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Abstract: The main goal of this study is to propose a new regression model using re-parameterization of the Poisson-

Lindley distribution for seven parameters. The utility of real-world data is used to assess the accuracy of estimating 

algorithms. The suggested model is compared to well-known regression models for count data modelling, such as 

Poisson, on a real data set to demonstrate its utility. While fitting two real data sets, the (GPL7) linear model will be 

compared to the Poisson for seven parameters and the (GPL4) linear model will be compared to the Poisson for four 

parameters. The GPL7 linear model was found to be capable of fitting over-dispersed count data and to have the 

maximum log-likelihood, according to the results. 
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1. INTRODUCTION 

The Poisson regression model [1,2,21] is a count data model in which the number of occurrences 

of a defined experiment is random and the conditional mean of occurrence equals the conditional 

variance (equi-dispersion). 

However, challenged in real-world data from several trials contradicts the assumption that the 

conditional mean is equal to the conditional variance. When the conditional variance and mean are 

not equal, there are two scenarios. When the conditional variance is less than the conditional mean, 

under-dispersion occurs. In the case of over-dispersion, the conditional variance exceeds the 

conditional mean [24,27]. According to Palmisano's research and  Karlis and Xekalaki's research, 

the over-dispersion situation has been widely investigated [9, 23]. 

Mover, there are two techniques to examine count data with over-dispersion. To begin with, there 

is a large body of work on alternative discrete mixed distributions that may handle various levels 

of over dispersion. The Poisson-gamma or negative binomial (NB) distribution [15], and the 

Poisson–Lindley distribution [18], are two new mixed Poisson distributions. As one method of 

analyzing count data with over-dispersion, these have been used to model count data with over-

dispersion. In addition, the use of new mixed Poisson distributions with auxiliary variables has 

been proposed to provide more appropriate models for forecasting the behavior of the count 

response variable than the predictions from the Poisson regression model [2,15]. 

There are many new mixed Poisson regression models that can be used. For example, the NB 

regression model [15], generalized Waring regression model [20], Poisson-normal or Hermite 

regression model [8], Poisson-Inverse Gaussian regression model [19], and hyper-Poisson 

regression model [3] have been developed in the context of generalized linear models. 

In 2014, Zamani et al. published a Poisson-weighted exponential (P-WE) distribution using a 

regression model. [13]. Wongrin and Winai (2016) established a novel linear regression model for 

count data called generalized-Poisson Lindley (GPL) [29]. By re-parameterizing Poisson quasi-

Lindley, Altun presented an alternative regression model for modelling over-dispersed count data 
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sets in 2019 [4]. Karim and Mountainlike at the modified Poisson-Lindley linear model  [16]. The 

generalized Poisson-Lindley linear model is an option to modelling over dispersed count data when 

claim frequency data is generated from populations with a generalized Poisson-Lindley distribution. 

Its regression model and MLE were also created using the generalized linear model. 

So, the purpose of this study is to use the generalized linear model to create a new linear regression 

model called the GPL linear model, which is based on a generalized Poisson–Lindley (GPL7) 

distribution for seven parameters. Mahmoudi and Zakerzadeh introduced the GPL distribution in 

2010 [11]. It's a mixed Poisson distribution [21], which gives a flexible model for count data with 

over-dispersion by combining the Poisson distribution with a generalized Lindley (GL) distribution. 

In addition, the MLE is employed to estimate the model's parameters. Its results are also compared 

to certain classic count data regression models. The GPL7 linear model is a more accurate way to 

explain the relationship between count data and a set of covariates more accurately. 

In addition to this paper proposes a novel regression model. The research is structured as follows: 

Section 2 shows a mixed Poisson-Lindely distribution for seven parameters. A new linear regression 

model for count data has been constructed based on the GPL7 release, as detailed in Section 3. In 

addition, Section 4 shows how to infer statistical parameter estimators. Apply the GPL7 linear 

model to real-world data sets, then analyze the data summary and model performance in Section 5. 

Finally, various conclusions are illustrated in Section 6. 

 

2. GENERALIZED POISSON LINDLEY DISTRIBUTION FOR SEVEN PARAMETERS 

The analysis for count data will conducted by using the Poisson distribution, which is considered 

the basic distribution for it. If a random variable Y is distributed as the Poisson with parameter λ, 

its probability mass function (pmf) is 

( ) ( )p y,λ ; 0,1,2,  0 1
!

ye
y for

y




−

= =    

Consequently 



4 

EBRAHEIM, MOHAMED, MUAYW 

( ) ( )E y Var y = =  

the pdf of the seven Parameter Lindley Distribution (SPL) distribution, is defined as 

( ) ( )
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k k
e

k

  




    


   
     




− − −
−



 
+  

+  
=


 

We note that ( ); , ,β,k,η, ,σg      incorporates seven parameters namely. 

0,α 0,β 0,k 0, 0,σ 0  0,and          

Then  
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Hence, The GPL7 distribution with parameters 𝛼, β, k, η, ∅, σ and θ.The marginal pmf  GPL7

( ); , ,β,k,η, ,σ ,    and its probability density function (pdf) is of  

Y ~ GPL7 ( ); , ,β,k,η, ,σg     is 

( )
( )

( )( )
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Figures (1), (2), (3), and (4) show some of the possible shapes of the GPL7 pdf for various values 

of the parameters θ, α, β,  k, ∅, σ and η selected from the ranges indicated in Equation (3). 
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Figure 1: Different Shapes of the pdf for the GPL7 

 

 

 

Figure 2: Different Shapes of the pdf for the GPL7 
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Figure 3: Different Shapes of the pdf for the GPL7 

 

Figure 4: Different Shapes of the pdf for the GPL7 
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3. GENERALIZED POISSON-LINDLEY LINEAR MODEL FOR SEVEN PARAMETERS 

(GPL7). 

In count data, the GPL distribution is a good alternative to the standard Poisson and NB 

distributions [9]. Covariates, on the other hand, were not used to explain the GPL variable. The 

GPL linear model is developed by generalizing the GPL7 distribution, which is the current 

statistical distribution. The extended linear model is an extension of the classic linear regression 

model where the continuous assumption of the response variable is broken, and the response 

can be a count variable. As a result, the link function needs to be considered. It must be a 

monotonic, invertible, and differentiable function that maps from  𝑿𝜷 𝝐ℝ𝒏 to the response 

variable's mean (E(Y) >0) [1,2,24]. 

The log-linearity of the mean is considered the link function in the GPL linear model. 

The vector-value link function is defined as η = g(μ), where ηi = g(μi) = log(μi) = xi
Tβandxi

Tis 

the ith row of a n × (k + 1) design matrix, X.  

As a result, ( )exp ,( )i

TE Y  =  implying that the mean of the response variable is equal to the 

exponential of the linear predictor [9,11]. 

Proposition 3.1: 𝑌|𝑥𝑖
𝑇  be a response variable with 𝑥𝑖

𝑇  as a covariates. Then, theconditional 

distribution of Yi for 𝑥𝑖
𝑇 as follows distribution 7( , ,β,k,η, ,σ)GPL     with seven parameters 

and mean greater than zero. 

( )| ~ 7 , ,β,k,η, ,σT

iY x GPL    is pmf can be written as : 

( )
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T
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Proof: 

 If  𝑌|𝑥𝑖
𝑇 has a pmf as in Equation (1) and the pdf of 𝜆𝑖  is proposed in Equation (2), then 

| ~ ( , ,β,k,η, ,σ)T

iY x GPL     has a marginal pmf as in Equation (3). Furthermore, the GPL 

distribution's mean is 

( | ) ( | ) |T T

i i i i iE Y x E E Y x   =   
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+

 

( )exp

i
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

 

=

=
 

By parameterizing, the mean of the GPL distribution is achieved  

σ σ

1

η η
k



 

  

  −

−
=

−
 

As a result, the pmf of | ~ ( , ,β,k,η, ,σ)T

iY x GPL    can be described as a linear model with a 

log-link function by substituting 
σ σ

1

η η
k



 

  

  −

−
=

−
 into Equation (3) as 
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Then, we obtained that 
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by substituting ( )expi

T  = in u and v, then it can write ( )  | T

i if y x u v w= +  as 
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4. MODEL ESTIMATION  

In this section, model parameter estimation will be derived . 

• Maximum likelihood estimation  

Maximizing the log-likelihood function of parameters, L, called the MLE, was used to estimate the 

regression coefficients (β) and the distribution parameter (θ). 

Let 𝚯 = ( βT, 𝛉)𝑇be a vector of the parameters. Then log-likelihood function is 
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By differentiating L(Θ) with respect to each parameter , ,β,k,η, ,σ    and the score functions 

of the parameters, it will estimate all parameters. 

𝛿𝐿(𝛩)
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𝛿𝜂
,
𝛿𝐿(𝛩)

𝛿𝜙
,
𝛿𝐿(𝛩)

𝛿𝜎
 

Hence, setting these expressions to zero and solving the nonlinear resultant equations 

simultaneously produces the maximum likelihood estimators, which are obtained by using a 

numerical approach or a direct numerical search for the maximum of the log-likelihood surface. 

 

5. APPLICATION TO REAL DATA 

The data used in this study focuses on the relationship between the patient's stay in the hospital as 

a dependent variable and each of the following variables as independent variables: the procedures 

followed inside the hospital as the first variable, the patient's age as the second variable, and the 

patient's gender as the third variable. Where this data was obtained in the year 2020 from the 
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Damradash General Hospital in the Arab Republic of Egypt for a group of Corona virus-infected 

patients, where the total number of observations obtained was 1570, and each case recorded the 

length of stay in the hospital, as well as the type of infection. The following table shows some 

statistical measures that were calculated for each of the independent and dependent variables. 

Table 1: Data summary for a group of Corona patients at Demerdash General Hospital  (1570) 

variables mean max min var Rang 

stay  15.24 30 10 2.13 20 

age 35.35 80 12 3.21 68 

procedures 4.2 9 2 2.1 7 

 

Extrapolating Table (1). We should highlight that the average length of stay in the hospital during 

Corona's treatment was 15.24 days. The longest hospital stay was 30 days, and the shortest was 10 

days, with a variance of A.23 for the variable. The second factor is age, with a median age of 35. 

The oldest person is 80 years old, and the youngest is 12 years old. The third variable is the length 

of time the hospital spends performing procedures. The average procedure lasts four days. 

Procedure 2 has a minimum duration of two days and a maximum duration of ten days. 

Table 2: Model performance of corona virus patients in Demerdash General Hospital 

Models log-likelihood AIC                BIC 

Models(7p) -12.345 24.125          24.0123 

Models(4p) -10.234 25.124           26.145 

 

Through the second table, the value of the Maximum likelihood of regression for the distribution 

with seven parameters was less than the distribution with four parameters, indicating that the 

regression model for the distribution with seven parameters is better than the regression model for 

the distribution with four parameters, as shown in the second table. In the regression model with 

seven parameters, the AIC and BIC values were also lower. 

 



12 

EBRAHEIM, MOHAMED, MUAYW 

Table 3: Modeling results for the patients in Demerdash General Hospital 

 Passion Lindley  (7)  Passion Lindley  (4)   

Covariates Estimate p-Value Estimate p-Value  

intercept 1.423 

(0.0231) 

<0.001 1.4532 

(0.0312) 

<0.001  

Doctors' 

absence 

days 

0.842 

(0.0182) 

<0.001 0.864 

(0.0294) 

<0.001  

age -0.1132 

(0.0172) 

<0.001 0.2132 

(0.0264) 

<0.001  

procedures 0.1214 

(0.0182) 

<0.001 0.1245 

(0.0283) 

<0.001  

By extrapolating Table No. 2, the regression model can be written as follows 

μ ̂ = exp (1.423 + 0.842 Doctors′ absence days − 0.1132 age + 0.1214 procedures) 

The number of days doctors were absent from the hospital is the most influential element on the 

patient's stay in the hospital, according to the previous regression model, where the effect of this 

independent variable on the dependent variable was (0.842) and statistically significant. In terms 

of the protocols followed in the hospital, everything was in line.  Because they were in second place 

and their effect was on the dependent variable, they had no effect on the length of stay (0.1214) 

Finally, the dependent variable is affected by the age variable in the opposite way. 

 

Figure 5: show independent variable and independent variables 
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Figure 6: show independent variable and independent variables 

 

6. CONCLUSIONS 

The aim of this study is to propose a new regression model using re-parameterization of the 

Poisson-Lindley distribution for seven parameters. The proposed model was considered for 

analyzing a real dataset on the Corona virus-infected patients. The main conclusion one can make 

from the fitted model is that the proposed model able to discover which factors had the most impact 

on the length of stay in the hospital by using data from Corona needs. As a result, the new model of 

regression can be applied to many medical sectors because of its ability to discover which factors 

have the most impact on the length of stay in the hospital.  
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