
 

                

*Corresponding author 

E-mail address: nursanti.anggriani@unpad.ac.id  

Received March 02, 2022 

1 

  

     Available online at http://scik.org 

     Commun. Math. Biol. Neurosci. 2022, 2022:46 

https://doi.org/10.28919/cmbn/7319 

ISSN: 2052-2541 

 

 

MATHEMATICAL MODEL OF HCV TRANSMISSION WITH TREATMENT 

AND EDUCATIONAL EFFORT 

S.T. TRESNA, N. ANGGRIANI*, A.K. SUPRIATNA 

Department of Mathematics, Universitas Padjadjaran, Jl. Raya Bandung Sumedang Km. 21, Kab. Sumedang 45363 

Jawa Barat, Indonesia 

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: One of the serious health issues around the world is Hepatitis C infection. The hepatitis C virus (HCV) is 

easily transmitted by drug injection with no hygiene syringe. The HCV transmission often occurs around the 

uneducated injector and potentially to becomes an epidemic. In this paper, a mathematical model for HVC 

transmission was proposed with considering educated and uneducated injectors. The purpose is to know how 

belonging important the role of both educated and uneducated injectors is in virus spreading. We also consider the 

treatment of the infected population and educational programs on the uneducated injector to control the spreading of 

the virus. By using the dynamical system theory, we get the equilibrium points and examine their stability. Then we 

use the control optimal theory to control the disease using interventions with respect to the cost of effort. Finally, 

through numerical simulation, the prediction of the result of control strategy and sensitivity analysis is obtained to 

know the most important parameter of the model.  
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1. INTRODUCTION 

Infectious diseases threaten human health and have the potential to become epidemics. One 

of the serious infectious diseases is hepatitis C which is inflammation of the liver caused by a 

virus named hepatitis C (HCV). HCV is an RNA virus belonging to the Flaviviridae family that 

duplicates in the hepatocyte cytoplasm, but it is not directly caused cytopathic effect [10]. The 

disease is easily infected through contact with contaminated blood. The virus infects about 170 

million people worldwide, with 150 million of them potentially chronic infection [2]. In 

developing countries, the most infection caused by the reuse of needles and syringes for medical 

injections [14]. Individuals who are infected by the virus may be asymptomatic thus cause the 

disease more dangerous over time. Hepatitis C has the possibility of becoming an acute infection 

if it occurs for weeks or a few months and will be a chronic infection if it persists for a longer 

time [2]. In the chronic stage, HVC infection can attack the liver consistently, which causes 

cirrhosis and live cancer occasionally. 

The HCV is potentially transmitted by the use of drug injection tools, blood transfusions by 

unchecked donors, unsafe medical injections, and other ways that allow contact with blood. 

Numerous evidence by developing countries indicates that the dominant source of new infection 

over the past decades is the drug injection [10]. HCV continues to cause a severe public health 

enemy. There is a need to understand how injection equipment dynamics play a role in HCV 

transmission [7]. Although the disease caused by HCV infection has the possibility to cure by 

some treatment, but it is ineffective to absolutely omit the virus and some infected who are 

suffering from chronic infection may suppose a liver transplant [2]. There are several interventions 

that can help to reduce the risk of virus infection, such as vaccination, controlling injectors, media 

campaign, etc. Vaccination is an effort with a vaccine to produce immunity against a disease, but 

it is not the only one intervention. The government can control the injectors by educating and 

enforcing the rules about injections. In addition, media campaigns may be carried out for the 

public to gain knowledge about infectious disease, hepatitis c, and its potential to become a 

pandemic. In this paper, we will emphasize how effectively controlling injectors reduces the 
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potential outbreak caused by HVC infection. 

Numerous mathematical models are developed for representing infectious disease 

mechanisms. Generally, a mathematical model that represents the HCV transmission notable as 

the SIR model. SIR model represents the Susceptible, Infected, and Recovered populations as 

compartments. Basically, it describes the path of the disease that spreads from infected person to 

susceptible person and how they recover. Then, the describe represented by a mathematical 

equation, usually as a differential equation system. The system will solve analytically to know the 

equilibrium points and their stability. Numerically is used to confirm the result of the analysis and 

to see the pattern of the spreading process dynamically based on the resulting graph. It is important 

to know the pattern of the disease spreading, the government can predict how dangerous it is by 

the time and make some policies to control it. Many research has done with various intervention 

on the spread of the hepatitis C disease. Anqi [9] developed a mathematical model for the 

dynamics of SIR model with both horizontal and vertical transmission, but not specifically to 

HCV infection. Miller [7] evolved a mathematical model of the HCV transmission as an indirectly 

transmission and investigated how the injection drug equipment affect the virus spreading. Some 

researchers investigate epidemic models which consider vaccination with waning immunity as an 

intervention [2] and hemodialysis affect [3].  

Research showed that injection drug equipment play a crucial role in the spread of the virus 

[7]. Therefore, there needs to be an effort to control the injection activity by controlling injectors 

and enforce the law. Other than that, media campaign is needed to educate both injector and public 

about the dangers of indiscriminate injection. In this paper, we build a model of HCV infection 

with considering treatment and educational effort as interventions. We determine the equilibrium 

points and their stability. We also discuss basic reproduction number through next generation 

matrix to know possibility of the epidemics by the spread of the virus. Finally, the numerical 

solution has been shown to illustrate the spread of the virus dynamically. 
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2. MATERIALS AND METHODS 

In developing a mathematical model to describe the HCV transmission, there are several 

assumptions needed, which are: 

• Susceptible population being infected if injected by uneducated injectors. 

• Uneducated injectors have a role to spread the disease trough injection.  

• Uneducated injector can be educated if get knowledge through educational program. 

• Mortality risk of infected population is higher than the others. 

The schematic diagram of the HCV transmission with injectors both educated and uneducated as 

in Figure 1, with the definition of parameters and variable used in Table 1. 

TABLE 1. Parameter value and initial condition 

Variable / 

Parameter 
Definition Value 

𝑆 Susceptible Population 10 

𝐼 Infected Population 4 

𝑅 Recovered Population 0 

𝑈 Uneducated Injector Population 3 

𝐸 Educated Injector Population 2 

Λ Birthrate of Susceptible 2 

𝜇 Mortality Rate 0.009 

𝜇𝐻 Mortality Rate Caused by HCV Infection 0.035 

𝛼 Infection Rate of Susceptible 0.072 

𝜆1 Uneducated Injectors Growth Rate 2 

𝜆2 Educated Injectors Growth Rate 1 

𝑟 Recovery Rate 0.082 

𝜁 Treatment Rate  0.085 

𝜂 Education Rate 0.0025 

𝛾 Injection Rate 0.4 
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Figure 1. Schematic diagram of the HCV transmission with injectors both educated and 

uneducated 

According to the schematic diagram in Figure 1, the mathematical model of the HCV 

transmission can be represented as follows: 

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 (1) 

𝑑𝐼

𝑑𝑡
= 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 − 𝜇𝐻𝐼 − 𝑟𝐼 − 𝜁𝐼 (2) 

𝑑𝑅

𝑑𝑡
= 𝜁𝐼 + 𝑟𝐼 − 𝜇𝑅 (3) 

𝑑𝑈

𝑑𝑡
= 𝜆1 − 𝜇𝑈 − 𝜂𝑈 (4) 

𝑑𝐸

𝑑𝑡
= 𝜆2 + 𝜂𝑈 − 𝜇𝐸 (5) 

 

3. RESULTS AND DISCUSSIONS 

3.1 Equilibrium Point 

Disease-free state is defined as the absence of disease infection in a system. To get the non-

endemic equilibrium point, we set the infected be zero (𝐼∗ = 0) . Based on Model 1, a non-

endemic point is obtained as follow: 

𝐸𝑞0 = {𝑆∗, 𝐼∗, 𝑅∗, 𝑈∗, 𝐸∗} = {
Λ

𝜇
, 0,0,

𝜆1

𝜂 + 𝜇
,
(𝜆1 + 𝜆2)𝜂 + 𝜇𝜆2

𝜇(𝜇 + 𝜂)
 } (6) 

Endemic state is defined that the epidemic happened by the disease and exist if 𝕽𝟎 > 1. Based 
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on Model 1, an endemic equilibrium point is obtained follow: 

𝑆∗ =
(𝜇𝐻 + 𝑟)(𝜆1(𝛾𝜌 + 𝑐) + 𝜆2(𝛾𝜌 + 𝑐 + 𝜇))

𝜆1𝛼(1 − 𝛾)𝜇
 (7) 

𝐼∗ =
((𝛼Λ + 𝑟𝜌 + 𝜌𝜇𝐻)𝛾 + 𝜇𝑟 + 𝜇𝜇𝐻 − 𝛼Λ)𝜆1 + (𝜇𝐻 + 𝑟)(𝛾𝜌 + 𝑐 + 𝜇)𝜆2

(𝛾 − 1)(𝜇𝐻 + 𝑟)𝛼𝜆1
 (8) 

𝑅∗ =
(((𝛾𝜌 + 𝜇)𝑟 + (𝛼Λ + 𝜌𝜇𝐻)𝛾 + 𝜇𝜇𝐻 − 𝛼Λ)𝜆1 + (𝜇𝐻 + 𝑟)(𝛾𝜌 + 𝑐 + 𝜇)𝜆2) 𝑟

𝜇(𝛾 − 1)(𝜇𝐻 + 𝑟)𝜆1𝛼
 (9) 

𝑈∗ =
𝜆1

𝛾𝜌 + 𝑐 + 𝜇
 (10) 

𝐸∗ =
(𝛾𝜌 + 𝑐 + 𝜇)𝜆2 + 𝜌𝛾𝜆1

(𝛾𝜌 + 𝑐 + 𝜇)𝜇 
 (11) 

3.2 Basic Reproduction Ratio 

In epidemiology, basic reproduction ratio (𝕽𝟎)  is a necessary thing to know [14]. It is 

important because by knowing the value we know how the potential epidemics of the disease. To 

get the basic reproduction ratio, we use the next generation matrix [14], with 𝑓  as the new 

infection matrix and 𝑣  as the change in compartment matrix (including decrease by death or 

immunity acquisition). The 𝑓 and 𝑣 matrix follow: 

𝑓 = [𝛼𝛾 (
𝑈

𝑈+𝐸
) 𝑆𝐼] dan 𝑣 = [𝜇𝐻𝐼 + 𝑟𝐼 + 𝜁𝐼] 

We look for 𝐹  dan 𝑉−1  as the jacobian matrix of 𝑓 and 𝑣 , then determine the radius 

spectral (dominant eigenvalue) of 𝐹𝑉−1 matrix at non-endemic equilibrium point. So we get: 

𝕽𝟎 =
𝛾Λ𝛼𝜆1

(𝜆1 + 𝜆2)(𝜂 + 𝜇)(𝜁 + 𝑟 + 𝜇𝐻)
 

3.3 Stability Analysis 

Jacobian matrix for the model is 

𝐽 =

[
 
 
 
 
 
 
 −𝜇 −

𝛼𝛾𝑈𝐼

𝑈 + 𝐸
−

𝛼𝛾𝑆𝑈

𝑈 + 𝐸
0 −

𝛼𝛾𝑆𝐼

𝑈 + 𝐸
+

𝛼𝛾𝑆𝑈𝐼

(𝑈 + 𝐸)2

𝛼𝛾𝑆𝑈𝐼

(𝑈 + 𝐸)2

𝛼𝛾𝑈𝐼

𝑈 + 𝐸

𝛼𝛾𝑆𝑈

𝑈 + 𝐸
− 𝜇𝐻 − 𝑟 − 𝜁 0

𝛼𝛾𝑆𝐼

𝑈 + 𝐸
−

𝛼𝛾𝑆𝑈𝐼

(𝑈 + 𝐸)2
−

𝛼𝛾𝑆𝑈𝐼

(𝑈 + 𝐸)2

0 𝜁 + 𝑟 −𝜇 0 0
0 0 0 −𝜂 − 𝜇 0
0 0 0 𝜇 −𝜇 ]
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The local stability of the non-endemic and endemic equilibrium points are given through the 

theorem as follow as: 

Theorem 1 

The non-endemic equilibrium of the model is locally asymptotically stable if 𝕽𝟎 < 1. 

Proof  

By following [1], substitute the disease-free equilibrium point into the Jacobian matrix for non-

endemic equilibrium points, so we get the following characteristic polynomial of 𝐽(𝐸𝑞0) is  

1

(𝜂 + 𝜇)(𝜆1 + 𝜆2)
((𝑥 + 𝜇)3(𝑥 + 𝜇 + 𝜂)((𝜆1 + 𝜆2)(𝜁 + 𝑟 + 𝜇𝐻 + 𝑥)(𝜂 + 𝜇) − Λ𝛼𝛾𝜆1)) = 0 

From the characteristic polynomial, the eigenvalues are obtained as follows : 

𝑥1,2,3 = −𝜇, 𝑥4 = −(𝜇 + 𝜂) 

based on the eigenvalues, for 𝑥1, 𝑥2, 𝑥3,  and 𝑥4  are negative, so the model is stable, then 𝑥5 

must be negative. By considering the characteristic polynomial, we get 

(𝜆1 + 𝜆2)(𝜁𝑢 + 𝑟 + 𝜇𝐻 + 𝑥)(𝜂𝑣 + 𝜇) − Λ𝛼𝛾𝜆1 = 0 

𝑥 =
Λ𝛼𝛾𝜆1

(𝜆1 + 𝜆2)(𝜇 + 𝜂)
− (𝜁 + 𝑟 + 𝜇𝐻) =

Λ𝛼𝛾𝜆1 − (𝜁 + 𝑟 + 𝜇𝐻)(𝜆1 + 𝜆2)(𝜇 + 𝜂)

(𝜆1 + 𝜆2)(𝜇 + 𝜂)
< 0 

(𝕽𝟎 − 1)(𝜁 + 𝑟 + 𝜇𝐻)(𝜆1 + 𝜆2)(𝜇 + 𝜂)

(𝜆1 + 𝜆2)(𝜇 + 𝜂)
< 0 → (𝕽𝟎 − 1)(𝜁 + 𝑟 + 𝜇𝐻) < 0 

𝕽𝟎 − 1 < 0 → 𝕽𝟎 < 1 

it can be seen that 𝕽𝟎 < 1. This completes the proof. 

Theorem 2 

The endemic equilibrium point of the model is locally asymptotically stable if 𝕽𝟎 > 1. 

Proof 

Since we have a basic reproduction ratio, we get the new form equilibrium point for 𝑆∗ and 𝐼∗ 

which  

𝐸𝑞1 = {𝑆∗, 𝐼∗, 𝑅∗, 𝑈∗, 𝐸∗} = {
1

𝕽𝟎

Λ

𝜇
,
(𝕽𝟎 − 1)(𝜂 + 𝜇)(𝜆1 + 𝜆2)

𝛼𝛾𝜆1
, 𝑅∗, 𝑈∗, 𝐸∗} 

Substitute endemic equilibrium into the Jacobian matrix, so we get the following characteristic 

polynomial of 𝐽(𝐸1) is 
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1

𝕽𝟎(𝜂 + 𝜇)(𝜆1 + 𝜆2)
((𝑥 + 𝜇)2(𝑥 + 𝜇 + 𝜂) (

Λ𝛼𝛾𝜆1

𝜁 + 𝑟 + 𝜇𝐻
𝑥2 + (

𝜇Λ𝛼𝛾𝜆1

(𝜁 + 𝑟 + 𝜇𝐻)
𝕽𝟎) 𝑥

+ (𝕽𝟎 − 𝟏)μΛ𝛼𝛾𝜆1)) = 0 

From the characteristic polynomial, the eigenvalues are obtained as follows: 

𝑥1,2 = −𝜇, 𝑥3 = −𝜇 − 𝜂 

Based on the eigenvalues for 𝑥1, 𝑥2, and 𝑥3 are negative, so the model is stable, then 𝑥4 and 

𝑥5 must be negative. By considering the characteristic polynomial, we get 

𝑎1 =
Λ𝛼𝛾𝜆1

𝜁 + 𝑟 + 𝜇𝐻
> 0 

𝑎2 =
𝜇Λ𝛼𝛾𝜆1

(𝜁 + 𝑟 + 𝜇𝐻)
𝕽𝟎 > 0 

𝑎3 = (𝕽𝟎 − 𝟏)μΛ𝛼𝛾𝜆1 > 0 → 𝕽𝟎 − 𝟏 > 𝟎 → 𝕽𝟎 > 1 

It can be seen that 𝕽𝟎 > 1. This completes the proof. 

3.4 Problem of Optimal Control 

In an effort to control the disease spreads, our aim is to minimize the total of infected 

population and uneducated injector population, so that the uneducated injector population who has 

the potential to spread the disease is reduced. To minimize the total of infected and uneducated 

injector population and optimize the treatment and education used with regard to the control cost. 

We will remodel the system (1)-(5) with adding control parameters 𝑢 and 𝑣, then we get 

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 (12) 

𝑑𝐼

𝑑𝑡
= 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 − 𝜇𝐻𝐼 − 𝑟𝐼 − 𝑢𝜁𝐼 (13) 

𝑑𝑅

𝑑𝑡
= 𝑢𝜁𝐼 + 𝑟𝐼 − 𝜇𝑅 (14) 

𝑑𝑈

𝑑𝑡
= 𝜆1 − 𝜇𝑈 − 𝜂𝑣𝑈 (15) 

𝑑𝐸

𝑑𝑡
= 𝜆2 + 𝜂𝑣𝑈 − 𝜇𝐸 (16) 
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We will look for the treatment and education effort with the objective function as follow: 

𝐽∗(𝑢, 𝑣) = min∫ [𝐴𝐼 + 𝐵𝑈 + 𝐶𝑢2 + 𝐷𝑣2]

𝑡𝑓

0

𝑑𝑡 (17) 

Parameters 𝐴, 𝐵, 𝐶, and 𝐷 defines the weight of infected population, uneducated injector, 

treatment cost, and education cost in the performance index that satisfies 𝐴, 𝐵, 𝐶, 𝐷 ≥ 0. We solve 

the optimal control model through the Pontryagin Maximum Principle the control 𝑢 and 𝑣 with 

the variable state 𝑦(𝑡) =

[
 
 
 
 
𝑆(𝑡)

𝐼(𝑡)

𝑅(𝑡)

𝑈(𝑡)

𝐸(𝑡)]
 
 
 
 

 and the constraint: 

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 − 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 

(18) 

𝑑𝐼

𝑑𝑡
= 𝛼𝛾 (

𝑈

𝑈 + 𝐸
)𝑆𝐼 − 𝜇𝐻𝐼 − 𝑟𝐼 − 𝑢𝜁𝐼 

𝑑𝑅

𝑑𝑡
= 𝑢𝜁𝐼 + 𝑟𝐼 − 𝜇𝑅 

𝑑𝑈

𝑑𝑡
= 𝜆1 − 𝜇𝑈 − 𝑣𝜂𝑈 

𝑑𝐸

𝑑𝑡
= 𝜆2 + 𝑣𝜂𝑈 − 𝜇𝐸 

The system must satisfy the condition: 0 < 𝑡 < 𝑡𝑓 , 0 ≤ 𝑢(𝑡) ≤ 𝑈𝑝, 0 ≤ 𝑣(𝑡) ≤

𝑉𝑝, 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑈(𝑡), 𝐸(𝑡) ≥ 0, where 𝑈𝑝 and 𝑉𝑝 is the upper limit of control. Remind that 

the control 𝑢 and 𝑣 represent the percentage of the control we can do. This value describes the 

maximum effort in managing the control and then it is determined 𝑢 = 1 and 𝑣 = 1.  We create 

the function of Hamiltonian as 𝐻 = 𝑓(𝑦, 𝑢, 𝑣, 𝑡) + 𝜆′𝑔(𝑦, 𝑢, 𝑣, 𝑡), which equal to 

𝐻 = 𝐴𝐼 + 𝐵𝑈 + 𝐶𝑢2 + 𝐷𝑣2 + 𝛽1 [Λ − 𝜇𝑆 − 𝛼𝛾 (
𝑈

𝑈+𝐸
) 𝑆𝐼] + 𝛽2 [𝛼𝛾 (

𝑈

𝑈+𝐸
) 𝑆𝐼 − 𝜇𝐻𝐼 −

𝑟𝐼 − 𝑢𝜁𝐼] + 𝛽3[𝑢𝜁𝐼 + 𝑟𝐼 − 𝜇𝑅] + 𝛽4[𝜆1 − 𝜇𝑈 − 𝑣𝜂𝑈] + 𝛽5[𝜆2 + 𝑣𝜂𝑈 − 𝜇𝐸]  

where 𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡), 𝛽4(𝑡)  and 𝛽5(𝑡)  are the Lagrange multiplier of the problem of 

optimization or mostly known as the co-state variables in optimal control theory. The necessary 

conditions than an optimal control is noted, it should satisfies the Pontryagin Maximum Principle 

as follow: 
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• State equations for this model rewrite with the condition 

𝑆(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0, 𝑈(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0 

• Co-state equation 

�̇�1 = −𝛽1(𝑡) (−𝛼𝛾 (
𝑈(𝑡)

𝑈(𝑡) + 𝐸(𝑡)
) 𝐼(𝑡) − 𝜇) − 𝛽2(𝑡) (𝛼𝛾 (

𝑈(𝑡)

𝑈(𝑡) + 𝐸(𝑡)
) 𝐼(𝑡)) 

�̇�2 = −𝐴 − 𝛽1(𝑡) (−𝛼𝛾 (
𝑈(𝑡)

𝑈(𝑡)+𝐸(𝑡)
) 𝑆(𝑡)) − 𝛽2(𝑡) (𝛼𝛾 (

𝑈(𝑡)

𝑈(𝑡)+𝐸(𝑡)
) 𝑆(𝑡) − 𝜇𝐻 − 𝑟 −

𝜁𝑢(𝑡)) − 𝛽3(𝑡)(𝑟 + 𝜁𝑢(𝑡))  

�̇�3 = −𝛽3(𝑡)(−𝜇) 

�̇�4 = −𝐵 − 𝛽1(𝑡) (−𝛼𝛾 (
𝐸(𝑡)

(𝑈(𝑡)+𝐸(𝑡))
2) 𝑆(𝑡)𝐼(𝑡)) −

𝛽2(𝑡) (−𝛼𝛾 (
𝐸(𝑡)

(𝑈(𝑡)+𝐸(𝑡))
2) 𝑆(𝑡)𝐼(𝑡)) − 𝛽4(𝑡)(𝜇 − 𝜂𝑣(𝑡)) − 𝛽5(𝑡)(𝜂𝑣(𝑡))  

�̇�5 = −𝛽5(𝑡)(−𝜇)  

• Stationer condition 
𝜕𝐻

𝜕𝑢
= 0 and 

𝜕𝐻

𝜕𝑣
= 0, with respect that 0 ≤ 𝑢, 𝑣 ≤ 1 then we get 

𝑢∗ = min {max [0,
1

2
(
𝛽2(𝑡)𝜁𝐼(𝑡) − 𝛽3(𝑡)𝜁𝐼(𝑡)

𝐶
)] , 1} 

𝑣∗ = min {max [0,
1

2
(
𝛽4(𝑡)𝜂𝑈(𝑡) − 𝛽5(𝑡)𝜂𝑈(𝑡)

𝐷
)] , 1} 

because 
𝜕2𝐻

𝜕𝑢2
= 2𝐶 > 0  and 

𝜕2𝐻

𝜕𝑣2
= 2𝐷 > 0  satisfies the minimization problem of the optimal 

control with 𝑢∗ and 𝑣∗  as the optimal control of the system. 

 

3.5 Numerical Simulations 

In this section, we show some simulations of the model. To know how the probability of the 

spread happens dynamically, we need to use values sample in Table 1 with some parameter 

determined hypothetically. 
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Firstly, we discuss the population dynamics for all compartments showed in Figure 2.  

 

 

Figure 2. Dynamical population of the system without treatment and educational effort 

 

3.5.1 Impact of Education Effort 

Then some scenarios will be used up to control the spread of the disease with considering the 

educational effort. The different of each scenarios is represented by the difference value of 

parameter 𝜂, we use three value for it to see how the parameter impacts the system behavior. 

 

(a) Compartment 𝐼 

 

(b) Compartment 𝑈 

Figure 3. The impact of education on the compartment 𝐼 and 𝑈 
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(c) Compartment 𝑆 

 

(d) Compartment 𝐸 

Figure 4. The impact of education on the compartment 𝑆 and 𝐸 

Based on the Figure 3 and Figure 4, it is clear that various number of 𝜂 on the third case give 

the different impact to the system. The simulation shows that higher value of 𝜂  can be more 

suppress the infected and uneducated injector population significantly, despite we can see that on 

the susceptible and educated injector the different level on 𝜂 is not significant to increase the 

number. Generally, we can conclude that the difference level on 𝜂 give the different impact to the 

system. In this case, the higher value of 𝜂 give the higher impact on the system. 

3.5.2 Impact of Optimal Control 

Respective to the objective function on (17), our aim is to minimize the number of infected 

population, uneducated injector population, treatment effort, and educational effort given. Optimal 

function graph is shown in following figure 

 

Figure 5. Control Function 



13 

MATHEMATICAL MODEL OF HCV TRANSMISSION 

 

 

(a) Compartment 𝐼 

 

(b) Compartment 𝑈 

Figure 6. The impact of control on the compartment 𝐼 and 𝑈 

 

(a) Compartment 𝑆 

 

(b) Compartment 𝐸 

Figure 7. The impact of control on the compartment 𝑆 and 𝐸 

Based on Figure 6, the system with optimal control shows that it is success to suppress the 

infected and uneducated injector population. While on Figure 7, optimal control give the impact 

to the system as we see that the number of susceptible and educated injector population increase. 

It means that the optimal control success to reach the aim of objective function which to 

minimization the population of infected and uneducated injector with respective to cost of control. 
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3.5.3 Sensitivity Analysis 

In this section, we show the analysis of sensitivity for the HCV transmission model through 

the combination of Latin Hypercube Sampling (LHS) with using 5000 samples and Partial Rank 

Correlation Coefficient (PRCC). Then, we operate the infection and uneducated injector, and the 

result is 

Figure 8.a shows that the most dominant parameter 𝑟 . The 𝑟  parameter a has negative 

relationship, it represents that when the 𝑟 value increases, then the total of infected population 

decreases. The other parameters such as 𝜇𝐻 and 𝜁 significantly effect the number of infected 

population but it all decreases over the time. 

Figure 8.b. shows that the most dominant parameter 𝜆1  and 𝜂 . The 𝜆1  parameter has a 

positive relationship, it means that if 𝜆1 increases, then the total of uneducated injector population 

increases. But the negative relationship of 𝜂  parameter, it represents that when the value 𝑟 

increase, the total of infected population decreases. 

 

(a) Analysis on 𝐼 Compartment 

 

(b) Analysis on 𝑈 Compartment 

Figure 8. Sensitivity Analysis on Each Compartment 

 

4. CONCLUSION 

In this paper, we propose to develop a mathematical model for the HCV transmission with 

treatment and educational effort. Analysis result on the model shows that non-endemic equilibrium 

point is asymptotically stable if 𝕽𝟎 < 1 and endemic equilibrium point is asymptotically stable 
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if 𝕽𝟎 > 1. Through the theory of optimal control and Pontryagin maximum principle, the optimal 

conditions of the HCV transmission model obtained. The numerical simulation shows that the 

intervention with respect to the control has impact on suppressing the number of infected and 

uneducated injector, then increase the recovered and educated injector at the same time. By 

sensitivity analysis, we show that there are some parameters has the most influence on the model 

of each compartment, such as 𝑟 on the 𝐼 compartment and 𝜆1, 𝜂 on the 𝑈 compartment. 
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