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Abstract. The sterile insect technique (SIT) offers a promising strategy for reducing wild mosquitoes in nature.

But many factors cause incomplete sterility in a sterile release program. This article develops a mosquitoes model

involving pulsed releasing sterile mosquitoes with gender structure and partial residual fecundity. Firstly, we

devote to eliminate the wild mosquitoes by chronical period control. Next the impulsive control tactics with

alterable pulse times and releasing amounts in finite time restraining wild mosquitoes are established. To acquire

optimal strategy, the corresponding impulsive optimal problem is translated into continuous parameter selection

problem by means of the transformation of time-scaling and time translation. Lastly, simulations based on gradient

descent and genetic algorithm are given. Results indicate that pulsed releasing sterile mosquitoes greatly suppress

the wild mosquitoes. Moreover, hybrid control is superior to the amount control and periodic impulsive control.
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1. INTRODUCTION

Sterile insect technique (SIT), in which radiation-sterilized males are released into the field to

mate with wild females thereby preventing them from producing viable offspring [1, 2], as suc-

cessfully restrained field insect species [3]. Recently, SIT has been used against mosquitoes and
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the corresponding mathematical model are formulated to simulate the evolution of mosquitoes

[4, 5, 6, 7, 8]. In these models, the released sterile males are suppose to be 100% sterile. Practi-

cally, complete sterilization cannot be achieved for some objectiv reasons (technical problems,

such as lower irradiation doses, environmental conditions or others) [9]. So it is essential to

study partial sterility in the control process.

Inspired by a Aedes albopictus model with the partial residual fecundity [1, 10, 11], we firstly

study the perennial and periodic impulsive releasing sterile males strategy. Then due to the high

cost of breeding and experimenting with mosquitoes in captivity, we research the short-term

and optimal impulsive releasing tactics. Denoting by M(t) the wild male, by F(t) female, and

by S(t) sterile male, P.A. Bliman in [1] proposed SIT models as following

(1)


dM(t)

dt = rρ
F(t)(M(t)+εγS(t))

M(t)+γS(t) e−β (M(t)+F(t))−µMM(t),
dF(t)

dt = (1− r)ρ F(t)(M(t)+εγS(t))
M(t)+γS(t) e−β (M(t)+F(t))−µFF(t),

dS(t)
dt = Λ−µSS(t)

where µM, µF and µS represent mortalities of M(t), F(t) and S(t), respectively. r is the sex

ratio; ρ is the average number of eggs laid per female mosquito per day; Λ is the sustained

release of sterile males; β is the competitive effect between the mosquitoes; ε is the residual

fertility with 0≤ ε < 1 and ε = 0 meaning the complete sterility; γ is the competitiveness index

of sterile males with 0 < γ ≤ 1 while γ = 1 meaning sterile males have the equally competitive

with wild males.

Considering the basic number of offspring for both female and male populations, i.e. the

average number of wild offspring that a mosquito produce per day, we obtain

(2) NF :=
(1− r)ρ

µF
, NM :=

rρ

µM
.

The outline of the paper is organized as follows. In Section 2, the wild mosquitoes control

model with periodic pulse releasing sterile males are established and analysed; In Section 3,

the wild mosquitoes control model with alterable pulse times and releasing amounts are built

and the corresponding impulsive optimal problem are constituted and translated into continuous

parameter selection problem; In Section 4, simulations and optimal control strategies based on

gradient descent and genetic algorithm are given; Finally, a simple conclusion is list.
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2. MODEL WITH PERIODIC PULSE CONTROLS

In the above model (1), converting continuous releases into pulsed releases leads to a new

interaction model for mosquito populations in terms of sex structure:

(3)



dM(t)
dt = rρ

F(t)(M(t)+εγS(t))
M(t)+γS(t) e−β (M(t)+F(t))−µMM(t),

dF(t)
dt = (1− r)ρ F(t)(M(t)+εγS(t))

M(t)+γS(t) e−β (M(t)+F(t))−µFF(t),

dS(t)
dt =−µSS(t),


t 6= iτ, t ∈ (0,T ]

S(iτ+) = S(iτ)+Λ, t = iτ, i = 1,2, · · ·

where M(0) = M0,F(0) = F0,S(0) = S0. Suppose that τ and Λ denote the period and amount

of releasing sterile male mosquitoes, respectively.

Let X(t)= (M(t),F(t),S(t))T is an arbitrary solution of (3). Then X(t) is continuous between

every two adjacent pulses and X(iτ+) = lim
ε→0

X(iτ + ε)(ε > 0) exists. Thus, for the smooth

characteristics of the functions in the first three equations, the existence and uniqueness of the

solution of (3) are guaranteed. Referring to [1, 7], we infer to the positivity and boundedness of

the solution of system (3), as well as the existence and global asymptotic stability of bounded

periodic solutions of the system (3).

Theorem 2.1 The solution X(t) of the system (3) with non-negative initial conditions is always

non-negative, and there exists a constant K > 0 such that each component of X(t) is less than

K for t ≥ 0.

Theorem 2.2 System (3) has a wild mosquito population-eradication periodic solution

(0,0, S̃(t)) being locally asymptotically stable where S̃(0) = Λ/(1− e−µSτ) and

(4) S̃(t) = S̃(0)e−µS(t−iτ), t ∈ (iτ,(i+1)τ], i = 0,1,2. · · ·

Theorem 2.3 Assume that

Λ > Λcrit ,
2(cosh(µSτ)−1)

τµS

(1− ε)NF

γ(1− εNF)eβ

then the wild mosquito population-eradication periodic solution (0,0, S̃(t)) of system (3) is

globally asymptotically stable.
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Theorem 2.3 provides a control tactics to eliminate the wild mosquitoes by chronical and

periodic releasing.

3. OPTIMAL MOSQUITOES CONTROL BY IMPULSIVE RELEASING STERILE MALES

The stable wild mosquito population-eradication periodic solution means that the sterile

males can suppress effectively wild mosquitos under impulsive controls. However, we have

not considered the cost of various controls which is an important problem in practice. Hence,

we devote this section to minimizing the amount of wild mosquitos at the terminal time with

minimum control cost against fertile mosquitoes by impulsive releasing sterile mosquitoes. The

optimal control problem can be solved by the time-scale conversion technology, that is, the time

range is divided into several sub-intervals [12]. Then, the original switching time point is con-

verted into the pre-fixed switching time point of the extended system. Therefore, the optimal

problem is the same as the optimal parameter selection [13].

Assume that the amount of sterile males Λi is released at ti in finite time [0,T ] for i =

1,2, · · ·n−1. Then we optimize the releasing time and amount of sterile insects which is called

hybrid control strategy. Taking the releasing interval and the amount as controlled variables to

be controlled, then a finite-time control system is proposed as follows

(5)



dM(t)
dt = rρ

F(t)(M(t)+εγS(t))
M(t)+γS(t) e−β (M(t)+F(t))−µMM(t),

dF(t)
dt = (1− r)ρ F(t)(M(t)+εγS(t))

M(t)+γS(t) e−β (M(t)+F(t))−µFF(t),

dS(t)
dt =−µSS(t),


t 6= ti, t ∈ (0,T ],

S(ti+) = S(ti)+Λi, t = ti, i = 1, . . . ,n−1,

with initial conditions

(6) M(0) = M0,F(0) = F0,S(0) = S0,

Here S(ti+) = lim
ε→0+

S(ti + ε), and T is terminal time. Let ti− ti−1 = τi. Assume that releasing

time ti and amount of the sterile insect Λi satisfies:

(7)

0 = t0 ≤ t1 ≤ ·· · ≤ tn−1 ≤ tn = T,

ci ≤ τi ≤ di, i = 1, . . . ,n,
n

∑
i=1

τi = T,
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(8) ai ≤ Λi ≤ bi,

where ai, bi, ci and di are given and non-negative constants.

Denote vectors τ = (τ1, · · · ,τn)
T and Λ = (Λ1, · · · ,Λn−1)

T . Our optimal control problem can

now be expressed as:

(P1) Given the system (5) with the initial condition (6), find the parameter vector pair (τ,Λ)

meeting (7) and (8) such that the cost function

(9) J(τ,Λ) = M(T )+F(T )+ c
n−1

∑
i=1

Λi

is minimized, where c is the cost of per sterile mosquito.

Using the transformation of time scaling and time translation [8], the problem (P1) can be

transformed into an equivalent optimal parameter selection problem, which can then be solved

based on the gradient. Define an indicator function of I:

χI(s) =


1, if s ∈ I,

0, otherwise .

Then construct the transformation from t ∈ [0,T ] to s ∈ [0,n] [8, 14] as follows

(10)
dt(s)

ds
=

n

∑
i=1

τiχ(i−1,i)(s), v(s) with t(0) = 0,

which maps the releasing moment 0,τ1,τ1 + τ2, · · · ,∑n−1
i=1 τi,T, to the time point s = 0,1, · · · ,n.

So system (5) reduces to

(11)



dM(s)
ds = v(s){rρ

F(s)(M(s)+εγS(s))
M(s)+γS(s) e−β (M(s)+F(s))−µMM(s)},

dF(s)
ds = v(s){(1− r)ρ F(s)(M(s)+εγS(s))

M(s)+γS(s) e−β (M(s)+F(s))−µFF(s)},

dS(s)
ds =−v(s)µSS(s),


s ∈ (0,n],

S(i+) = S(i)+Λi, i = 1, . . . ,n−1.

with initial conditions (6).
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In the meantime, the cost function (9) becomes to

(12) J̃(τ,Λ) = M(n)+F(n)+ c
n−1

∑
i=1

Λi.

Then problem (P1) turns into:

(P̃1) Given the system (11) with the initial condition (6), find the parameter vector pair (τ,Λ)

meeting (7) and (8) such that the cost function (12) is minimized.

However, this problem is still difficult to solve. So we will introduce time translation trans-

formation. For i = 1, . . . ,n, define

(13) Mi(s) = M(s+ i−1), Fi(s) = M(s+ i−1), Si(s) = S(s+ i−1), πi(s) = t(s+ i−1).

Then, system (10) and (11) as well as initial condition (6) are reduced to

(14)

dMi(s)
ds = τi{rρ

Fi(s)(Mi(s)+εγSi(s))
Mi(s)+γSi(s)

e−β (Mi(s)+Fi(s))−µMMi(s)}, f i
1(s),

dFi(s)
ds = τi{(1− r)ρ Fi(s)(Mi(s)+εγSi(s))

Mi(s)+γSi(s)
e−β (Mi(s)+Fi(s))−µFFi(s)}, f i

2(s),

dSi(s)
ds =−τiµSSi(s), f i

3(s),

π̇i(s) = τi, i = 1, . . . ,n,


s ∈ (0,1],

S j(0) = S j−1(1)+Λ j−1, j = 2, . . . ,n.

with

(15) M1(0) = M(0) = M0,F1(0) = F(0) = F0,S1(0) = S(0) = S0.

Then cost function (12) and problem (P̃1) becomes respectively

(16) Ĵ(τ,Λ) = M(1)+F(1)+ c
n−1

∑
i=1

Λi,

(P̂1) Given the system (14) with the initial condition (15), find the parameter vector pair

(τ,Λ) meeting (7) and (8) such that the cost function (16) is minimized.

Thus (P̂1) is a parameter selection problem which can be solved by normal optimization

method. According to the Theorem 6.1 in [15], define corresponding Hamiltonian functions Hi
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for i = 1, . . . ,n,

(17)

Hi(s,Mi(s),Fi(s),Si(s),λ i(s),τ,Λ) =
(

λ i
1(s) λ i

2(s) λ i
3(s)

)(
f i
1(s) f i

2(s) f i
3(s)

)T
,

where λ i(s) = (λ i
1(s),λ

i
2(s),λ

i
3(s)) is the corresponding costate determined by the following

costate equations

λ̇
i
1(s) = −τi

{
λ

i
1(s)

(
rρ

Fi(γSi− εγSi)

(Mi + γSi)2 e−β (Mi+Fi)−β rρ
Fi(Mi + εγSi)

Mi + γSi
e−β (Mi+Fi)−µM

)

+λ
i
2(s)

(
(1− r)ρ

Fi(γSi− εγSi)

(Mi + γSi)2 e−β (Mi+Fi)−β (1− r)ρ
Fi(Mi + εγSi)

Mi + γSi
e−β (Mi+Fi)

)}
,

λ̇
i
2(s) = −τi

{
λ

i
1(s)

(
rρ

Mi + εγSi

Mi + γSi
e−β (Mi+Fi)−β rρ

Fi(Mi + εγSi)

Mi + γSi
e−β (Mi+Fi)

)

+λ
i
2(s)

(
(1− r)ρ

Mi + εγSi

Mi + γSi
e−β (Mi+Fi)−β (1− r)ρ

Fi(Mi + εγSi)

Mi + γSi
e−β (Mi+Fi)−µF

)}
,

λ̇
i
3(s) = −τi

{
λ

i
1(s)

(
rρ

Fiεγ(Mi + γSi)−Fi(Mi + εγSi)γ

(Mi + γSi)2 e−β (Mi+Fi)

)

+λ
i
2(s)

(
(1− r)ρ

Fiεγ(Mi + γSi)−Fi(Mi + εγSi)γ

(Mi + γSi)2 e−β (Mi+Fi)

)
−λ

i
3(s)µS

}
,

with boundary conditions

(18)

 λ n
1 (1) = 0,λ n

2 (1) = 0,λ n
3 (1) = 1,

λ i
1(1) = λ

i+1
1 (0),λ i

2(1) = λ
i+1
2 (0),λ i

3(1) = λ
i+1
3 (0), i = 1, . . . ,n−1.

Denote

y(s) =
(

F(s),M(s),S(s)
)T

, yi(0) = ψ
i−1(yi−1(1),Λi−1).

Hence, according to the system (14), for i = 2, . . . ,n we get

ψ
i−1(yi−1(1),Λi−1) =

(
Mi−1(1),Fi−1(1),Si−1(1)+Λi−1

)T
.
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Therefore, the corresponding gradient of the cost function (16) relative to the parameters τ j

and Λk are determined as

(19)

∇τ jJ(τ,Λ) =
∫ 1

0

n

∑
i=1

∂Hi(s,Mi(s),Fi(s),Si(s),λi(s),τ,Λ)
∂τ j

ds

=
∫ 1

0

{
λ

j
1

(
rρFj(M j + εγS j)

M j + γS j
e−β (M j+Fj)−µMM j

)
+ λ

j
2

(
(1− r)ρFj(M j + εγS j)

M j + γS j
e−β (M j+Fj)−µFFj

)
−λ

j
3 µSS j

}
ds

for j = 1,2, · · ·n, and

(20)

∇Λk Ĵ(τ,Λ) = c+
n−1

∑
i=1

λ
i+1(0)T ∂ψ i(yi(1),Λi)

∂Λk

= c+
(

λ
k+1
1 (0) λ

k+1
2 (0) λ

k+1
3 (0)

)
0

0

1


= c+λ

k+1
3 (0)

for k = 1,2, · · ·n−1.

Specially, if sterile insects are released n times at regular intervals τ on [0,T ], then nτ = T .

Thus the released amounts of sterile insects Λi meeting constraint (8) are optimally selected. So

we get a amount control model:

(21)



dM(t)
dt = rρ

F(t)(M(t)+εγMS(t))
M(t)+γS(t) e−β (M(t)+F(t))−µMM(t),

dF(t)
dt = (1− r)ρ F(t)(M(t)+εγS(t))

M(t)+γS(t) e−β (M(t)+F(t))−µFF(t),

dS(t)
dt =−µSS(t),


t 6= iτ, t ∈ (0,T ]

S(iτ+) = S(iτ)+Λi, t = iτ, i = 1,2, · · · ,n−1.

with initial conditions (6). Our optimal control problem can now be formulated:

(P2) Given a system (21), under the initial condition (6), find a vector of release parameters

for sterile insects Λ fulfilling (8) such that the cost function

(22) J(Λ) = M(T )+F(T )+ c
n−1

∑
i=1

Λi

is minimized.
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Similarly, after the time scaling transform and time translation, system (21) reduces to

(23)

dMi(s)
ds = f i

1(s) = τ{rρ
Fi(s)(Mi(s)+εγSi(s))

Mi(s)+γSi(s)
e−β (Mi(s)+Fi(s))−µMMi(s)},

dFi(s)
ds = f i

2(s) = τ{(1− r)ρ Fi(s)(Mi(s)+εγSi(s))
Mi(s)+γSi(s)

e−β (Mi(s)+Fi(s))−µFFi(s)},

dSi(s)
ds = f i

3(s) =−τµSSi(s),

π̇i(s) = τ, , i = 1, . . . ,n,


s ∈ (0,1],

S j(0) = S j−1(1)+Λ j−1, j = 2, . . . ,n.

and (15). And the ultimate cost function is

(24) Ĵ(Λ) = Mn(1)+Fn(1)+ c
n−1

∑
i=1

Λi.

According the definition of Hamiltonian function in (17), then the costate equations with

boundry conditions and the gradient of (24) on Λk are obtained.

4. COMPUTE AND SIMULATION

Table 1. Parameter values for the system (1)[1].

Parameter Value Unit

r 0.5 -

ρ 6.66 day−1

µM,µF ,µS 1/13, 1/15, 1/8.5 day−1

β 3.026×10−4 -

γ 0.91 -

ε 0.015 -

The genetic algorithm (GA) is a search technique used in computing to find exact or approxi-

mate solutions to optimization and search problems. Nowadays the toolbox of genetic algorithm

is used in Matlab to solve the continuous optimization problems. In this section, we will ap-

ply gradient descent (GD) and genetic algorithm (GA) to solve the optimal control strategy for

suppressing wild mosquitoes.
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Some parameters derive from reference [2] in which sterile mosquitoes were released by an

open-release field trial in Guangzhou with the highest dengue transmission rate in China. In

our simulation, taking days as the unit of time, the total optimal control time is 63 days, that is,

T = 63. Assume that the sterile mosquitoes are released N−1 = 8 times in variable amounts.

Take the production and release cost of a sterile mosquito as c = 0.0002. Other parameter

values shown in Table 1 derive from [1]. Then, assuming that sterile mosquitoes are free,

the equilibria of wild mosquitoes are M̂ = 5999 and F̂ = 6923 for model (1) so that the total

amount of wild mosquitoes is up to 12923. We take them as the initial levels in the following

simulations. Moreover, according to the expression of Λcrit in section 2, the critical value is

2.284× 105. Thus sterile mosquitoes are released eight times and 2.284× 105 every time. So

the total amount of sterile mosquitoes reach 1.827×106 and the cost value and wild mosquitoes

at the terminal time are 1584.22 and 1219, respectively. In addition, in the following simulation,

we restrict 1≤ τi ≤ 10, and ∑
n
i=1 τi = T and set 1×104 ≤ Λi ≤ 3×105.

4.1. Numerical simulation of gradient descent (GD).

Referring to the algorithm in [8, 16], the optimization strategies were solved numerically

using gradient descent method on the Matlab.

Simulation 1. Optimal release time interval and release amount

Taking the initial impulsive control time intervals as τi = 7 for i= 1,2, · · · ,8 and starting with

a initial release amount Λ0 =(2.284×105,2.284×105,2.284×105,2.284×105,1×104,1.65×

105,2.284× 105,2.284× 105), we obtain that the cost value J0 = 1631.96 and the total wild

mosquito population M(T )+F(T ) = 1323 at T = 63. Then we solve the optimal problem and

obtain a set of optimal release intervals

τ
∗ = (1,7.2761,7.2663,7.3544,7.4387,7.5012,7.5581,7.6052,10)

and optimized release amounts

Λ
∗=(1.778×105,1.873×105,2.119×105,2.257×105,2.328×105,2.368×105,2.372×105,2.179×105)

which are described by Figure 1 (a). Accordingly the minimum cost is J∗ = 1438.28 while the

total wild mosquito population at the terminal time is M∗(T )+F∗(T ) = 1093.
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FIGURE 1. Comparison of two optimal control strategies. (a) Release strategy

of the hybrid optimal control. (b) Release strategy of the optimal amount control.

(c) Comparisons of total wild mosquitoes population under different controls.

(d) Comparisons of sterile mosquitoes under different controls.

Simulation 2. Optimal release amount at fixed moment

We take the same initial conditions as the optimized control above, then obtain the optimal

release amount

Λ
∗=(1.913×105,1.965×105,2.204×105,2.321×105,2.3723×105,2.399×105,2.3985×105,1.323×105)

which is displayed in Figure 1 (b). The corresponding cost value J∗ = 1578.35, while the total

amount of wild mosquitoes at terminal time is M∗(T )+F∗(T ) = 1240.

Comparison of two optimal control strategies shows that the hybrid control is more advanta-

geous. In addition, it is found that wild mosquito populations continue to decline as the amount
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of releases increases. However, even if the release reaches the upper limit, the wild mosquitoes

cannot be eliminated either in the short term.

4.2. Numerical simulation of genetic algorithm(GA).

Choosing the same initial conditions as the above simulation, we use the genetic algorithm to

solve two optimal control strategies. Then for the hybrid control, optimal release time interval

and amount respectively are

τ
∗ = (1,1,1,10,10,10,10,10,10)

and

Λ
∗=(1.805×105,1.302×105,1.117×105,2.019×105,2.692×105,2.341×105,2.578×105,2.533×105).

Further, for the amount control, optimal release amount is

Λ
∗=(1.886×105,2.195×105,2.142×105,2.24×1052.388×105,2.373×105,2.452×105,1.332×105).

The corresponding results of both algorithms are list in the Table 2.

Table 2: Comparison of different control tactics and algorithms.

Type of Cost Amount of wild mosquitoes Total amount

control value at the terminal time released

Without control − 12922 0

Non-optimal control 1631.96 1323 1.545×106

Periodic pulsed control 1584.22 1219 1.827×106

GD for amount control 1578.35 1240 1.690×106

GD for hybrid control 1438.28 1093 1.727×106

GA for amount control 1578.55 1238 1.701×106

GA for hybrid control 1474.87 1147 1.639×106

Our numerical simulations show that impulsive controls radically reduce the level of wild

mosquitos. Futhermore, the results of both optimization algorithms are similar and the result

of hybrid control is superior to the amount control and periodic impulsive control in terms of

the minimal objective function, the lower releasing amount and the lesser wild mosquitos at
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the terminal time. Even so, there is no significant difference among various impulsive control

measures in which sterile mosquitoes are released eight times.

5. CONCLUSION

SIT is an environmentally friendly and species-specific control tool for suppressing Aedes

albopictus. According to Theorem 3, wild mosquitoes will become extinct after chronical SIT

control. But it is not realistic so that the impulsive control tactics with alterable pulse times

and releasing amounts in finite time restraining wild mosquitoes are established. The corre-

sponding impulsive optimal problem are constituted and translated into continuous parameter

selection problem by means of the transformation of time-scaling and time translation. Then

simulations and optimal control strategies based on gradient descent and genetic algorithm are

given. Simulations indicate that hybrid control is superior to the amount control and periodic

impulsive control in terms of the objective function, the total release amount and the amount of

wild mosquitos at the terminal time.
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