
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2022, 2022:40

https://doi.org/10.28919/cmbn/7361

ISSN: 2052-2541

TURING INSTABILITY OF A DIFFUSIVE PREDATOR-PREY MODEL ALONG
WITH AN ALLEE EFFECT ON A PREDATOR

G. SANTHOSH KUMAR, C. GUNASUNDARI∗

Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur-603 203, India

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: Modeling biological systems is a significant task in nature. This work concentrates on the relation

between two prey species and one predator species model. Our interaction is based on a competition between

two preys and one predator, with an additive Allee effect in the predator population. Many investigations have

been done in stability properties of the population dynamics. However in this study, we demonstrated population

instability as a result of the incorporating diffusive terms in the PDE system and we construct the amplitude

equations of stationary patterns using the nonlinear multiple scale analysis approach and Taylor series expansion.

Numerical results are also presented to validate our propositions.
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1. INTRODUCTION

In the subject of real-world challenges, mathematical modeling in biology is highly interest-

ing. Among the most fascinating topics is the product of the interplay between predator and prey

in terrestrial ecosystems. When modeling a predator-prey system, a variety of mathematical ap-

proaches are utilized because Predation-mediated coexistence, vegetation size, logical grouping,

execution and birth of species, competition, in comparability with respect to the population over
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time, discrete, illness, and maturation delays, temperature variation, spatial dilution, eutroph-

ication, geographic atmosphere diversity, and countable admittance period for extension seem

to be just a few of the factors that can influence its propagation [1, 2]. Various computational

predator-prey models were constructed by defining and suppressing the components that must

be approached, and are caused by external types of equations: ordinary, partial, or functional

differential equations, discrete or continuous, and so on [3, 4]. Several researchers developed

the system and extended their works up to n dimensions. The correlation between two prey

species and one predator species was the subject of this study. Our interaction is based on a

competition between two preys and one predator, with an additive allee effect in the predator

population and a Holling type II functional response in the prey population. Despite their lim-

itations, Allee effects exist in small or sparse populations and are often thought to be prevalent

in nature [5, 6]. In populations prone to Allee effects, population growth is reduced at low den-

sities. Warder Clyde Allee, a biologist and animal ecologist at the University of Chicago, was

fascinated with animal group behavior. Allee, a skilled observer of animal behavior, observed

that many population growth of many species was hampered by under crowding rather than

competition. For the animals in an environment, the Allee Effect causes a loss of biodiversity.

Animals were dying as a result of this low-cost alteration in the ecosystem because they were

unable to locate compatible partners, adequate food, or a healthy habitat.

dα

dt
= η1α(1−α)−σαβ − ω1αγ

1+ ς1α

dβ

dt
= η2β (1−β )−ραβ − ω2βγ

1+ ς2β

dγ

dt
=−µγ +

(
ρ1αγ

1+ ς1α
+

ρ2βγ

1+ ς2β

)(
γ

δ + γ

)(1)

where α , β and γ denote the first, second, and predator populations respectively. The intrinsic

growth rates of the first and second prey populations are represented by η1 and η2. µ indicates

the normal mortality rate of the predator. The competition coefficients of prey 2 on prey 1 and

prey 1 on prey 2 are σ and ρ respectively. Because both prey and predator are simple to capture

and handle, the Holling type II functional response is used to represent predation behavior (i.e)
ω1αγ

1+ς1α
for the prey-1 and ω2βγ

1+ς2β
for the prey-2. ρ1 and ρ2 are the rate at which predation becomes

predator growth.
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In this paper, we produced diffusive terms in both the prey and predator population in the

system. So that, we may not be able to guarantee that the population would remain stable in-

definitely. This prompted us to consider a theoretical biologist Allen Turing’s proposal for the

occurrence of instability [7, 8]. Allen Turing had a substantial effect on the future of evolution-

ary computation, establishing a standardization of the ethics of algorithm and computing with

the Turing machine, that might be termed a model of a general purpose computer. He is regarded

as the founder of theoretical computer science and artificial intelligence. The pattern creation

has recently received increased attention in the research of Turing bifurcation, amplitude equa-

tion, and secondary bifurcation. In section 2, Qianqian Zheng and Jianwei Shen discovered the

dispersion of generic reactions with multi variable and derived the Turing instability condition.

In section 3, they used the reaction-diffusion system with multi variable to get the amplitude

equation [7, 9, 10]. Based on this, we derived the condition for turing bifurcation and amplitude

equation of the diffusive predator prey interaction model. Finally, Turing spatial patterns for the

diffusive predator prey system were generated [11].

2. DIFFUSIVE PREDATOR PREY MODEL

Consider 

∂α

∂ t = d1∆α +η1α(1−α)−σαβ − ω1αγ

1+ς1α
,x ∈Ω, t > 0

∂β

∂ t = d2∆β +η2β (1−β )−ραβ − ω2βγ

1+ς2β
,x ∈Ω, t > 0

∂γ

∂ t = d3∆γ−µγ +( ρ1αγ

1+ς1α
+ ρ2βγ

1+ς2β
)( γ

δ+γ
)x ∈Ω, t > 0

∂α

∂ t = ∂β

∂ t = ∂γ

∂ t = 0

(2)

where d1, d2 and d3 are the positive diffusive coefficients of first, second prey and the predator

respectively and ∆α = ∂ 2α

∂x2 , ∆β = ∂ 2β

∂x2 , ∆γ = ∂ 2γ

∂x2 , where ∆ = ∂ 2

∂x2 is a Laplacian operator.

Turing instability appears when a spatially homogeneous linear progression becomes unsta-

ble mainly attributed to small amplitude non - homogeneous disturbance locally. Consider the

presence of an endemic equilibrium E∗ = (α∗,β ∗,γ∗), then linearize to get the Jacobian matrix

below by including the wave number k.
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J(Pi) =


A∗− k2d1 −σα

−ω1α

1+ς1α

−ρβ B∗− k2d2
−ω2β

1+ς2β

ρ1γ

(1+ς1α)2
γ

δ+γ

ρ2γ

(1+ς2β )2
γ

δ+γ
C∗− k2d3


where,

A∗ = η1−2η1α−σβ − ω1γ

(1+ ς1α)2

B∗ = η2−2η2β −ρα− ω2γ

(1+ ς2β )2

C∗ =−µ +
ρ1αγ(2δ + γ)

(1+ ς1α)(δ + γ)2 +
ρ2βγ(2δ + γ)

(1+ ς1β )(δ + γ)2

(3)

Then the characteristic equation is given by,

(4) λ
3 + p(k2)λ 2 +q(k2)λ + r(k2) = 0

where, p(k2) =−k2(d1 +d2 +d3)+(A∗+B∗+C∗),

q(k2) =−3d1d2d3k6 +3(d1d2C∗+d1d3B∗+d2d3A∗)k4

+

[
d3σραβ −

(
d1ρ2ω2βγ2

(1+ ς2β )2(δ + γ)
+

d2ρ1ω1αγ2

(1+ ς1α)2(δ + γ)
+3(d1B∗C∗+d2A∗C∗+d3A∗B∗)

)]
k2

+3B∗A∗C∗−C∗σραβ +
A∗ρ2ω2βγ2

(1+ ς2β )3(δ + γ)
+

B∗ρ1ω1αγ2

(1+ ς1α)3(δ + γ)

r(k2) = d1d2d3k6− (A∗d2d3 +B∗d1d3 +C∗d1d2)k4

−
[

σραβd3−
(

A∗C∗d2 +A∗B∗d3 +B∗C∗d1 +
d1ρ2ω2βγ2

(1+ ς2β )3(δ + γ)
+

d2ρ1ω1αγ2

(1+ ς1α)3(δ + γ)

)]
k2

+σραβC∗−A∗B∗C∗+
A∗ρ2ω2βγ2

(1+ ς2β )3(δ + γ)
+

B∗ρ1ω1αγ2

(1+ ς1α)3(δ + γ)
+

σρ1ω2αβγ2

(1+ ς1α)2(1+ ς2β )(δ + γ)

+
ρρ2ω1αβγ2

(1+ ς1α)(1+ ς2β )2(δ + γ)

where p(k2) < 0 if A∗+B∗+C∗ > K2(d1 + d2 + d3). Eqn (2) is stable if tr(J(Pi)) < 0 and

det(J(Pi))> 0. If it violates det(J(Pi))< 0, then the system is unstable. So that the expression

r(k2) can be rewritten as,

(5) r(k2) = r3(k2)3 + r2(k2)2 + r1(k2)+ r0

where r3 = d1d2d3 > 0 as d1 = d2 = d3 > 0, r2 =−(A∗d2d3 +B∗d1d3 +C∗d1d2)< 0 ,

r1 = −
[
σραβd3−

(
A∗C∗d2 +A∗B∗d3 +B∗C∗d1 +

d1ρ2ω2βγ2

(1+ς2β )3(δ+γ)
+ d2ρ1ω1αγ2

(1+ς1α)3(δ+γ)

)]
< 0 if
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σραβd3 >
(

A∗C∗d2 +A∗B∗d3 +B∗C∗d1 +
d1ρ2ω2βγ2

(1+ς2β )3(δ+γ)
+ d2ρ1ω1αγ2

(1+ς1α)3(δ+γ)

)
,

r0 = σραβC∗−
(

A∗B∗C∗+
A∗ρ2ω2βγ2

(1+ ς2β )3(δ + γ)
+

B∗ρ1ω1αγ2

(1+ ς1α)3(δ + γ)
+

σρ1ω1αβγ2

(1+ ς1α)2(1+ ς2β )(δ + γ)

+
ρρ2ω1αβγ2

(1+ ς1α)(1+ ς2β )2(δ + γ)

)
< 0 if σραβC∗ < (A∗B∗C∗+H)

where H = A∗B∗C∗ + A∗ρ2ω2βγ2

(1+ς2β )3(δ+γ)
+ B∗ρ1ω1αγ2

(1+ς1α)3(δ+γ)
+ σρ1ω1αβγ2

(1+ς1α)2(1+ς2β )(δ+γ)
+

ρρ2ω1αβγ2

(1+ς1α)(1+ς2β )2(δ+γ)
. Therefore

(6) r(k2) = r3(k2)3− r2(k2)2− r1(k2)− r0

So that, r(k2)< 0 if

r3 < (r0 + r1 + r2)(7)

If all other requirements are met, (6) is an implicit formula for Turing Bifurcation Spatial

Patterns.

3. AMPLITUDE EQUATION

The equilibria around the instability threshold is not stable, the eigenvalues connected to the

essential modes are near zero, and these modes are gradually changing, while the modes that

are critically weak, therefore only the interruptions with k near kT must be considered. The

amplitude equations are derived via multiple scale analysis. The solution of systems could be

extended as,

(8) C =C0 +(Z1ekr +Z2e2kr +Z3e3kr)+Complex Conjugate

We can write system (8) as

(9)
∂c
dt

= Lc+N(c,c)

where c =


α

β

γ

 is the variable, L = A+D∇2 is the linear operator, such that
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L =


η1−σ1β − ω1γ

1+ς1α
+d1∇2 −σα

−ω1α

1+ς1α

−ρβ η2−ρ2α− ω2γ

1+ς2β
+d2∇2 −ω2β

1+ς2β

ρ1γ2

(1+ς1α)
1

δ+γ

ρ2γ2

(1+ς2β )
1

δ+γ
−µ +d3∇2



and N =


η1α2

0

0

 is the non-linear term. When µ is close to µc, we must analyze the

dynamical behavior, and then we must expand as

µc−µ = εµ1 + ε2µ2 + ...

where ε is a sufficiently small parameter. The series forms of C and N are expanded.

C =


α

β

γ

 =


α1

β1

γ1

 ε +


α2

β2

γ2

 ε2 + ...

N =


−η1α2

1 ε2 +(−η1α1β1)ε
3 +0(ε4)

0

0


L can be written as

(10) L = Lc +(µc−µ)M

Let T0 = t, T1 = εt, T2 = ε2t, such that ∂

∂ t =
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ ... Amplitude is a slow

variable, while Ti is a dependent variable. We have that as a basis for calculating time,

∂W
∂ t = ε

∂W
∂T1

+ ε2 ∂W
∂T2

+ ...

We may get three equations by substituting the previous equations into (2) and extending (2)

according to different orders of ε:

ε : Lc


α1

β1

γ1

 = 0
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ε2 : Lc


α2

β2

γ2

 = ∂

∂T1


α1

β1

γ1

 - µ1M


α1

β1

γ1

 -


−η1α2

1

0

0



ε3 : Lc


α3

β3

γ3

 = ∂

∂T1


α2

β2

γ2

 + ∂

∂T2


α1

β1

γ1

 - µ1M


α2

β2

γ2

 - µ2M


α1

β1

γ1



-


−η1α2

1

0

0




α1

β1

γ1




α2

β2

γ2

 -


−η1α1β1

0

0


The example of the first order of ε is first considered. (α1,β1,γ1)

T is the linear combination

of the eigenvectors that corresponds to the eigenvalue zero, since Lc is the linear operator of

the system at the onset. Since then, this has occurred.


α

β

γ

 =


x1

y1

z1

 ek1r +


x2

y2

z2

 e2k2r +


x3

y3

z3

 e3k3r + complex conjugate

and are able to obtain that xi = Byi. Let xi = B by assuming yi = 1 and zi = 0 then


α1

β1

γ1

 =


B

1

0

 (W1ek1r +W2e2k2r +W3e3k3r) + complex conjugate

Let us consider the case of ε2 now. The vector function of the right hand of the preceding

equation must be orthogonal to the zero eigenvectors of operator Lc
+, according to the Fredholm

solubility condition. The adjoint operator Lc
+ has zero eigenvectors such that


1

A

0

 e−iKir

+ Complex Conjugate. From the orthogonality criterion, it can be shown that,


1

A

0

 e−ikir
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Lc


α2

β2

γ2

 = 0. Another example we may get by analyzing eik1r just in the following is by

modifying the subscript. It is derived from the orthogonality constraint.

(11) (A+B)
∂W1

∂T1
= [b11B+b12 +(b21B+b22)A]W1− (Ab+Bb)η1α

2
1W2W3

One can get the same results by employing the same procedures,


α2

β2

γ2

 =


a0

b0

c0

 +


ai

bi

ci

 eikir +


aii

bii

cii

 ei2kir +


a12

b12

c12

 ei(k1−k2)r +


a23

b23

c23

 ei(k2−k3)r +


a31

b31

c31

 ei(k3−k1)r + Complex Conjugate

We have that in the case of ε3. We may obtain by using the Fredholm solubility condition

once again.

(A+B)(
∂ z

∂T1
+

∂ z
∂T2

) = (µ1z1 +µ2W1)[b11B+b12 +(b21B+b22)A]− (Ab+Bb)η1α
2
1

(Z2W3 +Z3W2)− (bAB+bB2 +bA+bB)η1α1β1

(|W1 |2 + |W2 |2 + |W3 |2)W1

(12)

Calculations are used to derive the coefficient expressions, µ0 = A+B, µ∗ = µc− µ , h =

−(bA+bB)η1α2
1 and g = (bAB+bB2 +bA+bB)η1α1β1. As a result, the amplitude equation

is as follows:

µ0
∂W1

∂ t
= µ

∗W1 +hW2W3− (g|W1 |2 +g|W2 |2 +g|W3 |2)W1

µ0
∂W2

∂ t
= µ

∗W2 +hW1W3− (g|W2 |2 +g|W1 |2 +g|W3 |2)W2

µ0
∂W3

∂ t
= µ

∗W3 +hW2W1− (g|W3 |2 +g|W2 |2 +g|W1 |2)W3

(13)
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4. NUMERICAL SIMULATION

The unique approach of spatial patterns reduces the size of the differential in space and it also

uses the homotopy in time to derive the analytical expression with physical parameters. It will

make to analyze the impact of parameter variations on Turing pattern construction much easier.

When the number of iterations increases, we get the alternative pattern forms of system (2).

We observed how small changes in the self-diffusion parameters d1 and d2 in one dimension

may lead to huge alterations in the observational mechanisms of solutions. When the diffusion

coefficient constraints are elevated, we include a fundamental transformation in the dynamics of

the system from fragmented to standard orientation. Around the spatially diffusive predator prey

model system, we detected Turing patterns and implemented a structural analysis combining

amplitude equations and multiple-scale analysis. We found three types of Turing patterns near

the bifurcation threshold parameter, namely spots, spots-stripes, and stripes.

We investigate our model with the below set of parameter values, ρ = 0.1, ω1 = 1, ς1 =

0.0001, η2 = 0.5, ς2 = 0.03, µ = 1, ρ1 = 0.1 and δ = 0.02.

We can see that the spatial patterns of prey were spread in the form of spot patterns at first,

as depicted in Figure 1(A). The population is discovered in the form of a mixture of spots and

stripe patterns when the value of iteration fluctuates, as illustrated in Figure 1(B) and Figure

1(C). Similarly, the second prey population’s spatial patterns take the shape of spot patterns

Figure 2(A). As the iteration progresses, a blend of spot and spatial patterns emerges Figure

2(B). We noticed that there aren’t many pattern changes at the maximum iteration, as illustrated

in Figure 2(C).

Figure (3) shows the effects of extra parameters supplied to a predator on the system dynam-

ics of spatial model iterations are depicted in (A), (B), and (C). The predator population density

is spread in places. When we raise the value of the parameter, however the evolution of the

spatial pattern changes dramatically, as it transforms to a stripe-like pattern from a spot pattern.
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(A) (B)

(C)

FIGURE 1. Turing patterns showing the spatial temporal development of several

sorts of patterns produced by α in the diffusive model on an XY-plane, given

different parameter values d1 = 3.1, d1 = 3.0, and d1 = 0.2. The values of other

parameters have already been given.
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(A) (B)

(C)

FIGURE 2. In the XY-Plane of the diffusive model, snapshots of turing patterns

of the temporal evolution of second prey population is shown here for the differ-

ent parameter set of values d2 = 15.2, d2 = 0.2 and d2 = 0.01.
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(A) (B)

(C)

FIGURE 3. Evolution of spatial temporal turing patterns only for the predator in

the diffusive model. Whereas, d3 = 0.3, d3 = 0.2 and d3 = 0.0002 respectively.
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(A)

FIGURE 4. Frames of different spatial patterns of the first prey is shown, when

time varies (t)= 0.1, 0.2, 0.3, ..., 0.8.

Turing patterns in homotopy series solutions are impacted by the wave number and are sensi-

tive to the first guess solution. For various values of time such as t= 0.1, 0.2, 0.3,..., 0.8, different

forms of Turing pattern may be created for the prey population using Mathematica software or

experimental data simulation of the structure of the solution. As the time value increases, spot

patterns become spatial pattern graphs. As shown in accompanying illustration.
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5. CONCLUSION

This discussion proposed a detailed study and mathematical modeling of the Turing insta-

bility with two prey and one predator scenario with Allee effect. After running a series of nu-

merical simulations, it was discovered that reaction diffusion systems using a three-dimensional

method had rich spatial dynamics. We also used multiple scale analysis in theory to construct

the amplitude equation, which can be used to tackle various pattern creation issues with many

variables in the future. In the extant literature, there are fewer research on pattern development

for three-species models, and significantly fewer chances for models with non local interactions.

We looked at the effects of random dispersion and non local inter species communications on

the evolution of a two-prey, one-predator system in this research. In addition, we provided nu-

merical simulations to test our theoretical predictions and to investigate rich complex dynamical

phenomena that are beyond the scope of linear analysis. The current work used two prey and

one predator species to capture prey predator interactions as well as diffusive terms, while also

taking into account better suitable functional responses Holling type I and discrete time delay

to make the investigation more ecologically feasible and demanding. These fascinating as well

as difficult themes will be addressed in future projects.
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