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Abstract: The interplay of predation, competition between species and harvesting is one of the most critical aspects
of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two
competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an
additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the
harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are
derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria
numerically by varying the different values of the system's parameters. The results show that system movement could
happen around the positive equilibria, if the system stability conditions are met.
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1. INTRODUCTION
The main drive of studying population biology and theoretical ecology is to determine the

dynamical behaviour mechanisms associated with predator-prey interactions. Much study has been
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undertaken to ascertain the behaviour of species interaction [1]-[3]. The nature of the interaction
between the species affects their dynamics. Throughout the two species' interaction, if the growth
rate of the first species rises while that of the second decreases, then it will say they are in the prey-
predator situation. The first species, called the predator, feeds on other species (prey) [4]. The
original fundamental model representing the prey-predator interaction goes back to Lotka and
Volterra [5]-[6]. It has now been established as the most straightforward base system for two
competitive species. Much ecological research and mathematics have dealt with diverse aspects of
prey-predator models [5]-[8].

In the last decades, prey-predator models with more than two species have attracted several
scholars [11]-[13]. For example, two prey and one predator have been supposed by Elettreby [14]
where the latter can hunt both prey populations. He found the global internal solution for his model.
Moreover, in [15], the prey, predator, and super-predator model has been proposed. The predator
feeds the prey only in this system, whilst the super predator feeds on the other two species.

The competition between the species and harvesting models has received much attention in various
study papers [16]-[21]. For instance, the one prey and two competing predators model has been
proposed [22]. It has been found that Hopf bifurcation could be obtained when the consumption
rate of the second predator is chosen as a bifurcation parameter.

Harvesting can be used for resource renewal and sustainability from an ecological standpoint. As
a result, it is critical to establish sustainable development strategies for harvesting practices;
otherwise, overexploitation may abolish some species [17], [23], [24].

In this paper, a four-dimensional model is worked on consisting of two competitive prey, a predator
and a super predator. The terms of harvesting the second prey and providing additional food to the
predator are also included. The rest of this paper is as follows: In Section 2, the structure of the
mathematical model is explained. Section 3 presents the dynamical analysis of the proposed
system, including its positivity and boundedness. Then, in Section 4, the local evaluation
conditions are calculated for twelve equilibria, while in Section 5, the Lyapunov method is used
to prove the global stability of these. Section 6 presents an intensive numerical simulation to
delineate some exciting findings associated with the proposed model. Finally, Section 7 reviews

the results of our work.
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2. MATHEMATICAL MODEL
Suppose an ecological system contains two competitive preys, a predator (first predator) and a top
predator (second predator), with the mathematics beings based on the following assumptions.
u, (t) is the density of the first prey at time t and u,(t) is the density of the second harvested
prey at time t, which harms the first prey (and vice versa), whilst u;(t) and u,(t) are the
densities of the predator and top predator species at time t, respectively.

Under the above assumptions, the following ODEs are obtained:

du u

d_tl =Tnu; (1 - 71) — auiUy — Bruguz = ugfi (Ug, Up, Uz, Uy),

du u

d_tz = rzuz (1 - Tz) - azuluz - auz == uzfz(ul, uz, u3, u4), (1)
du3 _ usz —

e I3Us 1- o + Bousuz — Pous — YiUsUs = Usf3(Ug, Up, Us, Uy),

dU4

2 V2UsUs T YUy = Uy fy (Ug, Up, Uz, Uy).

For all the above parameters € (0, ). Further, Model (1) has been analysed with the initial
conditions u;(0) > 0,i =1,2,3,4. p(u;) = fyuy and p(uz) = y,us, which are the Lotka-

Volterra type of functional responses. The flow chart of system (1) is shown in the following block

diagram.
us
3 1--=
ruy (1 — %) Bauqus First predator |’ 2" ( m)
> u3 J—P ﬁoug
—azUq Uz ‘—“1'«11”2
suy (1 _t Second prey
L/ u,
—aUg auy

Figure 1: Block diagram for system (1)
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In Model (1), we assume that the two prey and first predator reproduce logistically, with intrinsic
growth rates r;,r, and r; and carrying capacities k,l and m, respectively. S;and y, are the
attack rate coefficients of the first prey and first predator species due to the first predator and
second predator. 8, and y, are the first prey and first predator biomass conversion rates into the
first and second predator, respectively. S, and y represent the first and second predators' natural
death rates, respectively. a;is the negative effect on the first prey by the second prey, whilst a,
is the competition rate of the second prey with the first prey. a represents the harvesting rate of
the second prey.

The functions on the right-hand side of the system (1) are C!(R}) on R} =
{(uy, uy,uz,uy),u; = 0,uy, 20,u3 >0>,u, >0} and therefore, they are Lipschitzian.
Consequently, the solution of system (1) exists and is unique. Further, all the model (1) solutions
with non-negative initial conditions remain positive and bounded, as shown in the following

section.

3. POSITIVITY AND BOUNDEDNESS OF THE SOLUTIONS

Theorem 1. All solutions uq(t),u,(t), u3(t) and u,(t) of the system (1) with the initial
conditions (14, Uyg, Usg, Usg) € RY are positively invariant.

Proof. By integrating the right-hand side of system (1) for uy,u,,u; and u, we get:

t -

uy (£) = ugg exp {]
oL

jot :rz (1 - uzl(s)) —a,u (s) — a] ds}

t.

_T‘3 (1 _ ugrfls)) + Bouy(s) — Po — y1u4(s)] ds}

n(1- ”1,55)) SORYANE] ds}

Uy (t) = uyg exp

o

t

Uy (t) = uyp exp j
0

u3(t) = usg exp{

[y2us(s) — y(s)]ds}

Then, u,(t) >0, u,(t) >0, us(t) >0 and u,(t) >0 for all t > 0. Hence, the interior of
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R% is an invariant set of system (1).
Theorem 2. All solutions u, (t), u,(t), u3(t) and u,(t) of system (1) with the initial conditions

(uq,uy,uz,uy) are uniformly bounded.
Proof: Let (uy(t), uz(t), us(t), uy(t)) be an arbitrary system (1) solution with a non-negative

initial condition. Then, for N(t) = u,(t) + u, (t) + us(t) + uys(t), we have:
dN du; du, dusz duy
ar - dar @ Tar T a

dN riu? U3 rau’
= — — U Uy — P Us + Uy — ——— — QU Uy — AUy + T3Uz — ——
m

k [

+ BaugUz — Polz — Y1Uzly + VoUslUy — YUy

Hence, Z—IZ + 6N < 2ryuy + 2ru, + 2rsus = 7, where, 6 = min.{ry, (r, + @), (r5 + o), v}.
Then, by applying Gronwall's Inequality, the following is obtained:

0 < N(uy (1), u(8), uz(6), ug (1)) < 5(1—e™%) + N(0)e™®

Hence, 0 < limsup N(t) <=
t—oo 1)
Thus, all system (1) solutions that are initiated in R} are attracted to the region o =

{(ul,uz,u3,u4) € RY:N =u; +uy +uz +uy < %} and thus, the conclusion of the theorem

holds.
4. EXISTENCE OF EQUILIBRIA
System (1) has twelve non-negative equilibrium points, namely:

1. The disappearing equilibrium point F; = (0,0,0,0).

2. The first predator equilibrium point F, = (0,0, 15, 0), where 3 = rm(rg — Bo) exists when
3

T3 > B (2)

3. The second prey equilibrium point F; = (0, ii,, 0,0), where , i, = ri(rz — a) exists when
2
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Hn>a (3)

The first prey equilibrium point F, = (k, 0,0,0).

For the second two species' equilibrium point Fs = (0,0, i3, &i,), where i = yl and 1, =
2

yi(r3 — % — 0). For 1, > 0, the following would be the case:

1 2

ry
>—+ (4)
T3 my, Bo

For the second and third species' equilibrium point Fg = (0, Uy, U3, 0), where u, = ri(rz —
2
a) and u; = rm(r3 — By). For u, and us to be positive, conditions (2) and (3) must be
3

satisfied.

For the first and third species' equilibrium point F, = (@i, 0,3, 0), where ii; = Bi(ﬁo +
2

r3U ~ kfo+13—
3;n3 —r3) and i3 = mry (—BZ 2—Fo

rir3+kmpq B,

). It should be clear that for ii; and iz to be positive,

the following must be the case:

ry (m r_nu3) < Bo < kB + 73 (5)

For the first two species' equilibrium point Fg = (uj,u3,0,0) , where uj =

k (M) and u; = ai(ﬁ - Tlu;). Clearly, u; > 0, if one of the following

T]_T'z—alazlk 1 k

conditions hold:

aa,lk Ty + aaql (6)
142 <T'2< 112 1
Tl lal
T, + aaql aa,lk
¥<T2< 172 (7)
lay 7

It should also be noted that for u; to be positive, the following must be the case:

k> u; (8)
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. e : 1
9. For the last three species' equilibrium point Fy = (0, u3, uz, u), where u; = T—(rz —a),
2

1 .. ..
u; = yl and u, = y— (r3 — % — 0). For u; and u, to be positive, conditions (3) and (4)
2 2 2

must be satisfied.

. eqe . . " " " " k
10. For the second free species' equilibrium point F;y = (uq,0,u3,u,), where: u; = r—(rl —
1

YBiy v _ Y 1 v Tauz " " .
” ), Uz = and u, = ” (r3 + Bouy - ﬁo). For u; and u, to be positive, the
following must be validated:
oyt (©)
V2

w _ T3U3 10
r3+,82u1>7+/30 (10)

11. For the first three species' equilibrium point F;; = (U4, U,, U3, 0), where

“ k(la ryrs+mpBryrz—rirars—laar3—mpBof172) “ l v “ m
U, = 128 123 18 PORLE D M, =—(p—ayly—a) and U3 =—(r5+
lkayazr3—rirr3—mkB1 o1 T2 T3

Bou; — Bo). Clearly, for Uy, U, and U to be positive, condition (13), along with one of the

conditions (11) or (12), must be satisfied:

rirer3tairyla+t lk
1T2r3tasrzla+mpBofir; <1y < Q10273 : (12)
lT3a1+mB1r3 7"17"3+,81B2mk
lkaja;,r rirer3ta rzlat+m T
10273 r, < 17213+a4113 BoB1 2' (]_2)
T1T3+B1B2mk lT3(11+mB17"3
- . -
Bo—T3 <y < 2= (13)
B2 az
.. e . 1 U
12. For the positive equilibrium point F;, = (uj,uj, u3, uy), where uj = a—(rz - Zl 2 — a),
2

l (r1r2y2+kyﬁla2—kr1y2a2—ar1y2) 14 1 ( r3U3 )
* * * *
u, = — u; =— and uy, =—\(r;+ Bu; — — It
2 Y2 T'1T2—kla1a2 ? 3 Y2 4 Y1 3 ﬁz 1 m ﬁo

should be noted that for uj,u; and u, to be positive, conditions (14) and (15), along with

one of the conditions (16) or (17), must be satistied:

ry > rzzl; +a, (14)
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* r3uU3 15
r3 + Bouy > + Bo, (15)
klaia T112Y2+k a
1%2 r < 112V2+kyB1 2’ (16)
T2 ky2az+y2a
T112Y2+k a klaqa
172V2tkyBictz <r < 1%2 (]_7)
ky2az+y2a )

5. LOCAL STABILITY

This section explores the local stability behaviour of system (1) 's equilibrium points.

The Jacobin matrix of system (1) at any point, say (u;, Uy, U3, Uy), can be written as:

0f1 df1 df1 df1 T
1au th ula 1 9u, U Auy
of, of, of, of,
— — u —
]_ Zaul Zau +f2 uzau 26u4 _(a )
B u % u % af3 + f % N Y 4X4’
3 6u1 3 auz 3 3 aU4,
0f4 0f4 af4 Ofs
4 Juq Uy du, Uy dug Uy duy + f4
27"11{1 _
where, a;; =1 — e Gz — Pius, A1z = —aqUq, A3 = =Py, a4 =0, Az = —ayUy,
_ 27"2'LL2 _ _ _ _ _ 27"31,1.3
azz—rz__l —QU; —a, A3 =0,=0, az =fousz, azp =0, az;=1r;3— +
Pauy — Bo — Y1lUs, Q34 = —Y1Uz, Aa1 = A4y = 0, Ay3 = YUy and auy = yousz — .
Consequently, the following is obtained.
1. The Jacobian matrix at F; = (0,0,0,0) is given as:
2 0 0 0
0 n—a 0 0
J(F) = 0 (18)

0 O T3 - BO
0 0 0 Y

Then, J(F;) has the eigenvalues A1, =7, >0, A, =n—a, Ai3=1r3—LF, and Ay =

—y < 0, which means F; is a saddle point.

2. The Jacobian matrix at F, = (0,0,13,0) can be written as:
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r—Bi; 0 0 0
0 - 0 0
) = 2 . .
e B3 0 13+ By “rils (19)
0 0 0 YUz =Y

Then, J(F,) has the eigenvalues A,y =13 — Pylg, Ayy =175 — A, Ay3 = —13+ L, <0 and
Ays =y u3 —y. Clearly, 1,3 is negative whenever F, exists. That means F, is a locally
asymptotical stable point, if and only if, the following conditions are satisfied:

r <a, (20)

£<u3<yl (21)

3. The Jacobian matrix at F; = (0,%,,0,0) can be written as:

rl - all_lz O O 0
| mau,  n+ta 0 0
JEY =] % 0 m—p, O (22)
0 0 0 -Y

Then, J(F;) has the eigenvalues A3, =13 — aqlly, Azy = T +a <0, A33 =13 —f, and
Az = =y < 0. Clearly, A3, is negative whenever F; exists. That means F; is a locally
asymptotical stable point, if and only if the following conditions hold:

T < iy, (23)

13 < Bo. (24)

4. The Jacobian matrix at F, = (k,0,0,0) can be written as:

_Tl _ak _Blk 0
0 nn—ak—a«a 0 0
F) = 2 2 25
JE)=| T pk—p O (25)
0 0 0 -y

Then, J(F,) has the eigenvalues Ay, = —11 <0, Ay =1 —ark —a, Ays =135+ ok — By
and A4, = —y < 0. That means F, is a locally asymptotical stable point provided that:

ﬂ<k<@_ (26)

az 2
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5. The Jacobian matrix at Fz = (0,0, 13, 1,) can be written as:

r1 — Pils 0 0 0

0 n—a 0 0
J(Fs) = . -5y —nvl. (27)

B 0 my. ¥

0 0 Y2y O

Then, the characteristic equation of J(Fs) is given by:

— i, — — - 2 IsY ) 28
(n—pBlz—D(r—a—-21) ()L + (myz) A+ )/1]’“4)- (28)

The eigenvalues of Eq. (28) can be written as follows: Ag; =1y — f1ll3, Asp =1, — @, Agz3 +

_ 3y
Asq =
myz

< 0 and As3.454 = y,yl, > 0. That means F5 is a locally asymptotical stable point

provided that condition (20) is satisfied along with the following:

1 < By, (29)

6. The Jacobian matrix at Fg = (0, U, U3, 0) can be written as:

Tl - a11=12 - ﬁ1ﬁ3 0 O 0
—a il — 0
F) = Uz nta 0 _
. Baus 0 —r3+f, “V1ls (30)
0 0 0 Y2uz =Y
Then the eigenvalues of J(Fg) are given by Ag; =7 — iy — Pz, Ay =T +a <

0,143 = —13+ Py <0 and Ag, = y,Us —y. That means Fg is a locally asymptotical stable

point provided that the existing conditions (2) and (3) are satisfied along with:

T1—ay il

= 4
< < —.
:81 u3 Y2 (31)

7. The Jacobian matrix at F;, = (#iy, 0, #i3,0) can be written as:

%ﬁl —0(11:11 _alﬁl 0
0 =yl —a 0 0
.](F7) = ~ —T3ﬁ3 ~
Boiis 0 w— A

m 32
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r1ly

. +’”3“3) <0, Aypldys =

Then, the eigenvalues of J(F,) are given by A, + A3 = —(

i3l U ~ o~ ~ ~ i
1’3ml 2+ BByt >0, Ay =7y —apily —a and A, = y,7i; —y. That means F, is a

locally asymptotical stable point provided that:
< ayiy ta (33)

Yol <Yy (34)

8. The Jacobian matrix at Fg = (uj, u3,0,0) can be written as:

[ 25 —qu; —B1us 0]
J(Fg) = |—“zu5 —5 0 0 |
0 0 5 + Bou; — 0

Then, the eigenvalues of J(Fg) are given by Ag; + Agy = —(r1”1+r2u2) <0, Ag1. g, =
u%[(rlr ) — alaz] >0 . 183 =T3 + ﬁzui — ﬁo and AS‘I— ==Y <0. Clearly, 181'/‘{82 is

positive whenever Fg exists. That means Fg is a locally asymptotical stable point provided that:

3 + Bauy < Po. (36)

9. The Jacobian matrix at Fy = (0,u3, u3, u) can be written as:

T — auy — frug 0 0 0
—a,u, -n+a 0 0
J(Fy) = , —ray ol
2U3 0 myz Y2
0 0 vou, O (37)
Then, the eigenvalues of J(Fy) are given by Ag =1 — aqu; — fius, Agy = -1, +a <0,

Agz + Agy = ;nr;zy < 0 and Ag3.Ag4 = Yy us > 0. That means Fy is a locally asymptotical stable

point provided that the existing condition (3) is satisfied along with the following:

r < aguy + Bius (38)

10. The Jacobian matrix at F;q = (u;,0,us3,u,) can be written as:
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_—_r;{ul _alui —,31111 0 |
0 Ty — AUy — & 0 0
JE)=| —rsuz —ynl (39)
Baus 0 .
) 0 You, 0|

The first root of the characteristic equation of J(F;o) is 7, — @,u; — @ and the other three roots

are given by:

/13 + Allz + Azl + A3 = 0 (40)

where, A; = r1:1 + % >0

TiT3UsUs - "
A, =———+ +

2 mk B1Bausuz + yy1Us

7YY UL U

Ay = 1YV1U1Uy >0
k
Ty | Tl oo TiT3UUs| | T3YYilUaly

A=A1A; — A3 = [T + Tl [5132111113 t— |t >0

Now, according to the Routh-Hurwitz criteria [10], all the eigenvalues of J(F;y) have roots with
negative real parts, on condition that A; > 0,A; > 0 and A> 0. Then, the stability of Fj,
depends on the sign of the first root. So, it can be concluded that F;, is a locally asymptotical
stable point if:

r, < au; +a (41)

11. The Jacobian matrix at F;; = (U, Uy, U3, 0) can be written as:

[ __r;ﬁl —a Uy —fiuy 0
v 13U,
—a,U 0 0
JED=| 7 .
[P 0 % —Y1U3 (42)
L 0 0 0 Y Uz — ¥4

The first root of the characteristic equation of J(F;;) is y,U3 —y and the other three are given

by:
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13 + Alllz + Azzl + A33 =0 (43)

r1ly Tol; T3l3 r173l U3 Ta13lp U3 r172U1 Uy

Here, A{; = + +—=—>0,4,, = + + + U i3 — a;a,u
9 11 k 1 m ) 4122 mk mi kl Blﬁz 143 1Uw24142,
r17p13lU Utz | B1B2Uglplary  @1apliylplars X ritly |, T3lz) (725
Asy = - and A=Ay, A,, — A =(— —)(—
33 mkl l 114122 33 k + m 12 +
ﬁ ﬁ tl tl ) + lel‘:l% (T'3tl3 + Tzlvlz) + 2T1T2T3ﬁ1ﬁ2ﬁ3 + (Tlﬁl + Tzﬁz) (T'Szlvl% aa ﬁ ﬁ )
1724143 k2 \m l mkl k 1 m2 125152

According to the Routh-Hurwitz criteria, all the eigenvalues of (43) have roots with negative real

parts; if A;; > 0,433 >0 and A> 0. Therefore, F;; is a locally asymptotical stable point, if:

riTers  P1faTy  aiay7s (44)

mkl l m
rits = agaytliyu,m? (45)
Y2us <y (46)

12. The Jacobian matrix at F;, = (uj,u3, u3, uy) can be written as:

](F12) = (bij)4><4

(47)
where, byq = %a by, = —aquy, byz = —piui, b1y =0, by = —azuy, by = %a b,3 =
N —T3ul *
bys =0, b3y = Bauz, bz; =0, bz = %, b3y = —y1u3, by = byy = bys =0 and bz =
Y2Us.
So, the characteristic equation of J(F;,) can be written as:
A+ BA3+ B,A2+B3A+ B, =0, (48)

where:

By = —(My + b33) >0, B, = =M, + b3sM; — Ms,

Bs = b33Mj + b34by3My + byybizbsy > 0, B, = bzabysM; > 0,

A= BB, — B3 = MM, — b33M{ — b33M; + b33M; + by1by3bzy > 0,
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and
A,= B;A, — B?B,
= [My — b33M;](b33M; My + bypbysbsy My) — M{bsabazbss(My + bs3)
+ [b33M; + bypby3b31](b11bi3bsy — b33My) + b3abasM, (b33M; + byibisbs,)
+ b33My(M3 — b34byz) + byz(byzbysbsy My — 2b3sbas M My).
Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(F;;) have roots with
negative real parts, provided that B; > 0,B; > 0,B, > 0,A;> 0 and A,> 0. Therefore, F;, is

a locally asymptotical stable point, if by1b13b31 = 2b33M,,

2534543M1M2} (49)
bazb13b31

M3 > max. {b34b43,

iUl + T2U3

where, M; = by; + by, = —( - l

) <0, M; = biybyy — by1byy = uju; (0»’1052 - ﬂ)
kl

and M3 = b13b31 + b34b43 = _(ﬁlﬁzu{u; + Vl)/zu;uf}) < 0. Clearly, M2 1S negative

provided that the existing condition (16) is satisfied. Condition (49) indicates the carrying capacity

threshold values that the predator species may service.

6. GLOBAL DYNAMICAL BEHAVIOUR
This section discusses the conditions of the global stability property of the system's (1) equilibria

using the Lyapunov method.
Theorem 3 Assume the local stability conditions (20) and (21) hold, then the first predator
equilibrium point F, = (0,0,u3,0) of system (1) is globally stable.

. . u
Proof: Define W, = c;uy + cou, + ¢35 (u3 — U3 — Uzln u—3) + c4uy, where ¢y, ¢, , c3 and
3

c, are positive constants to be determined. W, (uq, u,, u3,u,) is a positive definite about F,.

Thus,

dWZ

e = Gt (r1 (1 - %) — Uy — ﬁlu3) + cu, (rz (1 - %) — Uy — a) + c3(u; —

U3) (T3 (1 - %) + Bous — Bo — V1u4) + caus(Yous —v)

1.€.,
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dw 3T , cqrul CoToUs
— = —%(”% - u3)2 - ( ! ; 1) - < 2 lz 2) + (ca¥2 — 3y uzuy + (c38; — c1f1)usus

+ C1u17‘1 - ClaluluZ + C2u21‘2 - Czazuluz

By choosing the positive constants as: ¢; = %, Cy = %, ¢, = c3 = 1, the following is obtained,
1 2

dwy _ _r3(u3—ll3)2 _ (ﬁz‘rlu%) _ (Tzu%) (Tl . ) B ( ~ l)
ac m Bik )t g —us) + Uy (1 — @) + Uy U3 =)

Then, % < 0 under the local stability conditions (20) and (21). Therefore, F, is GAS in R%.

Theorem 4 Assume the second prey equilibrium point F; = (0,%,,0,0) exists. Then, the basin

of attraction of F3 is the sub-region of R% which can be defined as:

9 = {(ul,uz,u3,u4):u1 > 0,u, = max. {%,ﬁz} >0,uy = 0}
1

0] —_ 27 27 u
Proof: Define w; =cju; +¢, (uz — U, —Uyln ﬁ—g) + c3u3z + c4uy, where c¢q, ¢, ,c3 and ¢4

are positive constants to be determined. W5 (uq, Uy, u3,u,) is a positive definite about F; and

Thus:
dws Uy
dr = CUy (T1 (1 - ?) — U — ﬁ1u3)
_ -1 _
+ cx(uy —up) (T (up — Uy) — azuy)
Us
+ C3U3 (7"3 (1 - E) + By — Bo — V1u4) + cauy(Youz —v)
Le.,
dws C17”1u% o1 (Uy — ﬁz)z Cs’lu%
T i R + (c4¥2 — c3¥D)uzuy + (38, — ¢1f1)u us

+ cruy (apuy —11) — Uy (U — Up) — C3U3T3 — C3foUs — C4YUy

By choosing the positive constants as: ¢; = %, Cy = %, ¢, = c3 = 1, the following is obtained,
1 2

dws Bariui  ra(up—z)*  rmui  Baus(apuz-r1) — A

— = — — — — — auq (Uy — Uy) —uzrs — fous — .

T A1k 7 ™ 5, 2us (U 2) 373 — Bols ”

d . . . o
Then, % < 0 and hence, wj is a Lyapunov function. Therefore, any solution starting in 9

approaches asymptotically to Fj.
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Theorem 5 Assume the local stability condition (26) along with the following:
ak+rn<a (50)

is satisfied, then F, = (k,0,0,0) is globally stable.

Proof: Define W, = ¢, (u1 —k—kln %) + CcyuUy + Cc3uUs + C4lUy, then:
dW4 —T‘l (ul - k) uz
W = Cl(ul - k) (T - aluZ - ﬁ1u3 + Czuz (1’2 (1 - T) - 0{2u1 - (1)
+ C3uU3 (7’3 (1 - E) + Bauy — Bo — )’1“4) + cquy(Youz —v)
m
1e.,
dw, i1y (ug — k)?
dt = - X — U Uy + Crarkuy + ¢y frkug — (Y103 — V2Ca)UzUy
Czrzug
— (181 — c3B2)uquz + coruy — — CQU Uy — C2QU5 + C3U3T3
c3r3u32,
- — C3foUs — C4YUy
By choosing the positive constants as: ¢; = ¢, = 1,¢3 = %, Cy = ?)):1’ the following is obtained,
2 272
dw, r(uy —k)* nus  Pirsuj B2k + 15— By
—_—=— — - + u<—>+u ak+r,—«a
dt k l ﬁzm ﬁl 3 ﬁz 2( 1 2 )
YY1P1uUa
—uwuy(ay + ay) — ——
1U2(aq 2 V2B

Then, % < 0 under conditions (26) and (50). Therefore, F, is globally stable in Rf.

Theorem 6 Assume the local stability conditions (20) and (29) hold, then F5 = (0,0, i3, ti4) is

globally stable.
. — ~ -~ Us ~ A~ Uy
Proof: Define Wy = cquy + couy +c3|\uz — ti; — s lnﬁ— +ey|\Uy — Uy — Uy lna— , then
3 4
Uy

% = Uy (r1 (1 - %) — Uy — ﬁ1u3) + CouU, (r2 (1 - T) — Uy — a)

r3(usz — 1i3)
m

+ c3(uz — 13) (‘ + Boug — 1 (uy — ﬁ4)>

+ cq(uy — ﬁ4)(V2 (u3 - ﬁs))



17
COMPETITIONAL ECOLOGICAL MODEL

ie.,
dws cyryu? CoTUs
dt =CGun — X C1a1Us Uy — (€11 + C3B2)ugus + Corpup — I C202U U
csr3(uz — 03)? ~ ~ ~
— CQUy — -~ — c3foulls — (c3y1 + cu¥2) (uz — U3) (uy — 1)
By choosing the positive constants as: ¢, = c3 =1,¢; = %, Cy = %, the following is obtained:
1 2
dws Boriuf  mui  r3(uz —;)? (7”1 N ) (0‘1.32 )
— = — — +(=——1 M —u, — | ——+a, |yu
dt Bk ] m ) 3 ) Baus + (1 YU, ) 2 | Uz
Then, % < 0 and hence, ws is a Lyapunov function under the local stability conditions (20)
and (29). Therefore, Fy is globally stable in Rf.
Theorem 7 Assume the local stability condition (31) and the following:
r+ aply < fols, (51)

is satisfied, then Fy = (0, u,, U3, 0) is globally stable.

Proof: Define W6 =C1uq + Cy (uZ - 1.=12 - 1.=12 In %) + C3 (u3 - 173 - ﬁ3ln ?) + CalUy, then
2 3

dw, u _ (U, — uUy)
d_t6 = Uy (T1 (1 - ?1) — AUy — ﬁ1u3) + ¢y (uy — uy) <_% - a2u1>

r3(uz — U3)

+ c3(uz — u3) <_ + Bouq — V1u4> + cquy(Youz —v)

1.e.,
dwg cyryu? T _
dt =CGugr — K C1aU Uy — Tcz(uz —Uz)* + (c3f2 — c1f)ugus — CrauU Uy
= 2
_ cars(uz —Us) = =
+ cau U, — m — ¢3fou Uiz + (C4Y2 — C3¥1)UsUs + C3Y1UsUy
— CaUyY
By choosing the positive constants as: ¢; = ¢, = 1,¢c3 = %, Cy = ]):1?, the following is obtained:
2 2P2
dws riuf Uy —1,)° 13 (uz — U3)? = =
—— = + = - +uy (r + au, — pous) — (a + azx)uu
dt K I mB, 1(ny 2Uy — Boliz) — (ag 2)U Uy

Uy (_
_I_ﬁl]/l 4(173 V)

B2 Y2
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Then, % < 0 under conditions (31) and (51). Hence, W is Lyapunov function, and thus, Fg

is globally stable in Rf.

Theorem 8 Assume the local stability condition (34) and that the following;
atiy + 1, < a, (52)
is satisfied, then F, = (fiy, 0, i3, 0) is globally stable.

Proof: Deﬁne W7 =0 (u1 — ﬁl — ﬁl In %) + CruUy + C3 (u3 - ﬁ3 - ﬁ3 ln?) + CalUy. Then,
1 3

% = ¢y (uy — 1) <_r1(u1k——ﬁl) — ayuy — By (us — ﬁg)) + cou, (rz (1 - %) — au, — a)
+ c3(uz — 1i3) <—r3(u3—_u~3) + By (uy — 1y) — ylu4> + cauy(YolUs — 7)

Further,

% B _% ~ (@1fr = csf2) (un — ) (us — 13) — C:nj (uz — 113)* — cragugty + ¢y Ty Uy

Cz’"zu%

— QpCU Uy — ACUy — (C3Y1 — C4¥2)U3Uy — YCally

B1 _ Y161
= C4 - ]
B2 Y282

+ cuyry —

By choosing the positive constants as: ¢; = ¢, = 1,¢3 = the following is obtained

dw, r(up — a1)2 r2u§ 731
= — +u, (Ui, +1, —a) — —(a; + ay)uqu, —
dt K 2 (a1l 2 ) I (ay 2)Uq Uy mB,

(us — ﬁs)z

+

Y1B1uy (ﬁ _ l)
B- ’ V2
Then, % < 0 under conditions (34) and (52). Hence, W, is Lyapunov function and therefore,

F, is globally sable in R¥.

Theorem 9 Assume that the local stability condition (36) holds along with the following:
kl(a, + ay)? < 4nr,. (53)
Then, F3 = (uj,u3,0,0) is global stable in R%.

o o u ° ° u
Proof: Define Wy = ¢, (ul —uj —ujln u—l) +c, (u2 —uy; —ujln u—z) + c3uz + cuuy, then:
1 2
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dwg o r(uy —ug) .
—=cu —u) | —————a;(u; —u3) — f1us
dt k
R (U, — uy) .
+ cp(up —uy) (‘ — 7 ay(uy —ug)
T3U3
+ ¢35 (7”3 T + Baus — Bo — V1u4) + cauy(Y2us —v)
ie.,
dwg €Iy o o o o1y (Up — u;)z
— = ——(u; —uj)? — (g + ) (ug —uj)(uy —uj) —
dt k l
. C3T3Us
+ c1f1ujus + c3r3uUz — + (c3f2—c1f1)usuz — c3fous
+ (Ca¥2 — C3¥1)U3Uy — C4YUy
By choosing the positive constants as: ¢; = ¢, = 1,¢3 = % Cy = Z)l)):l the following is obtained:
2 272
dwg _ (7’1(u1—u1) _ Tz(uz u3)? ) _ Pirsul  vBin
Fraiainl G — + (ay + ax)(ug —ug)(uy —uy) +——~ 5, m By Uy +

Pius (W), which means that:

2

d B17m3u?  yBiviu Bauitrs—p
e (o [E ey —up) B v g (B oy

dWs

< 0 under conditions (36) and (53), and hence, Wg is Lyapunov function. Therefore, Fg is

global stable in R.

Theorem 10 Suppose that:

16>

+ a,u; < Byus. (54)

Then, Fy = (0,uj, upus, uy) is globally stable in R%.

Proof: Deﬁne:W9=c1u1+cz(u2—u —u,In )+c3( —u; —usln )+C4( — Uy —

uy In ) Then,
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dwq = cyuy (r1 (1 - %) —au, — ,Blu3) + c2(up —uy) <_

15Uy — uy) — o
dt E— 2U1

[

r3(u3 — i)
m

+ c3(uz —u3) (‘ + Bouy — Bo — v1(uy — ui))

+ ca(uy — uz’;)()’z (uz — ﬁ3))

Therefore,
dw, c Ul T
dt =C0Uun — — G aiuy Uy + (c3f; — c1f)usus — Tcz(uz —up)? — U Uy
3
+ U Uy — 7 ©3 (U3 — u3)? + c3fruquz + (ca¥z — c3v1) (Us — uz) (uy — uy)
By choosing the positive constants as: ¢, = c3 = 1,¢; = %, Cy = %, the following is obtained
1 2
dwy Bouiry 1y , (/32 T3
2 RY
= - ——(u, —u ——a+a)uu——u—u
T: Bk l(z 2) o 2 U1l m(s 3)

+uy (%rl + a,u; — ﬁzug)
1

Then, % < 0 under condition (54), and hence, Wy is Lyapunov function. Therefore, Fq is

globally stable in R%.
Theorem 11 Assume that:

au; + 1, < a. (55)
Then, F;o = (uy,0,u3,u,) is globally stable in R¥.

Proof: Define:

" " u " " u " " u
Wio =0, (u1 - U — Uy lnu—f) + cu, +c3 (u3 — U3z — Uy lnu—?) +cy (u4 — Uy — Uy lnu—f‘), thus:
1 3 4

. r \ ru
— = o (g —uy) <_E1 — oquy — By (us — u3)> + cou, (rz - % —ayuy — a)

ey = 5) (-2 s - 06) + Bola =) vl — )

+ c4(u4 - u4) (Yz (u3 - u3))

Therefore,
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ny 2
dWlO C1T1 (ul —_ ul) . ) )
it = — 3 — U Uy + craqug Uy — (615 — c3ﬁ2)(u1 — ul)(u3 — u3)
2 "y 2
C2taT2 c373(us — us)
+ Ccuyry — T Co0U Uy — ColUr O — -

— (c371 — €4Y2) (ug — uz)(uy — uy)

By choosing the positive constants as: ¢; = ¢, = 1,¢53 = %, Cy = ];1?,
2 2P2

the following is obtained:

ny2
dw 1 (ug-uq) " uir,  Byr
dtw:— - 1k = —wup (g + @) + (aquy + 1, — a)u, — =22 ﬁ:;( 3~ ) -
Then, dw“’ < 0 under the condition (55) and hence, W;, is Lyapunov function. Therefore, Fj

is globally stable in Rf.

Theorem 12 Assume that the local stability condition (46) along with condition (53) are satisfied,

then F;; = (g, Uy, U3, 0) is globally stable.
Proof: Define W11 = (u1 - u1 - ulln ) + Cy ( - tlz 2 ln ) + C3 ( ﬁ3 -

v u
s In 73) + ¢4y, thus:
us

dW11

Tl c;(ug — Uy) (—%(M —Uy) — ag(uy — ) — By (uz — ﬁs)) + co(uy — Uy) (‘TTZ(Uz -

v “ .« r3(uz—lz) v
Uy) —ay(uy — U1)) + c3(uz —u3) (—% + fr(ug —1y) — V1u4) + cauy (youz — y).
Therefore,
dw cq1q (uqg—1iq)? . “ Cap (Up—iz)?
dtll = -2 ,: - (c1aq + cpaz) (ug — Uy) (U — Uy) — % + (C3,32 - C1.31)(u1 -

c313(uz—iiz)?

l\11)(113 - lvl3) - + (Ca¥2 — C3¥1)UsUy + C3Y1UzUy — YCally

By choosing the positive constants as: ¢; = ¢, = 1,¢3 = % Cy = ]]:1? the following is obtained
2 2

dw 7y (ug—1iq)? . « 13 (Up—tip)? 1381 (uz—1iz)?

o = (B (o + )y — ) (1) + ) Tl

u v
B1yius (U3 _ l)
B2 Y2

% _ 2 4 _ r3,81(u3—ﬁ3)2 Biviva (v Y
Thus, — \/7(u1 U;) \/7(u2 uz) -~ + 5 (u3 yz)'
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dW11

s < 0 under conditions (46) and (53). Therefore, W;; is a Lyapunov function, and

Then

hence, F;; is globally stable in R%.

Theorem 13 Assume that condition (53) is satisfied, then F;, = (uj,u;, u3,u;) is globally
asymptotically stable.

Proof: Define:

* * * u1 * * * uz * * * u3
Wi=clui—ui—uilin—=)+clu,—u,—uyin— | +c3|luz —uz; —uzln—

. owq U
+cy|uy —uy —uzln—
u

4
Therefore,
dwy, c7ry(uy — UDZ N N corp(upy — u;)z
dt = - X — (a1 + cpa)(ug —ui)(uy —uy) — I

€373
— (c11 — c3B2)(uy —ui)(uz —u3) — m (us — u;)z

— (c371 — €4¥2) (U — u3z)(uy — uy)

:ﬁ Cr = Biva
B2’ 4 B2v2

By choosing the positive constants as: ¢; = ¢, = 1,¢3 , the following is obtained:

dw r . . . T . T ,8 "
G = 7 () = (@ ) — )y — ) =y —up)? = o (s — )’
2
dw T T
dtlz = — (El (uy —u))? + (ag + ay)(ug —up)(uy —ud) + Tz(uz - uZ)z)

301 2 dwy;
mB, (uz —u3) dt

2
< - (J% (uy —up)? + \/’772 (uz - u;)2> - fjﬁ: (us —u3)?

d o . . . . .
Then, 0 < 0 under the condition (53), which is negative semi-definite and thus, F;, is

Lyapunov stable. However, the set § = {(ul,uz,u3,u4): Wi (U, Uy, Us, Uy) = 0}, which is the
set & = {(uq, Uy, Us, Uy):U; = UT, Uy, = U5, U3 = U3}, does not include any trajectory of the

system, except for F;, = (uj, ujy,u3, uy). Therefore, by LaSalle's invariance principle F;, is a
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globally stable point in the interior of R¥.

7. NUMERICAL ANALYSIS

This section aims to find the system's critical parameters that affect the proposed system's
behaviour by using numerical simulations. The dynamics of the model (1) are obtained by solving
system (1) numerically using the Predictor-Corrector method, with the sixth-order Runge-Kutta
method through the help of MATLAB. Then, the time series of the solutions of system (1) are

drawn for the following set of parameters:
rn=0371r=05r=04k=35I]=4m=3,a, =0.03,a, =0.05a =
0.04, 5, = 0.07,3, = 0.04, 5, = 0.001,y; = 0.05,y, = 0.04,y = 0.03. (56)
For different sets of initial values (20,15,10,8), (15,10, 8,5) and (8,6,5,2), the solution of system

(1) approach asymptotically to the globally stable point Fj, = (uj,uy,u3,uy) =
(3.6,2.21,0.75,3.04) (see Figure 1).

a b
T T 10 T
u1 started from 20 : 2 started from 15
u1 started from 15 : ——— y2 started from 10
u1 started from 8 u2 started from 6
Y- | P T Nl e .
o) ; ‘ ‘ > 5 ‘ ‘ :
. S——————— : : :
o i i i 0 i i i
0 5000 10000 15000 0 5000 10000 15000
Time Time
¢ d
10 T T 10 . -
u3 started from 10 u4 started from 8
u3 started from 8 u4 started from 5
Y I L. T__uistantedfrom3 | | v ud started from 2
> 9] ; > 5 ‘ ;
] S S — Il
0 5000 10000 15000 0 5000 10000 15000
Time Time

Figure 2 Dynamics of the four species with the data given by (56) with different initial values.
Model (1) is now numerically resolved for the data in (56) to investigate the impact of altering one
parameter at a time on system's (1) behaviour. For this purpose, Figure 2 presents the dynamics of
the four species with the data given by (56), with different values of «;. It shows the solution of
system (1) approaches its positive equilibrium point F;, when «; < 0.57. Furthermore, the
second predator becomes zero when «; = 0.58. For example, when a; = 0.58 the solution, in

this case, approaches to F;; = (7.52,0.67,0.73,0).
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a b c
15 | ; | 14 T T T 20
ul ul ul
u2 u2 : u2
u3 12 u3 u3
u4 u4 : ud
15 : : 9
10 : 1 :
10 1 :
(7] 7] 7)) :
c c c :
0 0 L :
= = = :
Ko} Ko} T 10 : g
S > F] :
Iy Qo Q :
9 o o :
o o o -
5 1 :
5 : 1
\ %
0 ot
0 1 2 3 0 1 2 3 4
Time « 104 Time « 104 Time « 104

Figure 3 Time series of system (1) for the data given by (56) with: (a) a, = 0.00003, system (1) converges to (2.8,
2.5,0.75, 3.66), (b) ay = 0.57, system (1) converges to (7.47, 0.68, 0.74, 0.005); (c) a, = 0.58, system (1)
converges to (7.52, 0.67, 0.73, 0).

To numerically explore the effect of a, the parameters in (56) remain the same except for
changing a,. The solution of system (1) settling down to the interior equilibrium F;, for a, <
0.15. Further, the solution of system (1) asymptotically approaches the second prey free

equilibrium F;, = (uj,0,us,u,) in the interior of Ri(u1u3u4) for a, > 0.16 (See Figure 4).

12 T T 12
ul

ul
u2

u2

Populations
POpulations
Populations

I\ -
OL i i i 0= . = o O j i i
0 1 2 3 4 0 1 2 3 0 1 2 3
Time %10% Time x10% Time x10*

Figure 4 Dynamics of the four species with the data given by Eq. (56) with: (a) a, = 0.00001, system (1) converges
to (4.17, 3.67, 0.75, 2.63); (b) a, = 0.15, system (1) converges to (2.94, 0.15, 0.75, 3.62;) (c) a, = 0.16, system
(1) converges to (2.88, 0, 0.75, 3.67).
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Figure 5 explains system's (1) dynamics with the data given by (56), with different values of the

harvesting rate «. It illustrates the solution of system (1) stabilising at F;,, when a < o.35.
While the solution of system (1) settles down to F;, in Int.Ri(u1u3u4), when a > 0.36. That

means over-harvesting of the second prey harms the survival of this species.

12

12 T T 12
ul

ul
u2

ul
u2

u2

Populations
Populations
Populations

0 0.5 1 1.5 2 2.5
Time <104 Time « 104 Time « 104

Figure 5 Dynamics of the four species with the data given by (56) with: (a) a = 0.00001, system (1) converges to
(3.76, 2.49, 0.75, 2.97); (b) a = 0.35, system (1) converges to (2.901, 0.03, 0.75, 3.65); (c) a = 0.36, system (1)

converges to (2.88, 0, 0.75, 3.67).

Now, Figure 6 depicts the system (1) dynamics with (56) at various values of f;. It demonstrates
that when B; < 0.54, the solution of system (1) approaches its positive equilibrium point Fj,.

Furthermore, at ; = 0.55, the first prey becomes zero and the solution approach asymptotically

to Fy = (0,uj, uz, uy).
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a
12 , —
: ul
; u2
10 : u3 |
: u4
8 ; .
: ] (7]
c c
i S S
= =
6 ' Bl s
: =] =]
: Q Qo
: [] [
L : o o
4 \ : g
0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25
Time %10% Time x10% Time x10*

Figure 6 Dynamics of the four species with the data given by (56) with: (a) [; = 0.00003, system (1) converges to

(4.19, 2.000092, 0.75, 2.62); (b) B1 = 0.54, system (1) converges to (0.05, 3.65, 0.75, 0.93); (c) B, = 0.55, system

(1) converges to (0, 3.68, 0.75, 5.98).

Finally, Figure 7 depicts the dynamics of system (1), with the data given by (56) with different

values of y;. It illustrates the solution of system (1) settles down to F;, for different values of

Y1-

Populations

b
160 10
ul
140 - u2
u3
8 ud| |
120
100 ® ¢ i
0 :
> :
g' 4 ; B
60 o :
40 (
2 r—— - 3
20 k
o 0 "
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
Time %104 Time x10°

Figure 7 Dynamics of the four species with the data given by (56) with: (a) y, = 0.001, system (1) converges to

(3.66, 2.21, 0.75, 152.49); (b) v, = 0.9, system (1) converges to (3.66, 2.21, 0.75, 0.16).
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8. CONCLUSION

A four ecological species model consisting of two competitive prey, predator and super predator
has been studied. The terms of harvesting the second prey and providing additional food to the
first predator have been included. The theoretical analysis of the proposed mathematical model
shows the existing conditions of the twelve non-negative equilibrium points. Based on the Routh-
Hurwitz stability criteria, the positive equilibria F;, = (uj, u3,u3, u;) showed asymptotically
stable behaviour under certain conditions. Further, by using the Lyapunov method, the appropriate
states that guarantee the global stability of equilibria have been established. According to the
numerical simulation results, system movement always happens around the positive equilibria, if
the system stability conditions are met. In contrast, an increase in competition rates between the

two prey (a4, @), harvesting rate () and predation rate (f;) will lead to the loss of some species.
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