fear as factors. In the absence of the predator, the prey is thought to 

expand logistically, while the predator decays exponentially in the absence of their prey. 

Furthermore, the number of refugia is proportional to the number of direct interactions between 

the prey population 𝑋(𝑇) and the predator population 𝑌(𝑇), where 𝐶 denotes the intensity of 

the interaction, allowing the rest of the prey population 𝑋(1 − 𝐶𝑌) to be predated, where 𝐶 ∈

[0,1] . As a result, only those values of 𝐶  that 𝑌 ≤
1

𝐶
  are allowed from now on, ensuring the 

authorized range of refuge 0 ≤ 1 − 𝐶𝑌 ≤ 1  for a realistic environment [21]. In addition, the 

prey's fear of predation is taken into account by using the exp⁡(−𝐾1𝑌) function, which measures 

the probability of the prey's growth in the presence of the predator, with 𝐾1 standing for the fear 

factor. As a result, the dynamics of the aforementioned prey-predator model can be represented by 

the differential equations shown below. 

𝑑𝑋

𝑑𝑇
= 𝑅𝑒−𝐾1𝑌𝑋 (1 −

𝑋

𝐾0
) −

𝐴𝑋(1−𝐶𝑌)𝑌

𝐵+𝑋(1−𝐶𝑌)
,

𝑑𝑌

𝑑𝑇
=

𝐸𝐴𝑋(1−𝐶𝑌)𝑌

𝐵+𝑋(1−𝐶𝑌)
− 𝐷𝑌,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                 (1) 

where 𝑋(0) ≥ 0 and 𝑌(0) ≥ 0. The parameters, however, can be found in the Table (1) below. 

Table 1: Parameters description 

Parameter Description 

𝑅 The internist growth rate of prey 

𝐾0 The carrying capacity of the environment 

𝐾1 The prey’s fear rate 

𝐴 The maximum attack rate 

𝐵 The half saturation constant 

𝐶 The intensity of the prey-predator interaction 

𝐸 The conversion rate  

𝐷 The predator natural death rate 
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Obviously, the function 𝑒−𝐾1𝑌  describes the influence of prey's fear of the predation process, 

which reduces prey reproduction, hence it meets the following properties: 

1. When 𝐾1 = 0  or 𝑌 = 0 , then 𝑒−𝐾1𝑌 = 1 . As a result, the prey's growth will be 

unaffected. 

2. lim
𝐾1→∞

𝑒−𝐾1𝑌 = lim
𝑌→∞

𝑒−𝐾1𝑌 = 0, accordingly, the prey's growth is completely halted. 

3. 
𝜕𝑒−𝐾1𝑌

𝜕⁡𝐾1
< 0 , hence the growth of the prey decrease due to the increasing in the anti-

predator behavior. Similarly, as 
𝜕𝑒−𝐾1𝑌

𝜕𝑌
< 0, the growth of the prey decrease due to the 

increasing in the population of the predator.  

Now in order to study the above system of equations, the following dimensionless variables and 

parameters are used.   

 𝑡 = 𝑅𝑇, 𝑥 =
𝑋

𝐾0
, 𝑦 = 𝐶𝑌, 𝑤0 =

𝐾1

𝐶
, 𝑤1 =

𝐴

𝐶𝑅𝐾0
,  𝑤2 =

𝐸𝐴

𝑅
 , 𝑤3 =

𝐷

𝑅
, 𝑤4 =

𝐵

𝑅
. 

Therefore, the following dimensionless system is obtained. 

𝑑𝑥

𝑑𝑡
= 𝑒−𝑤0𝑦𝑥(1 − 𝑥) −

𝑤1𝑥(1−𝑦)𝑦

𝑤4+𝑥(1−𝑦)
,

𝑑𝑦

𝑑𝑡
=

𝑤2𝑥(1−𝑦)𝑦

𝑤4+𝑥(1−𝑦)
− 𝑤3𝑦.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                          (2) 

Therefore, 𝑅+
2 = {(𝑥, 𝑦) ∈ 𝑅2|𝑥 ≥ 0, 𝑦 ≥ 0} is obviously the domain of system (2). Furthermore, 

the system (2) contains 𝐶1 functions, indicating that these are Lipschitzain functions. As a result, 

the system (2) solution exists and is unique. In addition, the following theorem establishes that the 

solutions of the system (2) are uniformly bounded. 

Theorem 1: The system (2) has solutions that are uniformly bounded. 

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be any solution of system (2), then from the first equation it is observed 

that 

 
𝑑𝑥

𝑑𝑡
≤ 𝑒−𝑤0𝑦𝑥(1 − 𝑥) ≤ 𝑥(1 − 𝑥) 

Then, direct computation gives that 𝑥 ≤ 1. Let now that 𝑀(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) then 

 
𝑑𝑀

𝑑𝑡
≤ 𝑒−𝑤0𝑦𝑥(1 − 𝑥) − 𝑤3𝑦 ≤ 2𝑥 − 𝜌(𝑥 + 𝑦) ≤ 2 − 𝜌𝑀, 
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where 𝜌 = min{1, 𝑤3} . Therefore, as 𝑡 → ∞  it is got that 𝑥 + 𝑦 ≤
2

𝜌
 . Hence the proof is 

complete. 

 

3. EXISTENCE OF STEADY-STATE POINTS AND THEIR STABILITY 

This section discusses the existence of steady-state points in the system (2), as well as their local 

stability analysis, so that the following requirements can be constructed for each of these steady-

state points: 

The trivial steady-state point (TSSP) that is given by 𝐸0 = (0,0) is always present. 

In the absence of predation, the axial steady-state point (ASSP) is always present and is given by 

𝐸1 = (1, 0) when the prey population grows to the carrying capacity. 

The solutions of the following algebraic system are represented by the coexistence or positive 

steady-state points (PSSP) of the system (2): 

𝑔1(𝑥, 𝑦) = 𝑒−𝑤0𝑦(1 − 𝑥) −
𝑤1(1−𝑦)𝑦

𝑤4+𝑥(1−𝑦)
= 0,

𝑔2(𝑥, 𝑦) =
𝑤2𝑥(1−𝑦)

𝑤4+𝑥(1−𝑦)
− 𝑤3 = 0.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                            (3) 

Straightforward computation gives that  

 𝑥 =
𝑤3𝑤4

(𝑤2−𝑤3)(1−𝑦)
.                                     (4) 

Substituting the acquired value of 𝑥, which is positive when 𝑤2 > 𝑤3, in the first equation of (3) 

yields the transcendental equation shown below. 

 

𝑓(𝑦) = 𝑤1(𝑤2 − 𝑤3)
2𝑦3 − 2𝑤1(𝑤2 − 𝑤3)

2𝑦2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡+[𝑤1(𝑤2 − 𝑤3) + 𝑤2𝑤4𝑒
−𝑤0𝑦](𝑤2 − 𝑤3)𝑦

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−[(𝑤2 − 𝑤3) − 𝑤3𝑤4]𝑤2𝑤4𝑒
−𝑤0𝑦 = 0.

                        (5) 

Equation (5) clearly becomes an algebraic polynomial equation of degree three for 𝑤0 = 0. The 

discard rule of sign indicates that the obtained algebraic polynomial of the third degree has either 

three or one positive root if: 

 𝑤3𝑤4 < (𝑤2 − 𝑤3)                                       (6) 

In the situation of 𝑤0 > 0, however, the equation (5) is a transcendental equation with one, no, or 

an infinite number of roots, depending on the form of 𝑓(𝑦). 
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Since 𝑓(0) = −[(𝑤2 − 𝑤3) − 𝑤3𝑤4]𝑤2𝑤4  is negative under condition (6), and 𝑓(1) =

𝑤2𝑤3𝑤4
2𝑒−𝑤0 > 0. Then as a result of the intermediate value theorem, at least one positive root 

between 0 and 1 will exist. 

As a result, if condition (6) applies, the system (2) has at least one PSSP given by 𝐸2 = (𝑥∗, 𝑦∗), 

where 𝑥∗ is defined by equation (4) and 𝑦∗ is the root of equation (5). 

The Jacobian matrix of the system (2) about any point (𝑥, 𝑦) now looks like this: 

𝐽 = [𝜌𝑖𝑗]2×2
,                                                 (7) 

where 

 𝜌11 = 𝑔1 + 𝑥 [−𝑒−𝑤0𝑦 +
𝑤1(1−𝑦)

2𝑦

[𝑤4+𝑥(1−𝑦)]2
], 

 𝜌12 = 𝑥 [−𝑤0𝑒
−𝑤0𝑦(1 − 𝑥) −

𝑤1𝑤4(1−2𝑦)+𝑤1𝑥(1−𝑦)
2

[𝑤4+𝑥(1−𝑦)]2
], 

 𝜌21 = 𝑦 [
𝑤2𝑤4(1−𝑦)

[𝑤4+𝑥(1−𝑦)]2
], 

 𝜌22 = 𝑔2 + 𝑦 [−
𝑤2𝑤4𝑥

[𝑤4+𝑥(1−𝑦)]2
], 

with 𝑔1 and 𝑔2 are given in equation (3). 

Accordingly, the Jacobian matrix of the system (2) at TSSP is determined by 

𝐽(𝐸0) = [
1 ⁡⁡⁡⁡⁡⁡⁡⁡0
0 −𝑤3

].                                             (8) 

Therefore, the eigenvalues of 𝐽(𝐸0) are 𝜆01 = 1⁡and⁡⁡𝜆02 = −𝑤3, and hence TSSP is a saddle 

point. 

The Jacobian matrix of the system (2) at ASSP is given by: 

 𝐽(𝐸1) = [
−1 ⁡⁡⁡⁡⁡⁡−⁡

𝑤1

(𝑤4+1)

0
𝑤2

(𝑤4+1)
− 𝑤3

].                                               (9) 

Clearly the eigenvalues of  𝐽(𝐸1) are determined by     

 𝜆11 = −1⁡and⁡⁡𝜆12 =
𝑤2

(𝑤4+1)
− 𝑤3.                                         (10) 

Hence all the eigenvalues of  𝐽(𝐸1)  have negative real parts and the ASSP is locally 

asymptotically stable provided that:  

 𝑤2 < 𝑤3(𝑤4 + 1).                                 (11) 
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Now the Jacobian matrix of the system (2) at the PSSP can be written as: 

 𝐽(𝐸2) = [𝑏𝑖𝑗]2×2 ,                                                       (12) 

where 

 𝑏11 = 𝑥∗ [−𝑒−𝑤0𝑦
∗
+

𝑤1(1−𝑦
∗)2𝑦∗

[𝑤4+𝑥∗(1−𝑦∗)]2
], 

 𝑏12 = 𝑥∗ [−𝑤0𝑒
−𝑤0𝑦

∗
(1 − 𝑥∗) −

𝑤1𝑤4(1−2𝑦
∗)+𝑤1𝑥

∗(1−𝑦∗)2

[𝑤4+𝑥∗(1−𝑦∗)]2
], 

 𝑏21 = 𝑦∗ [
𝑤2𝑤4(1−𝑦

∗)

[𝑤4+𝑥∗(1−𝑦∗)]2
], 

 𝑏22 = −𝑦∗ [
𝑤2𝑤4𝑥

∗

[𝑤4+𝑥∗(1−𝑦∗)]2
]. 

Direct computation gives that the eigenvalues of 𝐽(𝐸2) are given by the roots of the following 

second degree polynomial equation: 

 𝜆2 − 𝑇𝜆 + 𝐷 = 0,                                                      (13) 

where 𝑇 = 𝑏11 + 𝑏22, and 𝐷 = 𝑏11𝑏22 − 𝑏12𝑏21. Therefore, the roots of the equation (13) are 

given by: 

 𝜆21 =
𝑇

2
+

1

2
√𝑇2 − 4𝐷;⁡𝜆22 =

𝑇3

2
−

1

2
√𝑇2 − 4𝐷.                              (14) 

Accordingly the following theorem can be proved easily. 

Theorem 2. The PSSP of system (2) is locally asymptotically stable if and only if. 

 
𝑤1(1−𝑦

∗)2𝑦∗

[𝑤4+𝑥∗(1−𝑦∗)]2
< 𝑒−𝑤0𝑦

∗
,                                   (15a)

 
𝑤4+𝑥

∗(1−𝑦∗)2

𝑤4𝑦∗
> 2.       (15b) 

Proof. According to the forms of the eigenvalues 𝜆21 and 𝜆22, which are given in equation (14), 

they have negative real parts and hence PSSP is locally asymptotically stable if and only if the 

sufficient conditions (15a) and (15b) are satisfied. 

The persistence of the system (2) is investigated in the following part. It is well knowledge that 

the system will continue to exist if and only if none of their species become extinct. This means 

that the system (2) survives if the system's trajectory, which starts at a positive point, does not have 

an omega limit set on the domain's border axis. 

The Dulac function is now employed to determine the possibility of periodic dynamics in the 
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interior of the positive quadrant of the 𝑥𝑦 − plane. 

Consider the following function 𝐻⁡(𝑥, 𝑦) =
1

𝑥𝑦
. Note that the function 𝐻⁡(𝑥, 𝑦) > 0 and it is 𝐶1 

function in the interior of ℝ+
2 of  𝑥𝑦 −plane. Moreover, it is obvious that:  

∆(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝐻 ∙ 𝑥𝑔1) +

𝜕

𝜕𝑦
(𝐻 ∙ 𝑦𝑔2) = −

𝑒−𝑤0𝑦

𝑦
+

𝑤1(1−𝑦)
2−𝑤2𝑤4

[𝑤4+𝑥(1−𝑦)]2
.               (16) 

Therefore, ∆(𝑥, 𝑦)  does not vary sign and does not vanish under the following sufficient 

condition: 

 𝑤1(1 − 𝑦)2 ≤ 𝑤2𝑤4.                                (17) 

Theorem 3: If no periodic dynamics exist in the interior of the positive quadrant, the system (2) is 

uniformly persistent if the following condition is met. 

  𝑤3(𝑤4 + 1) < 𝑤2.                        (18) 

Proof. Define a function 𝜗(𝑥, 𝑦) = 𝑥𝑝1𝑦𝑝2, where 𝑝1, 𝑝2 are positive constants, and 𝜗(𝑥, 𝑦) >

0  for all (𝑥, 𝑦) ∈ 𝐼𝑛𝑡⁡ℝ+
2  of 𝑥𝑦 − plane with 𝜗(𝑥, 𝑦) = 0  if any one of 𝑥  or 𝑦  approaches 

zero. Therefore, straightforward computation yields: 

Ω(𝑥, 𝑦) =
𝜗′(𝑥,𝑦)

𝜗(𝑥,𝑦)
= 𝑝1𝑔1 + 𝑝2𝑔2, 

where the functions 𝑔𝑖; 𝑖 = 1,2, are given in the equation (3). Note that, because there are no 

periodic dynamics in the interior of the positive quadrant, the proof is satisfied if Ω(𝑥, 𝑦) > 0 for 

all border steady-state points, according to the average Lyapunov method.  

Therefore, by using equation (3) we obtain that 

  Ω(𝐸0) = 𝑝1[1] + 𝑝2[−𝑤3]. 

Obviously, by selecting the arbitrary positive constant of 𝑝1 sufficiently larger than that of 𝑝2, it 

is obtained that Ω(𝐸0) > 0. 

 Ω(𝐸1) = 𝑝2[
𝑤2

𝑤4+1
− 𝑤3]. 

Note that, the condition (18) guarantees that Ω(𝐸1) > 0. Hence the proof is done. 

The global stability is studied for all locally stable steady-state points as shown in the following 

theorems. 
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Theorem 4. If the ASSP of system (2) is locally asymptotically stable in 𝑅+
2 , then it is globally 

asymptotically stable if and only if 

 
𝑤2

𝑤4
< 𝑤3.                          (19) 

Proof. Let  𝑉 = 𝑐1⁡(𝑥 − 1 − ln 𝑥) + 𝑐2𝑦  be a real valued function, where 𝑐1  and 𝑐2  are 

positive constants. Direct computation shows that 𝑉(1,0) = 0 and 𝑉(𝑥, 𝑦) > 0 for all (𝑥, 𝑦) ∈

𝑅+
2  and (𝑥. 𝑦) ≠ (1,0) with 𝑥 > 0 and 𝑦 ≥ 0. Therefore the function 𝑉 is a positive definite 

function. 

Furthermore, the derivative of 𝑉 can be written as 

 
𝑑𝑉

𝑑𝑡
= −𝑐1𝑒

−𝑤0𝑦(𝑥 − 1)2 −
(𝑐1𝑤1−𝑐2𝑤2)(1−𝑦)𝑥𝑦

𝑤4+𝑥(1−𝑦)
+

𝑐1𝑤1(1−𝑦)𝑦

𝑤4+𝑥(1−𝑦)
− 𝑐2𝑤3𝑦. 

Then by choosing 𝑐1 = 𝑤2⁡and⁡𝑐2 = 𝑤1 we obtain that  

 
𝑑𝑉

𝑑𝑡
≤ −𝑤1𝑒

−𝑤0𝑦(𝑥 − 1)2 − [𝑤1 (𝑤3 −
𝑤2

𝑤4
)] 𝑦. 

Clearly under the condition (19), the derivative 
𝑑𝑉

𝑑𝑡
 is negative definite. 

Moreover, since 𝑉 is radially unbounded function, then the ASSP is a global asymptotically stable.  

Recall that, because system (2) could have multiple PSSPs with unknown forms, the global 

stability of this steady-state point can't be studied theoretically, thus we'll analyze it numerically. 

 

4. LOCAL BIFURCATION  

In the following, Sotomayor's theorem [22] is used to study the local bifurcation that may occur 

around the non-hyperbolic steady-state point. The goal is to understand how changing parameter 

values affect the system's dynamical behavior when the parameter goes through the value that 

transitions the steady-state from hyperbolic to non-hyperbolic. 

Now, rewrite system (2) as follows 

  
𝑑𝑿

𝑑𝑡
= 𝐹(𝑿), with 𝑿 = (𝑥, 𝑦)𝑇 and 𝑭 = (𝑥𝑔1, 𝑦𝑔2)

𝑇. 

Then the second directional derivative of 𝑭 with respect to 𝑿 can be determined as  

 𝐷2𝐹. (𝑈, 𝑈) = [𝑐𝑖1]2×1,                                  (20) 

where 
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𝑐11 = −2 [𝑒−𝑤0𝑦 −
𝑤1𝑤4(1−𝑦)

2𝑦

[𝑤4+𝑥(1−𝑦)]3
] 𝑢1

2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

−2 [𝑤0(1 − 2𝑥)𝑒−𝑤0𝑦 +
𝑤1𝑤4[𝑤4(1−2𝑦)+𝑥(1−𝑦)]

[𝑤4+𝑥(1−𝑦)]3
] 𝑢1𝑢2

⁡+ [𝑤0
2𝑥(1 − 𝑥)𝑒−𝑤0𝑦 + 2

𝑤1𝑤4𝑥(𝑤4+𝑥)

[𝑤4+𝑥(1−𝑦)]3
] 𝑢2

2,

 

 
𝑐21 = −2 [

𝑤2𝑤4(1−𝑦)
2𝑦

[𝑤4+𝑥(1−𝑦)]3
] 𝑢1

2 + 2 [
𝑤2𝑤4[𝑤4(1−2𝑦)+𝑥(1−𝑦)]

[𝑤4+𝑥(1−𝑦)]3
] 𝑢1𝑢2

−2 [
𝑤2𝑤4𝑥(𝑤4+𝑥)

[𝑤4+𝑥(1−𝑦)]3
] 𝑢2

2,
 

here 𝑈 = (𝑢1, 𝑢2)
𝑇 be a general vector.  

Theorem 6. Assume that 𝑤3 =
𝑤2

𝑤4+1
(≡ 𝑤3

∗),  then system (2) at ASSP has a transcritical 

bifurcation. 

Proof. Note that, when 𝑤3 = 𝑤3
∗, then the Jacobian matrix of the system (2) at ASSP can be 

written as 

 𝐽1 = 𝐽(𝐸1, 𝑤3
∗) = [

−1 −
𝑤1

𝑤4+1

0 0
] 

Clearly the eigenvalues of 𝐽1 are 𝜆11
∗ = −1⁡and⁡𝜆12

∗ = 0, hence 𝐸1 is non-hyperbolic point. 

Let 𝑼𝟏 = (𝑢11, 𝑢12)
𝑇  be the eigenvector of 𝐽1  corresponding to 𝜆12

∗ = 0 .Then simple 

computation gives that ⁡𝑼𝟏 = (−
𝑤1

𝑤4+1
𝑢12, 𝑢12)

𝑇

, where 𝑢12 ≠ 0 is any real number. 

Also, let 𝚿𝟏 = (𝜓11, 𝜓12)
𝑇  that represents the eigenvector of 𝐽1

𝑇  corresponding to 𝜆12
∗ = 0 . 

Then again simple calculation shows that 𝚿𝟏 = (0, 𝜓12)
𝑇, where 𝜓12 ≠ 0 is any real number. 

Since 
𝜕𝑭

𝜕𝑤3
= (0,−𝑦)𝑇 , hence we obtain that 𝑭𝑤3

(⁡𝐸1, 𝑤3
∗) = (0,0)𝑇 . Therefore, 

𝚿𝟏
𝑇[𝑭𝑤3

(⁡𝐸1, 𝑤3
∗)] = 0.  

Thus the system (2) at 𝐸1 with 𝑤3 = 𝑤3
∗ satisfies the first condition of a transcritical bifurcation 

in view of Sotomayor theorem. Moreover, since  

 𝚿𝟏
𝑇[𝐷𝑭𝑤3

(⁡𝐸1, 𝑤3
∗)⁡𝑼𝟏] = −𝑢12𝜓12 ≠ 0, 

Now, 𝚿𝟏
𝑇[𝐷2𝑭(⁡𝐸1, 𝑤3

∗)(𝑼𝟏, 𝑼𝟏)] = −2
𝑤2𝑤4

(𝑤4+1)2
𝜓12𝑢12

2 [
𝑤1

𝑤4+1
+ 1] ≠ 0 , hence system (2) 

undergoes a transcritical bifurcation near ⁡𝐸1 when 𝑤3 = 𝑤3
∗.  
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Theorem 7. Assume that condition (15a) holds a long with the following condition 

𝑤0𝑒
−𝑤0𝑦

∗
(1−𝑥∗)[𝑤4+𝑥

∗(1−𝑦∗)]2

𝑤1𝑤4𝑦∗
+

𝑤4+𝑥
∗(1−𝑦∗)2

𝑤4𝑦∗
< 2.                    (21) 

Then as 𝑤1 = 𝑤1
∗ system (2) has a saddle-node bifurcation at PSSP provided that 

 𝛽2𝑐11
∗ + 𝑐21

∗ ≠ 0,                    (22)  

where all the new symbols are given in the proof, while  

 𝑤1
∗ =

𝑒−𝑤0𝑦
∗
[𝑤4+𝑥

∗(1−𝑦∗)][𝑤0(1−𝑥
∗)(1−𝑦∗)+𝑥∗]

(1−𝑦∗)(2𝑦∗−1)
.                         (23) 

Proof. From the Jacobian matrix of system (2) at PSSP that is given by equation (12), it is easy to 

verify that 𝐷 = 0, where 𝐷 represents the determinant of 𝐽(𝐸2) given in equation (13).  So, 

according to the characteristic equation (13) there is a zero eigenvalue and hence,⁡𝐸2 is a non-

hyperbolic steady-state point. Therefore, the Jacobian matrix at (𝐸2, 𝑤1
∗) can be written as 

 𝐽2 = 𝐽(𝐸2, 𝑤1
∗) = [

𝑏11
∗ 𝑏12

∗

𝑏21 𝑏22
], 

where 𝑏11
∗ = 𝑏11(𝑤1

∗), 𝑏12
∗ = 𝑏12(𝑤1

∗) with 𝑏𝑖𝑗; 𝑖, 𝑗 = 1,2 are the elements of 𝐽(𝐸2). 

Let 𝑼𝟐 = (𝑢21, 𝑢22)
𝑇  be the eigenvector of 𝐽2 .Then simple computation gives that ⁡𝑼𝟐 =

(𝛽1𝑢22, 𝑢22)
𝑇, where 𝑢22 ≠ 0 is any real number with 𝛽1 = −

𝑏12
∗

𝑏11
∗ > 0. 

Also, let 𝚿𝟐 = (𝜓21, 𝜓22)
𝑇  represents the eigenvector of 𝐽2

𝑇 . Then again simple calculation 

shows that 𝚿2 = (𝛽2𝜓22, 𝜓22)
𝑇, where 𝜓22 ≠ 0 is any real number with  𝛽2 = −

𝑏21

𝑏11
∗ > 0. 

Since 
𝜕𝑭

𝜕𝑤1
= (−

𝑥(1−𝑦)𝑦

𝑤4+𝑥(1−𝑦)
, 0)

𝑇

, hence we obtain that 𝑭𝑤1
(⁡𝐸2, 𝑤1

∗) = (−
𝑥∗(1−𝑦∗)𝑦∗

𝑤4+𝑥∗(1−𝑦∗)
, 0)

𝑇

≠ 𝟎.  

Consequently, the first condition of saddle-node bifurcation in view Sotomayor theorem is satisfied. 

Now, since 

 𝐷2𝑭(⁡𝐸2, 𝑤1
∗). (𝑼𝟐, 𝑼𝟐) = 𝑢22

2[𝑐𝑖1
∗]2×1,       

where 

 

𝑐11
∗ = −2 [𝑒−𝑤0𝑦

∗
−

𝑤1
∗𝑤4(1−𝑦

∗)2𝑦∗

[𝑤4+𝑥∗(1−𝑦∗)]3
] 𝛽1

2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

−2 [𝑤0(1 − 2𝑥∗)𝑒−𝑤0𝑦
∗
+

𝑤1
∗𝑤4[𝑤4(1−2𝑦

∗)+𝑥∗(1−𝑦∗)]

[𝑤4+𝑥∗(1−𝑦∗)]3
] 𝛽1

⁡+ [𝑤0
2𝑥∗(1 − 𝑥∗)𝑒−𝑤0𝑦

∗
+ 2

𝑤1
∗𝑤4𝑥

∗(𝑤4+𝑥
∗)

[𝑤4+𝑥∗(1−𝑦∗)]3
] ,
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𝑐21

∗ = −2 [
𝑤2𝑤4(1−𝑦

∗)2𝑦∗

[𝑤4+𝑥∗(1−𝑦∗)]3
] 𝛽1

2 + 2 [
𝑤2𝑤4[𝑤4(1−2𝑦

∗)+𝑥∗(1−𝑦∗)]

[𝑤4+𝑥∗(1−𝑦∗)]3
] 𝛽1

−2 [
𝑤2𝑤4𝑥

∗(𝑤4+𝑥
∗)

[𝑤4+𝑥∗(1−𝑦∗)]3
] .

 

Therefore, 𝚿2
𝑇𝐷2𝑭(⁡𝐸2, 𝑤1

∗). (𝑼𝟐, 𝑼𝟐) = [𝛽2𝑐11
∗ + 𝑐21

∗]𝑢22
2𝜓22 . Clearly, due to condition 

(22), 𝚿2
𝑇[𝐷2𝑭(⁡𝐸2, 𝑤1

∗)(𝑼𝟐, 𝑼𝟐)] ≠ 0. Hence system (2) undergoes a saddle-node bifurcation 

near the PSSP.  

 

5. NUMERICAL SIMULATION 

In this section, the global dynamics of the system (2) are numerically studied in this part with a 

hypothetical set of physiologically acceptable parameters. The goals are to corroborate the 

theoretical findings and to comprehend the impact of changing the parameters on the system's 

dynamical behavior. All numerical results are given in the form of phase portraits and time series 

using Matlab version R2013a. However, Mathematica 12 is used to obtain the direction field of 

the system (2). With the following set of parameters, different initial values are employed, and 

phase portraits of the resultant trajectories, as well as their direction fields, are generated in Figure 

(1). 

 𝑤0 = 0.1, ⁡𝑤1 = 1, ⁡𝑤2 = 0.5, ⁡𝑤3 = 0.1, ⁡𝑤4 = 0.2.               (24) 
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Figure 1. The trajectories of system (2) using the parameters set (24) with different initial points. (a) Approach 

asymptotically to a stable PSSP given by (0.71, 0.93). (b) Trajectories of 𝑥 versus time. (c) Trajectories of 𝑦 versus 

time. (d) The system's direction field for the case given in (a). 

 

System (2) has three steady-state points, as shown in Figure (1d). As illustrated in Figure (1) (a-

c), the first is unstable, the second is a saddle point, and the third is the asymptotically stable point, 

which is proven in the direction field. Furthermore, the entire domain, with the exception of the 

unstable steady-states, serves as the stable PSSP's basin of attraction. 

As the parameter 𝑤0  is changed, it is discovered that the system approaches the PSSP 

asymptotically in the range 𝑤0 ∈ [0, 0.18]. However, system (2) exhibits a bi-stability between 

two types of attractors (limit cycle and PSSP) in the range 𝑤0 ∈ [0.19, 0.37] depending on the 

initial positions. Finally, for the range 𝑤0 ≥ 0.38, system (2) approaches a stable limit cycle 

asymptotically; see Figures (2) and (3) for typical 𝑤0 values.  
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Figure 2. The trajectories of system (2) with different initial positions using the parameters set (24) with 𝑤0 = 0.25. 

(a) The system is bi-stable between two forms of attractor limit cycle and PSSP, which are defined by (0.63, 0.92). (b) 

The system's direction field for the case given in (a). 

 

Figure 3. The trajectories of system (2) with different initial positions using the parameters set (24) with 𝑤0 = 0.5. 

(a) The system is approaching a limit cycle. (b) The system's direction field for the case given in (a). 

The basin of attraction of the limit cycle expands as the parameter 𝑤0 increases, as shown in the 

phase portraits and accompanying direction fields in Figures (2) and (3). In fact, two of these 

PSSPs are approaching each other and then disappear letting a unique and unstable PSSP 

surrounded by a stable limit cycle. 

The effect of changing the parameter 𝑤1 is numerically studied, and the results obtained at typical 

values are shown in Figure (4a)-(4d). Figures (5a)-(5d) also show the matching direction field. 
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Figure 4. The trajectories of system (2) with different initial positions using the parameters set (24) with different 

values of 𝑤1. (a) The system is approaching a PSSP that is given by (0.69, 0.92), where 𝑤1 = 1.05. (b) The system 

is bi-stable between a limit cycle and PSSP that is given by (0.66, 0.92), where 𝑤1 = 1.1. (c) The system is bi-stable 

between a limit cycle and PSSP that is given by (0.54, 0.9) where 𝑤1 = 1.25. (d) The system is approaching a limit 

cycle where 𝑤1 = 1.3. 
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Figure 5. The system's direction field for the parameters set (24) with different values of 𝑤1. (a) For 𝑤1 = 1.05. (b) 

For 𝑤1 = 1.1. (c) For 𝑤1 = 1.25. (d) For 𝑤1 = 1.3.  

Increases in the value of 𝑤1 result in the transfer of the attractor type from PSSP to the limit cycle 

passing through a bi-stable range, as shown in Figures (4) and (5). The effect of changing the 

parameter 𝑤2 is also numerically investigated, and the resultant findings at typical values are 

presented in Figures (6a)-(6e), as well as the related direction field in Figures (7a)-(7e). 
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Figure 6. The trajectories of system (2) with different initial positions using the parameters set (24) with different 

values of 𝑤2. (a) The system is approaching a ASSP where 𝑤2 = 0.1. (b) The system is approaching a PSSP that is 

given by (0.35, 0.43) where 𝑤2 = 0.2. (c) The system is approaching a limit cycle where 𝑤2 = 0.3. (d) The system 

is bi-stable between a limit cycle and PSSP that is given by (0.49, 0.84)  where 𝑤2 = 0.37 . (e)  The system is 



19 

STABILITY AND BIFURCATION OF A PREY-PREDATOR SYSTEM 

approaching a PSSP that is given by (0.66, 0.91) where 𝑤2 = 0.45. 

 

 

 

Figure 7. The system's direction field for the parameters set (24) with different values of 𝑤2. (a) For 𝑤2 = 0.1. (b) 

For 𝑤2 = 0.2. (c) For 𝑤2 = 0.3. (d) For 𝑤2 = 0.37. (e) For 𝑤2 = 0.4. 
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According to Figures (6) and (7), the system (2) has four bifurcation points with regard to 𝑤2, 

allowing trajectories to transition from ASSP to PSSP, then to limit cycle, then to the bi-stability, 

and finally back to the PSSP. In reality, the system approaches the ASSP asymptotically in the 

range 𝑤2 ∈ (0, 0.11], while it approaches the PSSP in the range of 𝑤2 ∈ [0.12, 0.22]. The system 

(2) then approaches the limit cycle for the range 𝑤2 ∈ [0.23, 0.36] asymptotically, but it has bi-

stability behavior in the range 𝑤2 ∈ [0.37, 0.42]. Finally, it approaches the PSSP for 𝑤2 ≥ 0.43 

once more.On the other hand, an examination into the variation of the parameter  𝑤3  was 

conducted, and the resulting trajectories are displayed in Figures (8) and (9) with their direction 

fields for the typical values. 

 

 

Figure 8. The trajectories of system (2) with different initial positions using the parameters set (24) with 𝑤3 = 0.25. 

(a) The system is approaching a PSSP that is given by (0.35, 0.43). (b) Trajectories of 𝑥 versus time. (c) Trajectories 

of 𝑦 versus time. (d) The system's direction field for the case given in (a). 
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Figure 9. The trajectories of system (2) with different initial positions using the parameters set (24) with 𝑤3 = 0.45. 

(a) The system is approaching a ASSP. (b) Trajectories of 𝑥 versus time. (c) Trajectories of 𝑦 versus time. (d) The 

system's direction field for the case given in (a). 

 

Clearly, the system (2) has just one bifurcation point with regard to the parameter 𝑤3, as shown 

in Figures (8) and (9) with associated direction fields, at which the solution of system (2) moves 

from PSSP to ASSP. In reality, it has been discovered that for the range 𝑤3 ∈ (0, 0.41] the system 

approaches asymptotically to a stable PSSP, while it approaches asymptotically to ASSP in the 

range 𝑤3 ∈ [0.42, 1) . Finally, the trajectories of system (2) were explored in the situation of 

variable 𝑤4, and the trajectories at typical values of 𝑤4 with their direction fields are shown in 

Figure (10). 
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Figure 10. The trajectories of system (2) with different initial positions using the parameters set (24) with different 

values of 𝑤4. (a) The system is bi-stable between a limit cycle and PSSP that is given by (0.69, 0.96) where 𝑤4 =

0.1. (b) The system is approaching a PSSP that is given by (0.73, 0.89) where 𝑤4 = 0.3. (c) The system's direction 

field for the case given in (a). (d) The system's direction field for the case given in (b). 

 

System (2) contains one bifurcation point with regard to the parameter 𝑤4, where the trajectories 

switch from bi-stability behavior to a stable PSSP, as shown in Figure 10. For values of 𝑤4 in the 

range 𝑤4 ∈ (0, 0.14], the system has a bi-stability between limit cycle and stable PSSP, however, 

for the values in the range 𝑤4 ∈ [0.15, 1), it approaches a stable PSSP asymptotically. 
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6. DISCUSSION AND CONCLUSION  

A prey-predator model including predation fear and predator-dependent refuge was proposed and 

studied in this work. The existence, uniqueness, and boundedness of the suggested system's 

solution are all examined. All feasible steady-state sites are explored for stability. The system's 

persistence condition has been established. The Sotomayor theorem is used to study local 

bifurcation. Near the ASSP, the system (2) experiences a transcritical bifurcation, while near the 

PSSP, it undergoes a saddle-node bifurcation. Finally, using Matlab version R2013a and 

Mathematica 12, the numerical simulation was performed to display the observed results based on 

a hypothetical set of parameters. The simulation results were investigated using phase portraits, 

time series, and the related direction field. It has been discovered that increasing the predation fear 

rate destabilizes the system, causing the dynamics to shift from approaching a stable PSSP to a 

stable limit cycle passing through bi-stability behavior. A similar result is produced in terms of the 

maximal attack rate, as illustrated in a fear rate. However, the system (2) is extremely sensitive to 

changes in the predator's conversion rate, so the system loses persistence at low conversion rates 

and endures as the conversion rate rises, confirming the persistence theoretical requirement. The 

system loses stability at the PSSP first and then converges to periodic as the conversion rate 

increases. The system then returns to PSSP stability as the conversion rate rises higher. Increased 

predator death rates, on the other hand, leads to extinction of predator species, and the system 

approaches ASSP asymptotically. Finally, increasing the half-saturation constant has a stabilizing 

influence on the system's behavior and the approach to PSSP solutions. 
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