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Abstract. In this paper, we investigate the existence and uniqueness of solutions for a class of fractional differential

equations with new generalized Hattaf fractional derivative and time delay. An application from epidemiology is

given to illustrate our main results.
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1. INTRODUCTION

Recently, the fractional differential equations (FDEs) play an important role in modeling and

describing the memory and the hereditary properties of several material and dynamics of various

phenomena. The existence and uniqueness of such equations have been investigated by many

authors. For instance, Katugampola [1] derived the existence and uniqueness results for a class
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of FDEs with a generalized Caputo-Katugampola derivative introduced in [2]. In 2018, Janaki

et al. [3] studied the existence results for a class of FDEs with delay and generalized Caputo-

Katugampola derivative with time delay. In 2020, Karakoç [4] investigated the existence and

uniqueness of the solutions of FDEs with time delay and Hilfer fractional derivative which

generalizes the Riemann-Liouville fractional derivative.

The fractional derivatives used in the above works have singular kernels. In this paper, we

study the existence and uniqueness of solutions for FDEs with delay involving the new general-

ized Hattaf fractional (GHF) derivative [5] which covers the Caputo-Fabrizio fractional deriv-

ative [6], the Atangana-Baleanu fractional derivative [7], and the weighted Atangana-Baleanu

fractional derivative [8]. For the existence and uniqueness of FDEs without delay and GHF

derivative was recently studied in [9].

The rest of this paper is outlined as follows. Section 2 is devoted to some interesting prelimi-

naries needed to the elaboration of this work. Section 3 deals with the existence and uniqueness

results for FDEs with delay and GHF derivative. Finally, the paper ends with an application in

order to illustrate our main results.

2. PRELIMINARIES

In this section, we give the necessary definitions and results that are needed for the proof of

the main results.

Definition 2.1. Let α ∈ [0,1), β ,γ > 0, and f ∈ H1(a,b). We define the GHF derivative of

order α in Caputo sense of the function f (t) with respect to the weight function w(t) as follows

[5],

(1) CDα,β ,γ
a,t,w f (t) =

N(α)

1−α

1
w(t)

∫ t

a
Eβ [−µα(t− τ)γ ]

d
dτ

(w f )(τ)dτ,

where w∈C1(a,b), w,w′> 0 on [a,b], N(α) is a normalization function obeying N(0)=N(1)=

1, µα =
α

1−α
and Eβ (t) =

+∞

∑
k=0

tk

Γ(βk+1)
is the Mittag-Leffler function of parameter β .

The GHF derivative introduced in the above definition generalizes and extends many special

cases. In the fact, when w(t)= 1 and β = γ = 1, we get the Caputo-Fabrizio fractional derivative
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[6] given by
CDα,1,1

a,t,1 f (t) =
N(α)

1−α

∫ t

a
exp[−µα(t− τ)] f ′(τ)dτ.

We obtain the Atangana-Baleanu fractional derivative [7] when w(t) = 1 and β = γ = α , equa-

tion (1) is given by

CDα,α,α
a,t,1 f (t) =

N(α)

1−α

∫ t

a
Eα [−µα(t− τ)α ] f ′(τ)dτ.

For β = γ = α , we get the weighted Atangana–Baleanu fractional derivative [8] given by

CDα,α,α
a,t,w f (t) =

N(α)

1−α

1
w(t)

∫ t

a
Eα [−µα(t− τ)α ]

d
dτ

(w f )(τ)dτ.

For simplicity, we denote CDα,β ,β
a,t,w by Dα,β

a,w . By [5], the generalized fractional integral asso-

ciated to Dα,β
a,w is given by the following definition.

Definition 2.2. [5] The generalized fractional integral operator associated to Dα,β
a,w is defined

by

(2) I α,β
a,w f (t) =

1−α

N(α)
f (t)+

α

N(α)
RLI β

a,w f (t),

where RLI β
a,w is the standard weighted Riemann-Liouville fractional integral of order β defined

by

(3) RLI β
a,w f (t) =

1
Γ(β )

1
w(t)

∫ t

a
(t− τ)β−1w(τ) f (τ)dτ.

Now, we recall an important theorem that we will need in the following. This theorem extends

the Newton-Leibniz formula introduced in [10, 11].

Theorem 2.3. [12] Let α ∈ [0,1), β > 0 and f ∈H1(a,b). Then we have the following proper-

ties:

(4) I α,β
a,w
(
Dα,β

a,w f
)
(t) = f (t)− w(a) f (a)

w(t)
,

and

(5) Dα,β
a,w
(
I α,β

a,w f
)
(t) = f (t)− w(a) f (a)

w(t)
.

On the other hand, to study the existence and uniqueness of solutions we need to the following

lemma [13].
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Lemma 2.4. Let E be a Banach space, C be a convex subset of E, and U be an open in C with

0 ∈U. Then each compact map F : U →C has at least one of the following properties:

(i): F has a fixed point,

(ii): there is a u ∈ ∂U and λ ∈ (0,1) such that u = λF(u).

3. EXISTENCE AND UNIQUENESS RESULTS

In this section, we study the existence and uniqueness of solutions for the Hattaf-type frac-

tional differential equations given by

(6)

 Dα,β
0,w x(t) = f (t,xt), t ∈ [0,T ],

x(t) = φ(t), t ∈ [−r,0],

where f : [0,T ]×C ([−r,0], IRn)−→ IRn and φ ∈ C ([−r,0], IRn). For any function x defined on

[−r,T ] and any t ∈ [0,T ], we denote by xt the element of C ([−r,0], IRn) and is defined by

xt(θ) = x(t +θ), θ ∈ [−r,0].

Here, C ([−r,T ], IRn) is the Banach space of continuous functions mapping from [−r,T ] into

IRn.

Definition 3.1. A function x ∈ C ([−r,T ], IRn) is said to be a solution of (6), if x satisfies the

equation Dα,β
0,w x(t) = f (t,xt) on [0,T ] and the condition x(t) = φ(t) on [−r,0].

Theorem 3.2. Let f : [0,T ]×C ([−r,0], IRn)−→ IRn. Assume that

(H1) there exists a constant L > 0 such that ‖ f (t,x1)− f (t,x2)‖≤ L‖x1− x2‖ , for all t ∈ [0,T ]

and x1,x2 ∈ C ([−r,0], IRn). If L
(

1−α

N(α) +
αT β

N(α)Γ(β+1)

)
< 1, then there exists a unique solution

for equation (6) on the interval [−r,T ].

Proof. Transform (6) into a fixed point problem. So, consider the following operator A :

C ([−r,T ], IRn)→ C ([−r,T ], IRn) defined by

(7) A(x)(t) =

 φ(t), if t ∈ [−r,0],
w(0)φ(0)

w(t) + 1−α

N(α) f (t,x(t))+B(x)(t), if t ∈ [0,T ],

where

B(x)(t) =
α

N(α)Γ(β )w(t)

∫ t

0
(t− s)β−1 w(s) f (s,xs)ds.
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Let x,y ∈ C ([−r,T ], IRn). For all t ∈ [0,T ], we have

|A(x)(t)−A(y)(t)| ≤ 1−α

N(α)
| f (t,x(t))− f (t,y(t))|

+
α

N(α)Γ(β )

∫ t

0
(t− s)β−1| f (s,xs)− f (s,ys) |ds

≤ 1−α

N(α)
L‖x− y‖+ αL

N(α)Γ(β )
‖x− y‖

∫ t

0
(t− s)β−1ds

≤ L

(
1−α

N(α)
+

αT β

N(α)Γ(β +1)

)
‖x− y‖ .

Hence,

‖A(x)−A(y)‖ ≤ L

(
1−α

N(α)
+

αT β

N(α)Γ(β +1)

)
‖x− y‖.

Since L
(

1−α

N(α) +
αT β

N(α)Γ(β+1)

)
< 1, we conclude that A is a contraction mapping. It follows from

Banach contraction mapping principle that (6) has a unique solution. �

Theorem 3.3. Assume that the following hypotheses holds:

(H2) f : [0,T ]×C ([−r,0], IRn)→ IRn is a continuous function;

(H3) there exist a continuous nondecreasing function g : [0,∞)→ (0,∞) and a function h ∈

C ([0,T ], IR+) such that

‖ f (t,x)‖ ≤ h(t)g(‖x‖) , for all (t,x) ∈ [0,T ]×C ([−r,0], IRn);

(H4) there exists a constant ν > 0 such that

ν

φ(0)+
(

1−α

N(α) +
αT β

N(α)Γ(β+1)

)
g(‖ν‖)‖h‖

> 1.

Then the equation (6) has at least one solution on [−r,T ].

Proof. Consider the same operator A : C ([−r,T ], IRn)→ C ([−r,T ], IRn) defined by (7). First,

we well prove that the operator A is compact through the following three steps.

Step 1: We need to prove that the operator A is continuous. In fact, let {xn} be a sequence such



6 H. EL MAMOUNI, M. EL YOUNOUSSI, Z. HAJHOUJI, K. HATTAF, N. YOUSFI

that xn→ x in C ([−r,T ], IRn), and let M > 0 such that ‖xn‖ ≤M. Then

|A(xn)(t)−A(x)(t)| ≤ 1−α

N(α)
| f (t,xn(t))− f (t,x(t))|

+
α

N(α)Γ(β )

∫ t

0
(t− s)β−1 | f (s,xns)− f (s,xs)|ds

≤ 1−α

N(α)
‖ f (.,xn)− f (.,x)‖

+
α

N(α)Γ(β )
‖ f (.,xn)− f (.,x)‖

∫ t

0
(t− s)β−1 ds

≤ (
1−α

N(α)
+

αT β

N(α)Γ(β +1)
)‖ f (.,xn)− f (.,x)‖.

Thus,

‖A(xn)−A(x)‖ ≤ (
1−α

N(α)
+

αT β

N(α)Γ(β +1)
)‖ f (.,xn)− f (.,x)‖.

Since f is continuous function, we deduce that lim
n→∞
‖A(xn)−A(x)‖= 0, which implies that the

operator A is continuous.

Step 2: Let show that the operator A maps bounded sets into bounded sets in C([−r,T ], IRn).

For any µ > 0, we define the closed ball of radius µ in C([−r,T ],Rn) by

Bµ = {x ∈C([−r,T ],Rn) : ‖x‖ ≤ µ} .

Let x ∈ Bµ . For all t ∈ [0,T ] and according to (H3), we have

|A(x)(t)| ≤ φ(0)+
1−α

N(α)
| f (t,x(t))|

+
α

N(α)Γ(β )

∫ t

0
(t− s)β−1 | f (s,xs) |ds

≤ φ(0)+
1−α

N(α)
g(‖x‖)‖h‖+ αT β

N(α)Γ(β +1)
g(‖x‖)‖h‖

≤ φ(0)+

(
1−α

N(α)
+

αT β

N(α)Γ(β +1)

)
g(µ)‖h‖.

Hence, A is bounded.

Step 3: It remains to demonstrate that the operator A maps bounded sets into equicontinuous

sets of C([−r,T ],Rn). Let t1, t2 ∈ [0,T ] with t1 < t2, Bµ be a bounded set of C ([−r,T ], IRn) as
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in Step 2, and let x ∈ Bµ . Then

|A(x)(t2)−A(x)(t1)| ≤
1−α

N(α)
| f (t2,x(t2))− f (t1,x(t1))|

+
α

N(α)Γ(β )

∫ t1

0

∣∣∣(t2− s)β−1− (t1− s)β−1
∣∣∣ | f (s,xs)|ds

+
α

N(α)Γ(β )

∫ t2

t1
|t2− s|β−1 | f (s,xs)|ds

≤ 1−α

N(α)
| f (t2,x(t2))− f (t1,x(t1))|

+
α

N(α)Γ(β )
g(µ)‖h‖

∫ t1

0

∣∣∣(t2− s)β−1− (t1− s) |β−1
∣∣∣ds

+
α

N(α)Γ(β )
g(µ)‖h‖

∫ t2

t1
|t2− s|β−1 ds.

As t1→ t2, the right hand side of the above inequality tends to zero. The equicontinuity for the

cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 is obvious. In consequence of steps 1 to 3, it follows by the

Arzela-Ascoli theorem that A : C([−r,T ], IRn)→C([−r,T ], IRn) is compact.

On the other hand, we prove that there exists an open set U ⊆C([−r,T ], IRn) with x 6= ρA(x)

for ρ ∈ (0,1) and x ∈ ∂U . Let x ∈C([−r,T ], IRn) and x = ρA(x) for some 0 < ρ < 1. For all

t ∈ [0,T ], we have

x(t) = ρ

(
w(0)φ(0)

w(t)
+

1−α

N(α)
f (t,x(t))

+
α

N(α)Γ(β )w(t)

∫ t

0
(t− s)β−1 w(s) f (s,xs)ds

)
.

It follows from (H3), that

‖x(t)‖ ≤ φ(0)+

(
1−α

N(α)
+

αT β

N(α)Γ(β +1)

)
g(‖x‖)‖h‖.

Thus,

‖x‖

φ(0)+
(

1−α

N(α) +
αT β

N(α)Γ(β+1)

)
g(‖x‖)‖h‖

≤ 1.

According to (H4), there exists a ν such that ‖x‖ 6= ν . Let us assume,

U = {x ∈C([−r,T ], IRn) : ‖x‖< ν} .
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Note that the operator A : U → C([−r,b], IRn) is compact. From the choice of U , there is no

x ∈ ∂U such that x = ρA(x) for some ρ ∈ (0,1). Therefore, it follows from Lemma 2.4 that A

has a fixed point x ∈U , which is a solution of (6). This ends the proof. �

4. APPLICATION

In this section, we give an example arising from epidemiology in order to illustrate our main

results. So, we consider the following delayed FDE model with GHF derivative:

(8)


Dα,β

0,1 S(t) = Λ−σS(t)− κS(t)I(t)
1+ε1S(t)+ε2I(t)+ε3S(t)I(t) ,

Dα,β
0,1 I(t) = κS(t−τ)I(t−τ)e−στ

1+ε1S(t−τ)+ε2I(t−τ)+ε3S(t−τ)I(t−τ) − (σ +d +δ )I(t),

Dα,β
0,1 R(t) = δ I(t)−σR(t),

where S(t), I(t) and R(t) are the susceptible, infected and recovered individuals at time t, respec-

tively. Λ is the recruitment rate of the population, σ is the natural death rate of the population,

d is the death rate due to disease, δ is the recovery rate of the infective individual. The term
κSI

1+ε1S+ε2I+ε3SI , where ε1,ε2,ε3 ≥ 0 are constants and κ > 0 is the infection coefficient, repre-

sents the Hattaf specific incidence rate [14], which models the disease transmission process.

The time delay τ is the incubation period. The term e−στ is the probability of surviving from

time t− τ to time t.

For epidemiological reasons, we assume that the initial conditions of (8) satisfy

(9) S(θ) = Φ1(θ), I(t) = Φ2(θ),R(t) = Φ3(θ), θ ∈ [−τ,0].

Let ϕ = (ϕ1,ϕ2,ϕ3)
T ∈ C ([−τ,0], IR3). We define

f = ( f1, f2, f3) : C ([−τ,0], IR3)→ IR3

by

(10)



f1(ϕ) = Λ−σϕ1(0)−
κϕ1(0)ϕ2(0)

1+ ε1ϕ1(0)+ ε2ϕ2(0)+ ε3ϕ1(0)ϕ2(0)
,

f2(ϕ) =
κϕ1(−τ)ϕ2(−τ)e−στ

1+ ε1ϕ1(−τ)+ ε2ϕ2(−τ)+ ε3ϕ1(−τ)ϕ2(−τ)
− (σ +d +δ )ϕ2(0),

f3(ϕ) = δϕ2(0)−σϕ3(0).
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Then problem (8)-(9) can be rewritten as the following functional differential equation

(11)

 Dα,β
0,1 x(t) = f (xt), t ∈ [0,T ],

x(t) = Φ(t), t ∈ [−τ,0],

where x = (S, I,R)T and Φ = (Φ1,Φ2,Φ3)
T . Moreover, the function f satisfies the Lipschitz

condition as

(12) ‖ f (x1)− f (x2)‖ ≤ L‖x1− x2‖ .

By applying Theorem 3.2, we conclude that problem (8)-(9) has a unique solution if L
( 1−α

N(α) +

αT β

N(α)Γ(β+1)

)
< 1.
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