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Abstract. This paper is devoted to the study of the dynamics of a fractional order two-strain SEIR epidemic model
with two general incidence rates. The basic results of the fractional-order calculus are recalled. Four equilibrium
points for the model are given, namely the disease free equilibrium, the endemic equilibrium with respect to
strain 1, the endemic equilibrium with respect to strain 2, and the total endemic equilibrium with respect to both
strains. Local and global stability analysis is given using the basic reproduction rate. First, the local stability of the
equilibrium point is proved by the Routh Hurwitz criterion for the fractional-order system (FR-H), and then the
global stability is shown by using the Barbalat’s lemma to the fractional-order system (FB). The Barbalat’s lemma
is a reliable method for the asymptotic analysis of the fractional dynamic systems. Finally, numerical simulations
illustrated our analytical results.
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1. INTRODUCTION

Infectious diseases are responsible for one third of global mortality. Mathematical modelling
in epidemiology is a source of knowledge for understanding the spread of an epidemic and an
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effective tool for controlling and predicting the dynamics of an outbreaks. Several diseases
mutate and develop strains. Then many researchers study the dynamic of multi-strain of in-
fection diseases. The global stability analysis of two-strain epidemic model with bilinear and
non-monotone incidence rates is studied in [1]. The Lyapunov function and global stability of a
two-strain SEIR model with bilinear and non monotone incidence is analysed in [2]. The global
dynamics of two-strain model with a single vaccination and general incidence rate is remarked
in [3]. The global dynamics of a multi-strain SEIR epidemic model with general incidence
rates: application to covid-19 is discussed in [4]. These models have some limitations as they
are local and do not possess the memory effects that appear in most of the biological systems.

Fractional calculus is a very efficient and suitable tool for modeling real world problems in
different areas of mathematics, engineering, biology, finance, economics and social sciences. In
recent years, many authors interested by the fractional calculus of mathematical epidemic model
and the lot of researches can provide useful information’s about the memory effects. The anal-
ysis of a Caputo fractional-order model for covid-19 is investigated in [5]. Mathematical model
of SIR epidemic system (covid-19) with fractional derivative is presented in [6]. A fractional
order SEIR model with general incidence is discussed in [7, 8]. The Modeling and analysis
of covid-19 epidemics with treatment in fractional derivative using real data from Pakistan are
shown in [9]. Fractional-order SEIQRDP model for simulating the dynamics of covid-19 epi-
demic is analyzed in [10]. A fractional order SIR epidemic model with nonlinear incidence rate
can be found in [11]. The global stability analysis of a fractional differential system in hepatitis
B can be observed in [12].

Some authors are working on multiple strains in fractional calculus. For example, in [13]
the authors study multi-strain tuberculosis (TB) model of variable-order fractional derivatives.
The two-strain epidemic model involving fractional derivative with Mittag-Leffler Kermel is
demonstrated in [14]. A fractional-order two-strain epidemic model with two vaccinations is
presented in [15]. The Analysis of two avian influenza epidemic models involving fractal-
fractional derivatives with power and Mittag-Leffler memories is investigated in [16].

Several authors are using the different incidence functions in the fractional models. The

Bs

bilinear incidence function BS is investigated in [17]. The saturated incidence function Tra;s
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is used in [18, 19, 20]. The Beddington-DeAngelis incidence function %

BS

OF Trgnl is
studied in [21]. The specific nonlinear incidence function m is applied in [22, 23,
24].

Nowadays, the authors use the general incidence function [25, 26] which represent a large
set of infection incidence rate and give more information about many diseases transmission.
Motivated by the above discussion, and inspired by [4], this paper aims to propose a model
based on the memorability nature of Caputo fractional-order derivative with general incidence

rates.

Our model will be described by the system of equations

(

DaS(I) :A—fl(S,Il)Il (l) —fz(S,Iz)IQ(Z) —[,LS(Z‘),
DYE\(t) = f1(S,I1)11(t) — (B1 + 1)E (1),
DYEx(1) = f2(S, )12 (1) — (B2 + 1) Ex (1),
(1.1)

DL(t) = BiE1(t) — (M + 1)L (1),

DL(t) = BrEx(t) — (A2 + 1)L (1),

kDO‘R(t) =ML (t)+ XL (1) — UR(1),
with the following non-negative initial conditions

$(0) >0, Ei(0)>0, Ex0)>0,
L(0)>0, L(0)>0, R(0)>0.

(1.2)

The total population is divided into classes S(7) the susceptible class, E;(t) and E,(¢) are re-
spectively the strain exposed class for i = 1,2, I; () and I>(¢) are respectively the strain infected

class for i = 1,2 and R(¢) is the recovered class for all # > 0. The model parameters and the
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conditions of the function incidence rate f;(S,/;) and f>(S,I») are detailed in Section 3.

The local and global stability of the system with two strains is analyzed. To investigate these
results, we use FR-H criteria and the extended Barbalat’s lemma with Lyapunov function. This
paper is organized as follows. In Section 2, the preliminary results are presented. In Section 3,
the mathematical model is presented in term of fractional differential equations. In Section 4,
the positivity and boundedness of solution are studied. The basic reproduction number and the
equilibrium points are given in Section 5. The local and the global stability analysis are proved
in Section 6. Numerical simulations are given to performed our theoretical results in Section 7.

Finally, Section 8 brings the concluding remarks.

2. PRELIMINARY RESULTS

Fractional calculus plays an important role in modern science. In this part, we present some

fractional calculus definitions and we introduce several important theorems.

Definition 2.1. [27] Let f : R — R be a differential function and o € C such that Re(a) > 0.
The Riemann-Liouville fractional integral of order o of f(t), t € R, denoted by J*f(t), is
defined as

@1 IE1(0) = 0u) 1) = a5 [ (=0 f(wyar,

(@)

where the symbol x denotes the convolution product, §u(t) is the Gel fand-Shilov function,

tra—) ,ift >0 and T() is the Gamma function.
defined for a« ¢ 7, as ¢y (t) =
L if1 <0.

Definition 2.2. [27] Let f : R — R be an integrable function, a € C with Re(ot) >0, a ¢ N

andn—1<Re(a) < n, t > 0. The Riemann- Liouville fractional derivative of order o of f is

ey s = o) = ot () [ e

Definition 2.3. [27] Let f : R — R be an differential function, a. € C with Re(a) > 0 and m

the natural number, such that m — 1 < Re(a) < m, t > 0. The Caputo fractional derivative of
order o of f is defined as

2.3) DYf(t) = J" D" f(t) = Qo * D" £ (1),
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In particularly, if 0 < o0 < 1 we have

2.4) DO f(t) = i 1_ % /Ot (tf_(::;ads.

Property 2.4. [28] The Laplace transform £ of a Caputo fractional derivative of order o of f,

satisfies

Z[DYf(1)] = L [¢m-axD"f(1)],

= L Pnal)] LD (1)) = %" L D" £(1)]

where o € C, Re(a) > 0and m—1 < Re(at) < m.

As a result,
m—1

2.5) LD f(0)] =sF(s)— Y. fP0)s* 1.
k=0

With F is the Laplace transform of function f.

Definition 2.5. [29] For any o > 0, the function Ey defined by Eq(t) = ;:‘(’) F(#]‘%l) is called

the Mittag-Leffler function.

Let f: R xR" — R" with n > 1, consider the fractional order system

D%x(t) = f(t,x(z))

(2.6) ,where 0<a<1 and xyecR”"

x(0) =xo
Definition 2.6. A point E is an equilibrium point of the fractional dynamic system (2.6), if and
only if f (t,E) = 0. The fractional dynamic system (2.6) has the same equilibrium points as the

integer-order system.

Theorem 2.7. [30] Assume that f satisfies the following conditions

1. f(t,x) and g—j: are continuous with respect x € R";

2. Ift,x)| < @+ Ax]|  Vx € R, for almost every t € R and for all x € RY, where o and A
are two positive constants.

Then, there exists an unique solution on [0, o) solving the system (2.6).
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3. MATHEMATICAL MODEL

The fractional order two-strain SEIR model with general incidence rates is presented in this

section. And the system of equations is as follows

(

DaS(Z) :A—fl(S,Il)Il(l) —fz(S,Iz)[g(l) —,LLS(Z‘),

DYEq(t) = fi(S, 1)1 (t) — (B1 +1)E; (2),

DYEx(1) = f2(S, ) D2 (1) — (B2 + 1) Ex (1),

(3.1)

DL(t) = BiE1(t) — (M + 1)L (1),

DL(t) = BrEx(t) — (A2 + 1)L (1),

kDO‘R(t) =ML (t)+ AL (1) — UR(t),
with the following non-negative initial conditions

S(0)>0, E;(0)>0, E(0)>0,
L,(0)>0, L(0)>0, R(0)>0,

(3.2)

and N(t) = S(t) +E;(t) + Ex(t) +1,(¢) + Io(t) + R(t) denotes the total population at time ¢ > 0.
The biological description of the model parameters is given in table 1

The general incidence functions f;(S,7;) and f>(S,I») stand for the infection transmission rates
for strain 1 and strain 2, respectively. The incidence functions f(S,1;) and f>(S, ) are assumed

to be continuously differential in the interior of ]R%r and satisfy the same properties as in [4, 31,

32].
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T

FIGURE 1. Fractional SEIR two-strain model

TABLE 1. Description of the model parameters.

Parameters of the system (3.1) Description
A Recruitment rate
Bi Latency rate of strain i, i=1, 2
Ai Transfer rate from infected I; to recovered, i=1, 2
u Death rate

We assume that f1(S,1;) and f>(S, 1) satisfy the following conditions

(

f1(0,I}) = f>(0,L) =0, foralll;>0, i=1,2, (H;)

(3.3) 9 (s,)>0, ¥S>0, V>0, i=1,2, (H,)

9(s.) <0, ws=0, w0, i=12. ()

The properties (H}), (H») and (H3) are biologically verified by several classical incidence rates

fili=1,2).
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4. POSITIVITY AND BOUNDEDNESS OF SOLUTION

Theorem 4.1. Under the initial conditions, the fractional order system has a unique positive

solution on RS.. Moreover the closed set Q = {(S,E\,Ey,I1,1,,R) € RS /N(t) < % +N(0)}is

positively invariant.

Proof. Let X(t) =

formulated as follows: D*X (¢)

(S(t),E1(t),Ex(t),11 (¢),I(t),R(¢))T be in RE. The system (3.1) can be re-
=F(X(r)), where

A= fi(S, )N (1) = (S, L)L(t) — uS(),
Si(S N (1) = (B + RE(7),
@) F(X) = S2(S:B)D(t) — (B2 + ) Ex (1), |
BiE (1) — (M + ) (1),
BoEx(1) — (A2 + 1)D(1),
Mli(t) + Ao la(2) — PR(1).
It is obvious that F satisfies the first condition of Theorem 2.7.
To prove the second one, we denote
A
0
B= ! )
0
0
0
—u 0 0 0 0 0
0 —(Bi+u) 0 0 0 0
N 0 0 (B2+ 1) 0 0 0
0 B 0 (A +u) 0 0
0 0 B> 0 —(A+u) O
0 0 0 M A —u
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00 0 —fi(S,}) —f(S,h) 0

0 0 0 fi(S1) 0 0
N2: )

000 0 £(S,L) 0

000 0 0 0

Then, we have

F(X(t)) =N X(t)+N.X(t)+B.

Thus,

1 (X)|| = [|N:1X () +NoX () + B < (| BI| [N [[IX (@) [ 4[| N2[H]X () [} < w (N [IV2 DX ()]
We conclude that

42)  FX)| <w+AIX@)| where, w=|B| and2 = (||Ni]|+[N2]).

By Theorem 2.7, the system (3.1) has a unique solution on [0, +-oco].

For positively, we have

(

DaS<l‘>|S:0 =A>0,

DE\(t)|g=0 = f1(S,11)11(t) > 0,

D%Es(t)|g,=0 = f2(S, ) 12(t) > 0,

(4.3) 4

D[, (t)’[lzo = ﬁlEl(t) >0,

Dalz(l‘)’h:() = BZEZ(I) >0,

\DaR(l‘)|R:() =ML (t)+AhL(t) > 0.

Hence, under initial conditions the solution of (3.1) remains non-negative for all + > 0. To

establish the boundedness of solution, we have N (1) = S(¢) +E; () + Ex(t)+ 11 (t) + () + R(¢),
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hence,

D%*N(t) = D*S+ D*E, + D*E, + D*I, + D*L, + DR,

then,

DYN(t) =A—uN(t),

hence,

N(t) < N(0)Eq (—put®)) + 4 (1 = Eq (—pt®)).

Since, 0 < Eq (—ut®*)) < 1, we obtain N(t) < % + N(0) and the closed set
Q={(S,E1,E2,I,,[,R) €RS/N(t) < %—FN(O)} is positively invariant. O

The first equations of the system (3.1) do not depend on the R and the population is constant,

then we can omit the last equation of the system (3.1). So the problem can be reduced to

DYS(t) = A— fi(S, 1)1 (1) — f2(S, ) 1x(2) — uS(z),
DYE\(1) = fi(S, 1)1 (1) — (B1 + WE1 (1),

“.4) D¥Ex(1) = fa(S, )2 (1) — (B2 + W) Ex(2),

DL(t) = B1E1(t) — (A1 + 1)L (1),

Dalz(t> = ﬁzEz(I) — (12 —|-‘LL)12(Z‘).

\

5. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER

The study of the dynamics of an epidemic model is based on the threshold value of the basic
reproduction number noted by %.

In the model (3.1), the basic reproduction number %) is obtained like in [4] and is given below

Ko = max(%}, %3), where

i (%;0) Bi ) f2 <%,0> B>
R = and % = .
(Br+p) (A + 1) B+ 1) (A2 + 1)
Let us
di=pi+u, da=p+tu, d=A+yu, di=l+u.
Then,
fi(4,0)B £ (2,0) B
%6— (u > and %> = <“ >



FRACTIONAL-ORDER TWO-STRAIN EPIDEMIC MODEL WITH GENERAL INCIDENCE RATES 11

By using the Definition 2.6, we calculate the equilibrium points of the system (4.4) by setting
the right-hand of the system (4.4) equal to zero.

The equilibrium points are obtained as follows

(DAS(0) = A~ A1)~ A(S. () — S(0) =
DaE1 (l‘) = f] (S,I])I] (l‘) —di1Eq (l‘) =0,
(5.1) DaEz(l‘) :fz(S,Iz)Iz(l‘)—dzEz(l‘) =0,

Dall(t) = ﬁ1E1<l‘> —d311(l‘> = 0,

\Dalz(t) = ﬁzEz(l‘) —d412(l‘> =0.
The steady states are [4]

e The disease free equilibrium noted E f:(%,0,0,0,0) which exists when % < 1.

e The strain 1 endemic equilibrium noted Ey, = (S*f, L(A—psp),0, B (a—usy) ,o)

which exists if % > 1 and S} € [0, %].

e The strain 2 endemic equilibrium noted E;, = <SZ,O L (A—usSy), 7d§24 (A— NSE))
which exists if %5 > 1 and S} € [0, %].
e The total endemic equilibrium noted E, = (S;k, Ef B30T t,121> exists when

) (40 H(4:0

min(%},%5) > 1 and A > l(oj‘fl )I]kt—i— 222 )Iikt and where
0 ’ 0 K

Ert: ﬁlllt’

E2t_ /32[2t7

- (182,200 )

In the next section, we discuss the local and the global asymptotic stability of each equilibrium

points.
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6. STABILITY OF FRACTIONAL-ORDER SYSTEMS

6.1. Local stability analysis of E s,E ,E,,E;.

Theorem 6.1. [33] The autonomous system: D*x(t) = Gx(t) with x (ty) = xo is asymptotically
stable if and only if |arg(spec(G))| > &F, where o € [0,1), arg(.) is the principal argument of

a given complex number and spec(G) is the spectrum (set of all eigenvalues) of G.
Theorem 6.2. E  is locally asymptotically stable if max(%&,%’%) <1

Proof. The Jacobien matrix for the system (4.4) evaluated at Ef is

w00 —fi(40) —ph(£0)

0 —di 0  fi(4,0) 0
TEfH=] 0 0 - 0 £(4,0)

0 B O —ds 0

0 0 B 0 —d,

One of the eigenvalues of J(Ef) is 4 = —p1 < 0.

Then, we consider the following matrix

—d; — A 0 f1(4,0) 0

“’
0 —dy— A 0 A0
©.1) P - > fz(u )
Bi 0 —dz — A 0
0 B> 0 —ds— A

The characteristic equation of P can be written as
(6.2) At +b3A° + by A% + b1 A +by =0,

where
bz =di+d3+ds+dr >0,

by = dhrdy (1 —%g) +dd; (1 —%é) +(d1+d3) (dy+dy) >0,
b1 = drdy(di +d3) (1 — %) +dvds(da+do) (1 - Z5) > 0,

by = didrdzds (1 — Ky — K5 + Ky %) > 0.
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If max(%&,%’%) < 1, we have

b3>0, by >0, b1>0, by >0,

byby > by, bl(b2b3 —bl) > b0b32.
Then by the FR-H all the eigenvalues of the P; matrix have negative real parts[34, 35].

Thus by the Theorem 6.1, E ; is locally asymptotically stable when max(%&,@%) <1. 0

LetJ (Fsl) be the Jacobien matrix of the system (4.4) evaluated at E,
(6.3)

If (ST Df1(SLI
SOy g o S s ) - a(87,0)
3f (S*> *v ) s af (S*’I*X )I*.S >k
SRR —d 0 SRR A(SEI) 0
J(E,) = 0 0 —d; 0 £2(81,0)
0 B1 0 —d;3 0
0 0o B 0 —d,

and £ (x) the characteristic equation given by

(6.4) hy (x) =x +B4x4 +B3x3 —|—Bzx2 + B1x+ By,
where, we noted 22 = w and
hdy
afi(ST, I )
By =d; +d3+d4+dz+$lisl +u,

afl(ST,Iisl) %
B3 = Tll,sl +u ) (di+ds+ds+dy)+dids+ (dy +dz) (ds+dp)

df1(ST. 11,

& * ) *
_ﬁl (fl( ],11751)—{- 811 117S1 +dady (1—%2),

dfi(S1. 1y sl)

By =did3(dy+dp) + < 33

o T IJ) ((di +d3) (ds+ da) + d1d3)
dfi(ST. 15 y,)

didr | di +d
+42<1+3+ 39S

afl( ) S) * % 7k
— B (%Iuﬁ‘fl( Lhs) | (datda+1),

I +,u> (1 —%2)
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0
= [d4d2 (%Il 51 —l—,Ll) (dl —I—d3) +d1d3d4d2] (1 —%2)

dfi(ST, 11 y,) . Afi(ST:hiy,)
(A dids — B | fi( 1711,s1)+%11,51

5 I, + u) (ds+dy)
/i
— Bidad> (%h s H Tv’isﬂ) (1—-2%)

If1(S5,IT, Ifi(SEI
+ B (d4+d2)—f1( 1 l’l)lik,sl <—f1( M)

oS ol 7 Iisl—i_fl( T’Iisl)>7

af S*,I*s
By = didsdsds (%Iisl —|—,LL> (1 —%2)

P 8f1< *71*3) " afl( 5 s) "
_ﬁld4d2 <f1(S1,117s1)+%117sl %11751 ‘I‘,u (1—%2)

Ifi(S1:1i5,)

af1(S7,If 5 )
+ Bidad, 353 =04 (fl( Tvlf,sl)'i'#ll sl) (1—%’2)~

We obtain the following theorem

Theorem 6.3. If %5 < 1 < %} and B; defined above for (i =0,1,2,3,4) satisfy the condition

;

B4B3— B >0,

B, (B3B4 — By) — B4*B; >0,
(6.5)

(B3B4 —Bz) (Ble —BOB3) - (BIB4 _BO)Z) >0,

By >0,
\

then Ej, is locally asymptotically stable.

Proof. From the hypothesis (Hy), it is simple to check that By is positive.
By the FR-H and under the condition (6.5) all roots of 4 (x) have negative real parts [34, 35].
Then from Theorem 6.1, Ej, is locally asymptotically stable. U
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LetJ (E;z) be the Jacobien matrix of the system (4.4) evaluated at E,

(6.6)

h(S3B,)B, 9f2(83:05 5, )15 5,

3 —u 0 0 —fi($5,0) ———F2 - fa(85.1,)
0 —dy 0 fi(55,0) 0
E 9128305, )53, Ifr(S3.05,,)15 .
JEq)=| —EEm 00— 0 SR h(SL)
0 Bi 0 —d3 0
0 0 B 0 —dy

and /;(x) the characteristic equation given by
(6.7) hy(x) = X+ C4x4 + C3x3 + C2x2 4+ Cix+C,

where, we noted 2! < %& < 1land

o1 (S5, I%
c4=d1+d3+d4+dz+%lisﬁu,

afZ(S§7I;,SZ) *
Cy=| = by, + i | (di+ds+datdy) +dods+ (dy +d3) (das+da)

afz(S*’I*Y) * * 7%
- B (#Ih2 + (S5 | +dids (1-2"Y),

af2(53715752) *
Cy = dpdy (dy +d3) + leﬂ +u | ((di+d3)(ds+do) +drdy)

d1(85,1;
+ddj (d4+d2+%[isz+u> (1 —%1)

(83,13 ,) . . o
_BZ (#12,52 +f2(S2712,s2) (dl +d3+nu)7

df2(S5,15
C, = [d1d3 (Mgﬁﬁu) (d> +d4)+d1d3d4d2] (1-2")

A
212(83.55 ) /(83,55 )
+ (ﬁ dady — o | f2(S3,555,) + #I;SZ

oS Izsz —|—[.L> (dl +d3)

afz(S*7I*S) * * 7x
— Brddy (#% + A3, | (1-2")
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d fz(SE,Iin)I* (afz(si,lzsz)

+ﬁ2(d1 +d3) aS 2,S2 812 I;,Sz +f2(SE7I;7S2)> Y

21(85,15
Co = dydsdsds (%Igm + u) (1-2")

* 7% 8f2(S*7I*s) " af2(5*71*3) "
— Padids (fZ(Sz,Iz,szH#Iz,sQ S | (1)

af2(S§71252

) . - (83.55,) .
+B2d1d3T127s2 f2(52,127s2)+a—12’21m (1_@1).

By the same calculus as above, we obtain the following theorem

Theorem 6.4. If %’é <1< %g and C; defined above for i = 0, 1,2,4 satisfy the condition

CyC3—C > 0,

G (C3C4 — ) — C42Cy > 0,
(6.8)

(C3C4 — C2) (C1C2 — C()C3) - (C1C4 - CO)Z) > 07

Co >0,

\

then E, is locally asymptotically stable .

Proof. From the hypothesis (H), it is simple to check that Cy is positive.
By the FR-H and under the condition (6.8) all roots of A, (x) have negative real parts [34, 35].

Then from Theorem 6.1, Ej, is locally asymptotically stable. 0

Let J (E;) be the Jacobien matrix of the system (4.4) evaluated at E,

6.9
©9) o (s,*.a,lg_ﬂ i, afz(Sfélg*,x,)li‘.x, “u 0 0 _‘Qﬂ(sg’iﬁ’”m —f(S. 17 ,) —% — (80 5,)
O 0, ) —ay 0 L g s ) 0
)(E) - Tt 0 0 LG A3 1)
0 B0 —d3 0
0 0 B 0 ~

and h3(x) the characteristic equation given by

(6.10) h3(x) = x° + Fyx* + B + Box® + Fix+ Fo,
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where

dfi(SHI 0f>(S:,I;
F4:d1+d3+d2+d4+< (S 1,I)I* N (S 2”)I§‘J+u>,

oS 1 oS

F3 = dody +did3 + (dy + d3) (d2 + dy)

afl(S*al* ) " afZ(S*aI* ) %
+(dy +d3 +do +dy) <5f5”11,t+ 8’5“1271+u>

afl(s*’l*) * * ¥ 8f2(S*,I*) * * ¥
- B <a;11’t11,z+f1 (S; 711,t)> — B> <a;22112,t+f2(st 712,1)> .

F —
> d1d3(d2+d4)+(d1+d3)d2d4+< 35 1t oS

dfi(SHI¢ 25 (SH I
( ' 1,t)1* ( t 2,t)1§7l 'u)
(d1d3 —|—d2d4 + (dl +d3)(d2 +d4))

ofi(S),I5,) . 9f(SHI;,) f1(S),IT,) o
- B <aigull,z+aig2'llz,z+ﬂ> ((9;1“11,1+f1(51711,z)>

Ofi(SEIE,) . (OA(SHIT,) | . f(SEL,) . (O(SEI;
+B1 1(815 1J)Il,t< l(a;] IJ)Il,t"i‘fl(Sz:IlJ))""ﬁZ Z(atS 27t)[2,t< 2( : 271)

fi1(S;,1f,) . 21(8;,15,) . af2(S;,L;,) . .
- B2 (alSl'[Iu + ailsz'tlz,t ‘HJ) (agzz’tlz,t + f2(S; 712;))

If (S5, | . AN (SHH 1T, \
Bl ) (G 1) ) ~ Bl ) (g AL ).

afl (S;(ﬂlit)l* + afZ(St*’IZ)
as M Js

Fy = didydsdr + <

af](S*’I*) * *
_ﬁl <a;117t11,t+f1 (Sz 711,t)>

dfi(SH I afi1(SHIF 0 (S I
g;”m+@+m<“$“%w-%g”@+@

L, +u> (dvd3(dr+da) + (dy +d3)drds)

[d2d4 — (dyr+ds)

afz( *’I* ) * * %
_BZ <8;22J12,t +f2(St vlz,z)>

N (S, IT,) . 0fa(S).15,)
[d1d3+(d1+d3)(alsl’tll7t+agz7t

afl(S*’I*) * * 7 afz(S*’I*) * * ¥
+ﬁ1ﬁ2 <a;1UII,t +f1 (St 711,t)> (a;ZZJIZ,t +f2(Sz 7127t)> )

* I(SIE,)
1@+u%«m+@>’2J1}

oS 2t

17

e RIACH)
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o f1(SH I f2(S;, 15
F0:d1d3d4d2< <8ZS 17t)11*7t+ (atS 27t>[§,t+u

afi(S;,1I7 ) . dfo(S;, 1) i afi(S;,1I ) i ..
— Pidad, <a—tsl’tll,z+a—lsz’tlz,:+ﬂ a—;ll’tll,ﬂrfl(st,]l,t)

oINSy IT,) . 9f(S5,) | (87, 15,) .
—52d1d3 <a—gull,z + a—tSZJIZ,t +u 8—;22J12’t +f2(St 712,t)

IS, . (OA(SEIL,) o
atS L Il,t a;] L Il,t+f1(St7ll,t)

+ ﬁ] drdy

2f2(S7. 13 (S5, 15
+ Bodyds fZ( t 2;)1* < fZ( t 271,‘)

S 2 ol I;,z‘*‘fZ(S??Izt))

afl(S*’I*) * * 7% 8f2(S*,I*) * % 7k
_ﬁlﬁZ (8—;1”11,t+f1(st’11,t) a—;ZZJIZ,t'i_fZ(StaIZ,t)

O f1 (S5, I o (S5 I
< fl(a; lJ)Iiz'i‘ f2(atS 27[)15‘;)

af1(S, I ) afr(S5, L) afi1(S,I )
—l—ﬁlBZ( 8tS L Iiz‘f‘ 8tS 2 Ig,t"’“ a—;ll’tlit—i—f](Sf,Iit)

af2( *’I* ) * * px
< a; 2 12,z+f2(St712,z) :
2

By the same calculus as above, we obtain the following theorem

Theorem 6.5. If min(%},%2) < 1 and F; defined above for (i =0,1,2,4) satisfy the condition

(

B —F >0,

F (F3F4 —Fz) —F42F1 >0,
(6.11)

(F3F4 — Fz) (F1F2 — F()F3) — (F1F4 - FO)Z) >0,

Fy >0,
\

then E, is locally asymptotically stable .
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Proof. From the hypothesis (Hy), it is simple to check that Fy is positive.
By the FR-H and under the condition (6.11) all roots of /3(x) have negative real parts [34, 35].
Then from Theorem 6.1, E; is locally asymptotically stable. U

6.2. Global stability analysis of E 1,E,,E,,E;. To prove the global stability of the equilib-
rium points, E ¢, Ey,, E;, and E;, we need to introduce some results for the fractional systems
and, we use the extend Barbalat’s Lemma with the Lyapunov function to a fractional-order

nonlinear system.

Proposition 6.6. [36, 37] If W : R — R is a uniformly continuous function on |ty,>) and
JUWIP < M forallt > ty, with & € (0,1), p and M are two positive constants. Then W (t) — 0

ast —» oo,

Lemma 6.7. The solutions S,E1,E, 11,1y of system are uniformly continuous functions on

[0, 40
Proof. Each equation in system (4.4) can be written as follows
(6.12) Dax,'(l‘) :g,-(x,-(t)),

where x1 (1) = S(t), x2(t) = E1 (1), x3(t) = Ex(t), x4(t) = L1 (¢), x5(t) = L(¢),
and g1 (x1 (1)) = D%S(1), g2(x2(1)) = D*E1 (1), 83(x3(r)) = D*Ex(2), g4 (x4(r)) = D*I1 (1),
8s(xs(2)) = D(1).

The solution of (6.12) satisfies the following integral equation

t o o—1
(6.13) xi() = x:(0) + /0 %gi(xi(r))dr,

and forz, s € [0, o] with # < s, we have

s (g — a—1 t (01
) -0 < | [ stnas— [T (@)

a—1

; G oa—1 a1 S (s —
<l <( FZ())C) = r(Tgc) )gi(xi(fwﬁ[ %g’w(r))dr

< %/Ot [(s—r)“*l—(z—r)“*l} dr+ia/ts (s—1)* 'dr,
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where M = max(||g;||), for 1 <i<4.
By the change of variable t — T = u;, s — T = u; and the inequality (§% —n%) < (& —n)?* for

all £, > 0, we conclude that

i () — x; (5)]| < ?4) (/:ugclduz—/olu‘lxldul) —l—% (/Os_luglduz

N———

M g T L
:W<Ez ; i(ﬁio)

M o (04 o
:F(a) (s*=(s—0)* =1+ (s—1)%)

M o o M o
B N SCI R

Hence S, Ey, E», I| and I, are Holder continuous functions.

Then they are uniformly continuous on [0, +oo]. O

In (2.6), we noted by .Z f the Laplace transform of f. We recalled the classical result of

Laplace transform theory.

Theorem 6.8. [38]Assume that £ f doses not have any singularities in the closed right half-

plane {A € C:Re(AL)}, except for possibly a simple pole at the origin. Then, tle ft) =
lim A(Zf)(A).

Jim A(Zf)(2)

6.2.1. Global stability of disease-free equilibrium.

Theorem 6.9. For max(%&,%’é) < 1, the disease free equilibrium point E s is globally asymp-

totically stable on the interior of Q.

Proof. LetV :{(S,E1,E>,I;,) € Q:S >0} — R, aLyapunov function defined in the following

di d
(6.14) V(S,E|,Ex,1;,1) =S — S5 — gICh )dX+E1+E2+—Il+—212
s; f1(X,0) B B
From [25], we have
fl(Sévo) a o o dj o dy o
(6.15) DYV < D%S(t) — 1220 pOS(r) + DYE, + D*E; + —-D*I; + 2D%I,,
Q f1(S,0) ) : S T
we obtain

(6.16) D%V < —H(),
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_ * £1(85:0) did F1(85,0) £o(S,F
where H(r) = —usj (1- ) (1= 557 — Fh (8 - 1) = %0 (G35 £S04 1),
which is a defined positive function if max(%},%3) < 1 [4].
From (6.16), we conclude that V(1) <V (0) —J*H ().
Hence, J*H(t) + V(1) < V(0).

Thus, /%8 (§ ~ 1) < € where C=V(0)

From Lemma 6.7, S (1 — s%) is uniform continuous and by Proposition 6.6, we deduced that
*« (S oo

So (53 1) —0ast — oo,

Similarly we have I} — 0 and I, — 0 as t — oo.

From system (4.4) and using the Laplace transform, we obtain

ZL(D°E\) =2 (f1(S,h) ) —d £ (E1),
A L(E)) =A% EN(0) = Z(f1 (S.) ) —d1 L (Ey),
AL (E))+d1 L (E) =ZL(fi(S,1)) + A% E(0),

(fl(Sall)Il) Aail E (O)

Z
LE) =00 Taera

This implies, by using Theorem 6.8 that

ZLZAASN)L) ’ LY

lim A.Z(E;) = li ——FE(0),
JAm AZ(E) = lim =g M a4, 5O
A\Y WA
:fl( 0 I)IT:ET-
d

Using Theorem 6.8 again, we get

limE| = Ef =0.

t—o0

By the same calculation as the previously, we have

lim E, = E} = 0.

t—oo

Then, we conclude that

S—Syast—oo, E - 0ast —oo, By —0ast—oo, [y - 0ast—o0, b —+0ast— oo,

Therefore, tlim (S,E\,Ep,I1,1) = (%,0,0,0,0) independently of the initial data in the interior
—>00

of Q. This shows that Ff is globally asymptotically stable in the interior of Q. U
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6.2.2. Global stability of strain 1 endemic equilibrium. For the global stability of Ej,, we

assume that the function f satisfies the condition in the following

fi(S. 1) [ I)
(Hy) (1_]?1(‘5',[1*751)) < f](S,I]) _Iik,sl <0, VS,I;>0.

Theorem 6.10. For 9?8 <1< %), then the strain 1 endemic equilibrium is globally asymptot-

ically stable on the interior of Q.

Proof. Let us define the following Lyapunov function L; : {(S,Ey,E>,I1,1) € Q: S,Ey, I} >
0} - Ras
(6.17)

S fi(ST. 0 ,) E} E;
Li(S,E\,Er, 11,1, =5—-5]— —— UdX+E; —In —1|+E
( ) Vs AT PE Ef

dy il I dy
ity (s S P 1)+ 2p.
B, L,s) (]iisl (Iik’sl> ) 633

From [25], we obtain

(6.18)

fi(si15,)
fi (S,I;Sl)

DL <D%S|1—
b= 1 Bi I B2

EY d Iy d
+DYE, (1 - g“) +DYE, + ZLpoy, (1 - ﬂ) + 22pep,.
By the same calculations as above and under hypothesis (H; — Hy4), we have

(6.19) DL < —K(1),

where

St I diE}, mny I E ST,
k() = (us—psp) (1= 2000 ) gy (g e AU BB S
(S ) ’ Ji(S I ) d\E; LET,  fi(S.h)

_aEr. 1= LS S (S’Iiﬂ>_ o) ety (NSLIL) Lo
. h (S,ITS1> fi (Svll) If,sl ﬁZ fl(S’IT,Sl) ’ ’
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which is defined and positive function, if 9?3 <1< 9?(1) [4].
Then
(6.20)

K(t) = (1S —usy) (

fl(ST7 iksl) —dlE* 4_ dlEiksl fl(SaIl)Il _If,lel _ fl(S7Iik,sl)
NS I ) Lsi fi(S, [ I d\E; LE;,  fi(S,)

1,s1/7 1,81

a1 S0 (1 I )_d2d412 (f(STJl*sl)%g_l)
,S1 7 (S Ifsl> Iiksl Bz (S Iiksl)

From (6.19), we conclude that L; () < L;(0) —J*K ().

Hence, J2K (1) + L (1) < Ly (0) =C.

This implies by (6.20), J*(uS — uS;) < C, J%(; fl ) <C andJ*L < C.

Using Lemma 6.7, we obtain the uniform contlnulty for puS — uS*, + *— 1 and b>.

From Proposition 6.6, we can write

S — S*—>Oast—>oo, 2l —1—>0ast—>oolz—>0ast—>oo
us—u I,

As a result,

S—Sjast —eo, [y = I ast — oo, h — 0ast — co.

From system (4.4) and using the Laplace transform, we obtain
L(D*E) =2 (fi(S,h) ) —d\ZL(Ey),
ACL(E) =A% E(0)=2(f1 (S, 1) ) —d\ L (E}),
AL (E))+d Z(Er) = ZL(fi(S,1)I) + A% E1(0),

.,?(fl(S,Il)Il) y
A% +dy A% +dy

ZL(E) = E(0).

This implies, by llSiIlg Theorem 6.8 that

lim A.Z(E;) = lim m E1(0),
A—0+ ( 1) A—0F A% +d, 1—0t A%+ d4 1( )
_f(ST’Il Sl)I* _E*
- d—l lisg — &yt
Using theorem 6.8 again, we get
tli_{?oEl :Eisl.

As previously, we obtain

lim E2 = E2 52 =0.

t—o0
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Therefore, tlim (S,E1,Ep,I1,1b) = (S,E} ,,,0,1f ; ,0), independently of the initial data in the
—>00

1,s1? 1,s1°

interior of Q. This shows that Ej, is globally asymptotically stable in the interior of Q. U

6.2.3. Global stability of strain 2 endemic equilibrium. For the global stability of E,, we

assume that the function f, satisfies the condition

nen \ (2(85.) 1

H. 1- a
(Hs) P (S’I;sz) L(SL) I

<0, VS,L>0.

Theorem 6.11. For %& <1< %8, then the strain 2 endemic equilibrium is globally asymptot-

ically stable on the interior of Q.

Proof. Let us define a Lyapunov function L; : {(S,E,E»,I1,5) € Q:S,E>, [, >0} — Ras
(6.21)

sz(SZJE‘ > E E
La(S.EvEx i) =S =3 — [ Lax 4+ B+ By, | 2~ 22 ] 1
S f (X,I;sz)

2,S2 2,&2
+—hL+—L, |=———-In —1]).
B B\, b,

From [25], we obtain

(6.22)

p) (S}Iﬁ‘, ) EX. d L d
DL, <pos|1- """/ ) peg, (1 - 2“) L DYE; + 2 D% (1 — 2’“) + 4 pay,.
5o B) )

By the same calculations as above and under hypothesis (H; — H3) and (Hs), we have

(6.23) DL, < —M(t),

where
(6.24)

% (S;I;S ) hEy AL L E ) (S’I;-S )
M(t): (‘I,I,S—‘usz) 1 —72 _dZE;sZ 4 — 42 - (d7E) _12;* - f (S I ;
p(s1,) r(ss,)n, LB BB, AED

_E;, (1 £(S,b) ) (fz(S,I;,XZ) b ) dids (fz (SZ,IE,sz) - 1).

_f2(SaI;,sz) (8. D) _I;.,sz - B 1 12 (S’[;,sz)
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which is defined and positive function, if 9?6 <1< 9?3 [4].
Then
(6.25)

(85,55 dE? L L. E NS5
M(t) > (1S — uS3) 1—i< ») ks, (4o — 2ot SGDIE GeB (5.5
fz(

S, ,;_sz) I dhE;,  bE5

2,50

£ (5.5,

g (1P \(,_ dids | fa (53715}2) P
— a2k, - * T - 1 0~ :
h(S.5,,) Ly B f2 (Svlz*.sz)

From (6.23), Ly (1) < L,(0) —J*M(t).

/!

Hence, J*M(t) + Ly(t) < L(0) =C .

Then by (6.25) J%(uS — uS3) < C',J*L < C" and J* (72 - 1)< C'.

s

By Lemma 6.7, we obtain the uniform continuity from uS — uS3, I and I;I—z —1.
)

From Proposition 6.6, we can write

US—uS; —0ast — oo, I} = 0ast — oo, 2

2,59

—1—=0ast — oo,

As a result,
S—85ast —oo, I —>0aszf—>oo,]2—>15"7s2 ast — oo,
From system (4.4) and using the Laplace transform, we obtain
g(DaEz) =Y (fg (S,Iz)lz) — dzg(Ez),
lag(Ez) — }LOFIEQ(O) = g(fz (S,Iz)[z) — dzf(Ez),
A* Z(Er) + o2 (E2) = L (f2(S, 1o)h) + A% E2(0),

L(f(S,h)h)  A*!
L) =ty trara O

This implies, by using theorem 6.8 that
LAfr(S, b)) I LY

lim A.Z(E;) = lim m E>(0),
A—0+ (E2) /11>0+ A% +dy ALO+ A% +dy 2(0)
— f—Z(S;IiSZ)I;s :E;v .
d2 392 392

Using theorem 6.8 again, we get
. s
tlggEl =E;,, =0.
As previously, we obtain

limE, =E; .
treo 2 2,52

f(S, L)

25

|
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Therefore, tlLIEQ (S,E1,Ep,I1,1) = (S;,O,Eik’sz,o,lzsz), independently of the initial data in the

interior of Q. This shows that Ej, is globally asymptotically stable in the interior of Q. U

6.2.4. Global stability of strain total endemic equilibrium. For the global stability of E;, we

assume that the functions f; and f; satisfies the following conditions

(1 A f,-(s;:lj»,t)) (ﬁ(Siz AN ) <0
R 6L, ) \RSL) ) T ) =Y

(i,j)=(1,2) or (i,j)=(21).

(He)

Theorem 6.12. If min(ﬁ?&,%&) > 1, then the total endemic equilibrium E, is globally asymp-

totically stable on the interior of Q.

Proof. Let us define a Lyapunov function L3 : {(S,E,E>,I1,) € Q: S,E1,Ex,I;,[, >0} - R

as

s f1 (S?,Iik > E E
Ly(SE1,Es Iy, b) =S—8 — [ —""axvEgr, [ 2L | 2L ) -1
t « l,t E* E*
S fl (X’Iik,t) 1t 1,

E E d I I
(6.26) +E5, —*Z—ln —*2 —1 ]Ilt ]—ln 71 —1
7 Ez,t Ez,t ﬁl 1, Il,t
d I I
+ ok, f—ln Z)-1].
B 15 12’[

From [25], we obtain

(6.27)

N (S;ka]ik,t) Ef, E;,\ I,
DLy<pos|1-—>" ) ipog (1-—) 4 DYE, 1—— +pep (11— 2
fi (SJT;) E, [31 I

L& ey (1 _ IZ_) |
ﬁz b

As previously and under hypothesis (H; — Hy) and (Hg), we have

(6.28) DLy < —Pi(1),
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where

(6.29)

Pi(t) = (uS—us;) | 1 f<S;’IT") 4LEL | 4 hEi; fiSmh fiE fl(s’lik”)
1 IJ' :u“ t f(S,[Lt) 1 1,t fl (S;K7Ift) Ii‘t dlEl IIET,Z f] (S,I])

e % * *
—drE3, | 4 /i (51711,t)7f2(5712)12 T (S’Ilv’> )

A(sa,) B BE psn)f(sn,)n,

—diEf, | 1- fi($h) ) (fl (S’Iif) 11)

fi(sa,)) \ S0 I

dE; 1 2 (S,Iz) h (S;Falf,t)) (fz (S;’I;,t) fi (Svlit> ]2)
— 5 — —— 1.

f (S,*,I;J) fi (S,Itl> L(8.h) 4 (S,*,Ift) L,

which is defined and positive function, if min(%},%3) < 1[4].
Then
(6.30)

Pi(t) > (uS—us)) [ 1- f7<$71it) —_dEF |a— dEf,  f(smh hE N (S’Ii’)
R ’ £(S,1,) B (str), @B hEL LS

. fi (SZ‘JI}) ALS.LL L E bk, fi (S,Ii‘.,,>
—dE;, |4 - - .

A(sa,) B BE psn)f(sn,)n,

A, A I
—d\Ef, l_fll(s,1£[)) (1-&)
P ALY SR ,1;,)) (fz (si8,) 11 (1) _’2> |

b (S,*,I;J) N (SJT,z) f2(S,h) fi (St*vliz) I;J

From (6.28), L3(t) < L3(0) —J*Pi(¢).

Hence J*P; (1) + L3(t) < L3(0) = C*.

Then by (6.30), J%(uS — uS;) < C* and Ja(l’l*—ll —1)<cC*

By Lemma 6.7, we obtain the uniform continliity of uS—uS; and (Ill*_lt -1).
From the Proposition 6.6, we can write |
(uS—uS;) —0ast —ooand (I —If,) — Oast — oo

As result,

S—Sfast—ocoand I} — I}, ast — oo.
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From system (4.4) and using the Laplace Transform, we obtain
Z (D*Er) = Z(f1(S,) 1) —d1.Z (Ey),
LY.L (E)) =A% L2 (E(0) = Z(fi (S,1) 1)) —d £ (E1),

laf(El) —l—dlg(El) = f(fl (S,Il)ll) +7La_lE1(0),

L(Ai(S,)L) | A%
E) = E .
2 (Er) A%+ d,y A%+ d, 1(0)
This implies
. LOASIL) . A°
1 E)=1 1 E
A AL B = i e d, A 2@y, 10
fi(son)n
e

Using theorem 6.8 again, we get llbm E\=E7,.

In order to prove the convergence of I, we consider another Lyapunov function

L4 : {(SthEZ;I],IZ) < Q: S7E1,E2;I]712 > ()} — R as

sh (875,
L4(S,E1,Ex, I}, b)) =S—S; —/ - lax
S f (.15, )

E E E E
630 o -t 2 R R N =
’ El,t El,t ’ Ez,t Ez,t

From [25], we obtain

o o fz <S;k’lik7t> o Eikt o E2t
DLy <D"S|1——— | +D"E] 1—E—7 +DY"Ey (1 ——=

(6.32) 2 (5713})

d; 11,) d> ( Iikt)
+pep (11— ) 2pop, (1 -2
Bi l( I B> 2 b

As above and under hypothesis (H; — H3) and (Hs — Hg), we have

(6.33) D%, < —P, (l‘),



FRACTIONAL-ORDER TWO-STRAIN EPIDEMIC MODEL WITH GENERAL INCIDENCE RATES 29

where
(6.34)
o o n(ss) ) BE, psmb BE 2(SE)
2(1) = —(uS—uS;) | 1- ——L | +dE3, | 4— e
£ (s.5,) p(sn,)5, :  LE, LD
+d E* 4 fz (S;K,I;t) fl (Sall)ll Il tEl dlEik,tfz (S’Iik,l)
151 - — — — —
b (S,I;‘J) dEr hEL, f(s.)f (s;‘,lg_,,) I,

I (S712) - E

Asn) P (Sr*”iit)) (f‘ (s7.11,) 12 (s.5) _11)

fl(S,*,Iit) fz(S,I;J fi(8,1) fz(S,*,I;J) I,

+d2E§.,l 1— fz(S,Iz) ) (fZ (SJ;J) IZ)

+d1ET,z 1—

which is defined and positive function, if min(%},%3) < 1.

Then,
(6.35)
« f (S;‘,I;,) « By, ASh)L LE T2 (S’Ii’>
Blt) > (us—us) [ 1-—— ) +aEg, [ 4- Ry Rl SR K
f (S,Ié‘_’,) b (Salf,t) I, hE B, f2(S.h)

S
/N

Si15,) mn E AELR(ST)
7d1Eik,t 4— * 7f1(Sa 1)1 1t 17 £ it

pss) B hEL fisnp (s,

. f2(8,h) L
— dEj, 1-}%@1)) (1—122)
fism P(S ’2)) (f' (s::11,) £ (s.5.) _II).

fi(s1i,) £ (.03, ASI) p (sp,m,) i

_dlETJ 1—

From (6.33), we have L4(t) < L4(0) —J*P5(2).

Hence J*Py(t) + La(t) < L4(0) = C**.

Then by (6.35), Ja(é—zl —1)<C*,

By the Lemma 6.7, wé obtain the uniform continuity of <IIS‘_2t —1).
From the Proposition 6.6, we can write |
(b—1;,) = 0ast — oo

As result,

b —>I§"l ast — oo,
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From system (4.4) and using the Laplace Transform, we obtain

L (D°Ey) = Z(f2(S,h)h) —dr.Z (Er),
AL (Ey) — A% L (Ex(0)) = L (f2 (S, h) ) —dr.Z (E2),

AL (Ey) +dol (E) = Z(f>(S,h) b)) + A% ' LE>(0),
L(fH(S,h)h) | A%

ZL(E) = ZLE>(0).
(E2) A%+ dy A% +dy 2(0)
This implies
. . AZ(H(S,h)h) . A%
lim A Z(E)) =1 1 E>(0
Pt (£2) Py A%+ dy Py A%+dy 2(0),
S* L)
_ f2( ldzz,t) 2,1‘ :E;J.

Using theorem 6.8 again, we get
. _ px
}gl; E, =E;,.

If’t) independently of the initial data in the

Therefore, tli_>m (S,E1,Er, 11, 1) = (S;k,El*J,E;J,ITJ,

interior of Q. This shows that E, is globally asymptotically stable in the interior of Q. 0

7. NUMERICAL RESULT

This section presents some numerical simulations and discussions of the Caputo-derivative
two strain SEIR model. The proposed fractional model is solved numerically using a gener-
alized predictor-corrector of the Adams—Bashforth—-Moulton method [38, 39, 40]. We have
also used the Matlab code fdel2.m designed by Garrappa (2011) for the fracPECE itera-
tive scheme. The simulations are conducted with different values of the order of the frac-
tional derivative o = 1; 0.9; 0.8; 0.7. In order to compare the ordinary epidemic model
(when a = 1) and the fractional epidemic model (when 0 < o < 1), the same biological pa-
rameters values with the same initial conditions as [4] are chosen. For different values of
0<oa<land fi(S,]}) = 6,S and f>(S,5) = 6,5, we illustrated the impact of o on the speed

of convergence towards the different equilibrium states.



FRACTIONAL-ORDER TWO-STRAIN EPIDEMIC MODEL WITH GENERAL INCIDENCE RATES 31
7.1. Disease-free equilibrium stability. To show the global asymptotic stability of the dis-
ease free point, we calculated the basic reproduction numbers of the two strains of our frac-
tional epidemic model and we find that it is the same as [4]. So, we have %(% =0.6 <1 and
%g =0.5263 < 1. Figure 2 proves that for all different o« (when 0 < & < 1), the disease is elimi-
nated and the solution converges towards the same disease free equilibrium point (5,0,0,0,0,0)
as [4]. Consequently the numerical results show that when « is smaller than one, S, E1, E>, 11,1
and R present a slower convergence to the free state of disease, when Ey, E>, I, >, R towards
to 0. The convergence to the free equilibrium point, when max(%é,%g) < 1, supported our

theorem 6.9.

7.2. Strain 1 endemic equilibrium stability. In [4], the solution converges towards the Ej,,
when %& =11.111 > 1 and 5?3 = 0.3609 < 1. Here, under the same values of the parameters
as [4] and by varying the value of @ (0 < a < 1), we show that the convergence of solutions
towards Esl = (1.8,1.0667,0,0.7111,0,1.4222) becomes slow when a becomes small. For

example, when o = 0.7 in figure 3, we remark a long period of infection with the strain 1 unlike

when o > 0.7. This explains the memory nature of the fractional model.

7.3. Strain 2 endemic equilibrium stability. Figure 4 explains the memory nature of the

fractional model with the strain 2 like figure 3.

7.4. Total strains endemic equilibrium stability. The last endemic equilibrium is charac-
terized by the persistence of the infection with the two strains, when the basic reproduction
numbers 9?6 > 1 and 9?8 > 1. The figure 5 shows the same convergence of the solution as
[4] towards Es, = (0.8167,0.5196,0.6757,0.7422,0.9652,1.2806). We see, in figure 5 that, if

o = 0.7, there is a long period of infection with the two strains /; and /> unlike when o > 0.7.
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FIGURE 2. Time evolution of susceptible S(¢), the strain 1 latent individuals
E| (1), the strain 2 latent individuals E;(¢), the strain 1 infectious individuals
I1(¢), the strain 2 infectious individuals /(¢) and the recovered R(¢) illustrating
the stability of the disease free equilibrium Ff with fractional order a €

{0.7,0.8,0.9,1}.
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FIGURE 3. Time evolution of susceptible S(¢), the strain 1 latent individuals
E| (1), the strain 2 latent individuals E;(¢), the strain 1 infectious individuals
I (1), the strain 2 infectious individuals /(¢) and the recovered R(t) illustrating
the stability of the strain 1 endemic equilibrium Ej, with fractional order a €

{0.7,0.8,0.9,1}.
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8. ConcLusION

In this work, we proposed a fractional order two-strain epidemic model with two general
incidence rates. At the beginning some basic results of fractional-order system are recalled.
The positivity and boundedness of solution are proved. Four equilibrium points and the basic
reproduction rate are giving.

After that, the local stability analysis of equilibrium points is proved by applying the (FR-
H) and the global stability of these equilibrium point is established by using (FB) and some
fractional-order Lyapunov like lemma. The (FB) is a power tool for the asymptotic analysis of
the fractional order dynamic.

In the end, some numerical simulations are giving to support our theoretical results and explain
the impact of o in the model. Thus, our model fractional is more realistic than the ordinary

model.
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