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Abstract. The main objective of this paper is to develop an efficient method to establish the global stability of

some reaction-diffusion equations with fractional Laplacian operator. This method is based on Lyapunov func-

tionals for ordinary differential equations (ODEs). A classical case of such types of fractional spacial diffusion

equations is rigorously studied. Moreover, the developed method is applied to some biological systems arising

from epidemiology and cancerology.
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1. INTRODUCTION

The classical reaction-diffusion equations consist of two additive terms, a diffusion process,

and a reaction term. Diffusion is the result of the random motion of individuals, and the use of

the Laplacian operator is based on the key assumption that this random motion is a stochastic

Gaussian (normal) process. However, a large number of works have shown the presence of
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anomalous diffusion processes such as Lévy process. These processes occur widely in physics,

chemistry and biology. For instance, Chen and Holm [1] proposed a lossy wave equation based

on the fractional Laplacian. Another derivation of wave equations to model acoustic absorption

and dispersion in biological tissue was developed by Treeby and Cox [2]. A class of fractional

diffusion models was introduced in [3] in order to mathematically describe cardiac tissue with

the macroscopic effects of structural heterogeneity on impulse propagation. In addition, So-

mathilake and Burrage [4] proposed a space fractional reaction-diffusion model for growth of

corals in a tank.

The global stability of systems with normal diffusion has attracted the attention of several

researchers. In 2009, Xu and Ma [5] investigated the global stability of a delayed hepatitis B

virus (HBV) model with spatial diffusion, saturation response of the infection rate and intracel-

lular incubation period. Shaoli et al. [6] proposed a diffused HBV model with cellular immune

response and nonlinear incidence for the control of viral infections. They proved that the free

diffusion of the virus has no effect on the global stability of such HBV infection problem with

Neumann homogeneous boundary conditions. Hattaf and Yousfi [7] developed a method for the

construction of Lyapunov functionals of classical reaction-diffusion systems with and without

delays. This method has been used by many authors (see, for example, [8, 9, 10, 11, 12, 13])

in order to study the global stability of various models with normal diffusion. Recently, the

developed method was extended by the same authors [14] in order to study the global stability

of fractional differential equations (FDEs) with normal diffusion and Caputo fractional deriva-

tive. An application of this last extended method was recently presented in [15] to establish the

global dynamics of a FDE model for M1 oncolytic virotherapy with CTL immune response.

To our knowledge, there is no method aims to study the global stability of systems with

anomalous diffusion by using the Lyapunov functionals of the corresponding reaction systems.

Therefore, the main objective of this paper is to extend the method presented in [7] to space

fractional reaction-diffusion equations with fractional Laplacian operator. To do this, Section 2

deals with the presentation of the method. Section 3 is devoted to the study of a particular and

classical case of such types of equations. The paper ends with applications of our method to

some biological systems.
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2. DESCRIPTION OF THE METHOD

In this section, we propose a method of the construction of Lyapunov functionals for space

fractional reaction-diffusion equations with and without delay.

First, consider the following reaction equation expressed by ODE as

(1) u̇ = f (u),

where the state variable u is a non-negative vector of concentrations u1, ...,um, m ∈ IN∗ and

f : IRm −→ IRm is a C1 function.

Let D = diag(d1, ...,dm) be the diagonal matrix of diffusion with di ≥ 0 and Ω be a bounded

domain in IRn with smooth boundary ∂Ω. It is clear that if u∗ is a steady state of (1), then

u∗ is also a steady state of the following reaction-diffusion equation with fractional Laplacian

operator given by 
∂u
∂ t

+D(−∆)su = f (u) in Ω× (0,+∞),

Nsu = 0 in IRn \Ω× (0,+∞),

u(x,0) = u0(x) in Ω,

(2)

where s ∈ (0,1) and (−∆)s is the fractional Laplacian operator defined as in [16] by

(−∆)su(x) =PV
∫
IRn

u(x)−u(y)
|x− y|n+2s dy

=C(n,s) lim
ε→0+

∫
IRn\B(x,ε)

u(x)−u(y)
|x− y|n+2s dy,

(3)

PV is a commonly used abbreviation for ”in the principal value sense”, B(x,ε) is the ball of

center x ∈ IRn and radius ε , C(n,s) is a normalization constant that depends on n and s and it is

given by

(4) C(n,s) =
(∫

IRn

1− cos(ζ1)

|ζ |n+2s dζ

)−1

=
s4sΓ(s+ n

2)

π
n
2 Γ(1− s)

,

with ζ = (ζ1,ζ
′), ζ ′ ∈ IRn−1 and Γ is the gamma function. Further, Ns is a non-local normal

derivative defined in [17] by

(5) Nsu(x) =C(n,s)
∫

Ω

u(x)−u(y)
|x− y|n+2s dy, x ∈ IRn \Ω.



4 A. EL HASSANI, K. HATTAF, N. ACHTAICH

When f (u) = 0, we obtain the Neumann problem presented in [17]. Additionally, the proba-

bilistic interpretation of such Neumann problem was given in [17] as follows:

(i) u(x, t) is the particle position probability distribution of moving randomly inside Ω.

(ii) When the particle leaves Ω, it immediately come back to Ω.

(iii) If the particle has gone to x ∈ IRn \Ω, it may returns to any position y ∈ Ω by the

probability density of jumping between x and y being proportional to |x− y|−n−2s.

Let V (u) be a C1 function defined on some domain in IRm
+. If u(t) is a solution of (1), then

the time derivative of V (u(t)) satisfies

(6)
dV (u(t))

dt
= ∇V (u) · f (u).

We assume that the range of u(t) is included in the domain of V (u). We remark that the right-

hand side of (6) is given by the gradient of the function V (u) and the vector field f (u). Hence,

this side is defined without the consideration that u(t) is a solution of (1), and it is important for

our computation of Lyapunov functionals.

Let u(x, t) be a solution of system (2). Denote

(7) W =
∫

Ω

V (u(x, t))dx.

The computation of the time derivative of W along the positive solution of (2) provides

dW
dt

=
∫

Ω

∇V (u) ·
(
−D(−∆)su+ f (u)

)
dx

=
∫

Ω

∇V (u) · f (u)dx−
∫

Ω

∇V (u).D(−∆)sudx.

Then

(8)
dW
dt

=
∫

Ω

∇V (u) · f (u)dx−
m

∑
i=1

di

∫
Ω

∂V
∂ui

(u)(−∆)suidx.

We assume the integrand of the first term of (8) is already calculated as (6) for the ODE (1).

The second term can be simplified by using Lemma 3.3 of [17] as follows

∫
Ω

∂V
∂ui

(u)(−∆)sui dx =
C(n,s)

2

∫
IR2n

Ω2

(
∂V
∂ui

(u(x, t))− ∂V
∂ui

(u(y, t))
)(

ui(x, t)−ui(y, t)
)

|x− y|n+2s dxdy

−
∫
C Ω

∂V
∂ui

(u)Nsui,
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where C Ω := IRn \Ω and IR2n
Ω2 := IR2n \ (C Ω)2.

Since Nsu = 0 in IRn \Ω, we have

(9)
dW
dt

=
∫

Ω

∇V (u) · f (u)dx−C(n,s)
2

m

∑
i=1

diIui(V,Ω)(u),

where

Iui(V,Ω)(u) :=
∫
IR2n

Ω2

(
∂V
∂ui

(u(x, t))− ∂V
∂ui

(u(y, t))
)(

ui(x, t)−ui(y, t)
)

|x− y|n+2s dxdy.

Since the constants di and C(n,s) are non-negative, we construct the function V such that

(10)
∫
IR2n

Ω2

(
∂V
∂ui

(u(x, t))− ∂V
∂ui

(u(y, t))
)(

ui(x, t)−ui(y, t)
)

|x− y|n+2s dxdy≥ 0, for i = 1, ...,m.

On the other hand, most of the authors in literature constructed the explicit Lyapunov func-

tions of the form

(11) V (u) =
m

∑
i=1

ai(ui−u∗i −u∗i ln
ui

u∗i
).

In this case, we have

Iui(V,Ω) = aiu∗i

∫
IR2n

Ω2

(ui(x, t)−ui(y, t))2

ui(x, t)ui(y, t)|x− y|n+2s dxdy≥ 0.

For more generality like in [18] and [19], V (u) can be given of the form

(12) V (u) =
m

∑
i=1

ai

(
ui−u∗i −

∫ ui

u∗i

gi(u∗i )
gi(t)

dt
)
,

where gi is a non-negative and strictly increasing function on IR+. So, we get

Iui(V,Ω) =
∫
IR2n

Ω2

(
∂V
∂ui

(u(x, t))− ∂V
∂ui

(u(y, t))
)(

ui(x, t)−ui(y, t)
)

|x− y|n+2s dxdy

= aigi(u∗i )
∫
IR2n

Ω2

gi(ui(x, t))−gi(ui(y, t))
ui(x, t)−ui(y, t)

(ui(x, t)−ui(y, t))2

gi(ui(x, t))gi(ui(y, t))|x− y|n+2s dxdy

≥ 0.

Based on the above discussions, we obtain the following main results.

Theorem 2.1. Let V be a Lyapunov functional for ODE system (1).

(i) If the function V satisfies the condition (10), then the function W defined by (7) is a

Lyapunov functional for the space fractional reaction-diffusion system (2).
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(ii) If the function V is of the form (11) or (12), then W is a Lyapunov functional for the

space fractional reaction-diffusion system (2).

Next and as in [7], consider the following delayed space fractional reaction-diffusion equation
∂u
∂ t

+D(−∆)su = f (u)+g(u,ut) in Ω× (0,+∞),

Nsu = 0 in IRn \Ω× (0,+∞),

u(x, t) = u0(x, t) in Ω× [−τ,0],

(13)

where s ∈ (0,1), τ ≥ 0, the function ut is defined on Ω× [−τ,0] by ut(x,θ) = u(x, t +θ) and g

is a functional of u,ut .

In this case, the time derivative of the function W defined by (7) along the positive solution of

(13) satisfies

dW
dt

=
∫

Ω

∇V (u).
(
−D(−∆)su+ f (u)+g(u,ut)

)
dx

=
∫

Ω

∇V (u). f (u)dx−
∫

Ω

∇V (u).D(−∆)su dx+
∫

Ω

∇V (u).g(u,ut)dx.

Therefore,

dW
dt

=
∫

Ω

∇V (u). f (u)dx−C(n,s)
2

m

∑
i=1

diIui(V,Ω)+
∫

Ω

∇V (u).g(u,ut)dx.

As in [7], the integrands of the first and second terms are already calculated. By means idea

of Kajiwara et al. [20], the integrand of the third term can be modified to show the negativeness

of the time derivative of a Lyapunov function for (13).

3. CLASSICAL CASE

In this section, we will show that the method described in the previous section for anomalous

diffusion modeled by the fractional Laplacian operator generalizes the one introduced in [7] for

the classical reaction-diffusion system given by
∂u
∂ t

= D∆u+ f (u) in Ω× (0,+∞),

∂u
∂ν

= 0 on ∂Ω× (0,+∞),

u(x,0) = u0(x) in Ω.

(14)
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First, by Proposition 4.4 in [16], we have that

lim
s→1−

−(−∆)su = ∆u,

and Proposition 5.1 in [17] gives

lim
s→1−

C(n,s)
2

∫
IR2n

Ω2

(v(x)− v(y))(u(x)−u(y))
|x− y|n+2s dxdy =

∫
Ω

∇u.∇v.

Then

lim
s→1−

∫
IRn\Ω

vNsu =
∫

∂Ω

v
∂u
∂ν

.

Thus, the integration by parts formula presented in Lemma 3.3 of [17] becomes to the following

famous Green’s formula ∫
Ω

v∆u =−
∫

Ω

∇u.∇v+
∫

∂Ω

v
∂u
∂ν

.

By a similar computation, the condition (10) reduces to

(15)
∫

Ω

∇ui.∇

(
∂V
∂ui

)
dx≥ 0 for all i = 1, ...,m.

We can now conclude that the diffusion system (2) with the fractional Laplacian operator is a

general case of the classical diffusion system (14), i.e. when s tends to 1 (s→ 1−), (2) reduces

to (14), as well as our method generalizes the one of the system (14), even if we replace the (10)

by (15). Therefore, we summarize this result in the following corollary.

Corollary 3.1. Let V be a Lyapunov functional for ODE system (1).

(i) If the function V satisfies the condition (15), then the function W defined by (7) is a

Lyapunov functional for the reaction-diffusion system (14).

(ii) If the function V is of the form (11) or (12), then W is a Lyapunov functional for the

reaction-diffusion system (14).

4. APPLICATIONS

In this section, we apply our method to three biological examples.
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Example 1: Like in [21], consider the following SIR epidemic model:

(16)


dS
dt = µN−µS(t)−βS(t)I(t),
dI
dt =−(µ +ν)I(t)+βS(t)I(t),
dR
dt = νI(t)−µR(t),

where S(t), I(t) and R(t) are the numbers of individual numbers who are susceptible, infectious

and recovered, respectively with N is the total population. The parameters µ , ν and β denote

the rates of natural death, recovery and transmission, respectively.

Since the state variable R does not appear in the two first equations of model (16), we can

reduce (16) to the following system:

(17)

 dS
dt = µN−µS(t)−βS(t)I(t),
dI
dt =−(µ +ν)I(t)+βS(t)I(t).

To model the mobility of individuals, we propose the following fractional model ∂S
∂ t =−dS(−∆)sS(x, t)+µN−µS(x, t)−βS(x, t)I(x, t),
∂ I
∂ t =−dI(−∆)sI(x, t)− (µ +ν)I(x, t)+βS(x, t)I(x, t),

(18)

where S(x, t) and I(x, t) represent the numbers of susceptible and infectious individuals at lo-

cation x and time t, respectively. The positive constants dS and dI denote the corresponding

diffusion coefficients for these two classes of individuals. Here, we consider system (18) with

non-local Neumann boundary conditions

(19) NsS = NsI = 0, in IRn \Ω× (0,+∞),

and initial conditions

(20) S(x,0)≥ 0, I(x,0)≥ 0, for all x ∈Ω.

Obviously, e0 = (N,0) is a steady state called disease-free equilibrium, with the basic repro-

duction number

r0 =
Nβ

µ +ν
.
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Let u =

S

I

, f (u) =

 µN−µS−βSI

−(µ +ν)I +βSI

 and define a Lyapunov functional for (17) as

V1(u) =
1
2
(
S−N

)2
+NI.

Hence,

(21)
dV1(u(t))

dt
= ∇V1(u). f (u) =−(µ +β I)(S−N)2−N(µ +ν)(1− r0)I.

If r0 < 1, then ∇V1(u). f (u)< 0. Therefore, we construct the Lyapunov functional for fractional

diffusion model (18) at e0 as follows:

W1 =
∫

Ω

V1(u(x, t))dx.

We have

IS(V1,Ω) =
∫
IR2n

Ω2

(
∂V
∂S (u(x, t))−

∂V
∂S (u(y, t))

)(
S(x, t)−S(y, t)

)
|x− y|n+2s dxdy

=
∫
IR2n

Ω2

(S(x, t)−S(y, t))2

|x− y|n+2s dxdy≥ 0.

Since ∂V
∂ I = N, we get

II(V1,Ω) =
∫
IR2n

Ω2

(
∂V
∂ I (u(x, t))−

∂V
∂ I (u(y, t))

)(
I(x, t)− I(y, t)

)
|x− y|n+2s dxdy = 0.

Therefore, V1 satisfies the condition (10). By applying (i) of Theorem 2.1, we deduce that W1

is a Lyapunov functional of reaction-diffusion (18) at the equilibrium point e0.

Similarly to [21], system (17) has an epidemic equilibrium e∗ = (S∗, I∗), where S∗ = µ+ν

β

and I∗ = µN
µ+ν
− µ

β
= µ

β
(r0−1).

For the epidemic equilibrium e∗, we define the following functionals

V2(u) =
(

S−S∗−S∗ ln
S
S∗

)
+

(
I− I∗− I∗ ln

I
I∗

)
,

W2 =
∫

Ω

V2(u(x, t))dx.

Since V2 is of the form (11), it follows from (ii) of Theorem 2.1 that W2 is a Lyapunov functional

for the space fractional reaction-diffusion system (18) at the epidemic equilibrium e∗.
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Example 2: Like in [15] and [22], consider the following model

dS
dt = A−dS(t)−β1S(t)N(t)−β2S(t)T (t),
dN
dt = r1β1S(t)N(t)− (d + ε1)N(t),
dT
dt = r2β2S(t)T (t)− (d + ε2)T (t)−β3T (t)V (t)−β4T (t)Z(t),
dV
dt = B+ r3β3T (t)V (t)− (d + ε3)V (t),
dZ
dt = r4β4T (t)Z(t)− (d + ε4)Z(t),

(22)

where S(t), N(t), T (t), V (t) and Z(t) are the concentrations of nutrient, normal cells, tumor

cells, M1 virus and CTL cells at time t, respectively. The parameter A is the recruitment rate

of nutrient. The parameter B is the recruitment rate of M1 virus which means the minimum

effective dosage of medication. The factors β1SN and β2ST are the rates of consuming the

nutrient by normal and tumor cells, respectively. r1β1SN and r2β2ST represent the growth rates

of normal and tumor cells, respectively. The M1 virus infects and eradicates tumor cells at rate

β3TV , while it reproduces at rate r3β3TV . The constant d is the washout rate of nutrient and

bacteria. The parameters ε1, ε2 and ε3 are the natural death rates of normal cells, tumor cells and

M1 virus, respectively. CTL immune cells destroy tumor cells at rate β4T Z, and they replicate

at rate r4β4T Z. While ε4 represents the natural death rate of CTL cells.

By some biological considerations related to cancer treatment, it can be assumed that the

diffusion of cells is abnormal, which corresponds to a fractional spatial spread modeled by the

operator (−∆)s with s ∈ (0,1). Thus, system (22) becomes

∂S
∂ t =−DS(−∆)sS(x, t)+A−dS(x, t)−β1S(x, t)N(x, t)−β2S(x, t)T (x, t),
∂N
∂ t =−DN(−∆)sN(x, t)+ r1β1S(x, t)N(x, t)− (d + ε1)N(x, t),
∂T
∂ t =−DT (−∆)sT (x, t)+ r2β2S(x, t)T (x, t)− (d + ε2)T (x, t)

−β3T (x, t)V (x, t)−β4T (x, t)Z(x, t),
∂V
∂ t =−DV (−∆)sV (x, t)+B+ r3β3T (x, t)V (x, t)− (d + ε3)V (x, t),
∂Z
∂ t =−DZ(−∆)sZ(x, t)+ r4β4T (x, t)Z(x, t)− (d + ε4)Z(x, t),

(23)

where S(x, t), N(x, t), T (x, t), V (x, t) and Z(x, t) are the concentrations of nutrient, normal cells,

tumor cells, M1 virus and CTL cells at position x and time t, respectively. The parameters DS,

DN , DT , DV and DZ are the diffusion coefficients for nutrient, normal cells, tumor cells, M1
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virus and CTL cells, respectively. The initial conditions are given by

(24) S(x,0)≥ 0, N(x,0)≥ 0, T (x,0)≥ 0,V (x,0)≥ 0, Z(x,0)≥ 0, x ∈Ω,

and the nonlocal Neumann conditions are

(25) NsS = NsN = NsT = NsV = NsZ = 0, in IRn \Ω× (0,+∞).

Let

a1 = β3(r3β3d +β2(d + ε3)),

a2 =
a1

β3
(d + ε2)−β2β3(B+ r2r3A),

a3 = −Bβ2(d + ε2),

δ = a2
2−4a1a3,

and

A1 =
Ar1β1

d(d + ε1)
, A2 =

Ar2β2

d(d + ε2)
, and A3 =

r4β4(d + ε3)

r3β3(d + ε4)
.

Similarly to [15], we have the following results:

(i) System (23) has a steady state called a competition-free equilibrium E0(S0,0,0,V0,0),

where S0 =
A
d and V0 =

B
d+ε3

.

(ii) When A1 > 1, system (23) has a steady state called tumor-free equilibrium

E1(S1,N1,0,V1,0), where S1 =
d+ε1
r1β1

, N1 =
d
β1
(A1−1) and V1 =

B
d+ε3

.

(iii) When A2 > 1+ Bβ3
(d+ε2)(d+ε3)

, system (23) has another equilibrium called the treatment

failure immune-free equilibrium E2(S2,0,T2,V2,0), where S2 = β3V2+d+ε2
r2β2

, T2 = −d
β2

+

Ar2
β3V2+d+ε2

and V2 =
−a2+

√
δ

2a1
.

(iv) When A2 > A1 +
ABr1β1β3

d(d+ε3)(d+ε2)(d+ε1)
and A1 +

Bβ2

r3d(d+ε2)(
A2
A1
−1)

> 1 + β2(d+ε3)
r3β3d , sys-

tem (23) has a steady state called a partial success immune-free equilibrium

E3(S3,N3,T3,V3,0) where S3 = d+ε1
r1β1

, N3 = Ar1r3β1β3−r3β3d(d+ε1)−β2(d+ε1)(d+ε3)
r3β1β3(d+ε1)

+

Bβ2

r3β1(d+ε2)(
A2
A1
−1)

, T3 =
−B+(d+ε3)V3

r3β3V3
, and V3 =

d+ε2
β3

(A2
A1
−1).

(v) When A3 > 1 and A2 > 1+ β2(d+ε4)
r4β4d + B(β2(d+ε4)+r4β4d)

r3d(d+ε2)(d+ε4)(A3−1) , system (23) has an equi-

librium point called a treatment failure equilibrium E4(S4,0,T4,V4,Z4) defined by
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S4 =
Ar4β4

β2(d+ε4)+r4β4d , T4 =
d+ε4
r4β4

, V4 =
Br4β4

r3β3(d+ε4)(A3−1) and

Z4 =
Ar2β2r3β3r4β4(d+ε4)(A3−1)−(β2(d+ε4)+r4β4d)(r3β3(d+ε2)(d+ε4)(A3−1)+Bβ3r4β4)

r3β3β4(β2(d+ε4)+r4β4d)(d+ε4)(A3−1) .

(vi) When A3 > 1, A1 > 1+ β2(d+ε4)
r4β4d and A2 > A1 +

ABr1β1r4β4
r3d(d+ε1)(d+ε2)(d+ε4)(A3−1) , system

(23) has a steady state called a coexistence equilibrium E5(S5,N5,T5,V5,Z5) where S5 =

d+ε1
r1β1

, T5 =
d+ε4
r4β4

, N5 =
Ar1β1r4β4−(β2(d+ε4)+r4β4d)(d+ε1)

β1r4β4(d+ε1)
, V5 =

Br4β4
r3β3(d+ε4)(A3−1)

and Z5 =
r3(r2β2(d+ε1)−r1β1(d+ε2))(d+ε4)(A3−1)−Br1β1r4β4

r1β1r3β4(d+ε4)(A3−1) .

Let u =



S

N

T

V

Z


and f (u) =



A−dS−β1SN−β2ST

r1β1SN− (d + ε1)N

r2β2ST − (d + ε2)T −β3TV −β4T Z

B+ r3β3TV − (d + ε3)V

r4β4T Z− (d + ε4)Z


.

1) For E0, consider the following functional

L0(u) = S0φ

(
S
S0

)
+

1
r1

N +
1
r2

T +
1

r2r3
V0φ

(
V
V0

)
+

1
r2r4

Z,

where φ(z) = z− ln(z)−1 for z > 0. L0 is non-negative. In fact, the strict global minimum of

φ attained at x = 1 and φ(1) = 0. Further, we have

dL0

dt
= ∇L0(u). f (u)

=
−d
S

(S−S0)
2 +

d + ε1

r1
(A1−1)N− d + ε4

r2r4
Z

+
d + ε2

r2

(
A2−1− Bβ3

(d + ε2)(d + ε3)

)
T − d + ε3

r2r3

(V −V0)
2

V
.

If A2 ≤ 1+ Bβ3
(d+ε2)(d+ε3)

and A1 ≤ 1, then dL0
dt ≤ 0, and from LaSalle’s invariance principle

[23], E0 is globally asymptotically stable for ODE model (22) when A2 ≤ 1+ Bβ3
(d+ε2)(d+ε3)

and

A1 ≤ 1. Then we construct the Lyapunov functional at E0 for fractional diffusion model (23) as

follows

L0 =
∫

Ω

L0(x, t)dx.
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We have

IS(L0,Ω) = S0

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0,

IN(L0,Ω) = 0,

IT (L0,Ω) = 0,

IV (L0,Ω) =
V0

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0

IZ(L0,Ω) = 0.

Hence, the condition (10) is satisfied and L0 is a Lyapunov functional for model (23) at E0

when A2 ≤ 1+ Bβ3
(d+ε2)(d+ε3)

and A1 ≤ 1.

2) For the tumor-free equilibrium E1, consider the functional

L1(u) = S1φ

(
S
S1

)
+

1
r1

N1φ

(
N
N1

)
+

1
r2

T +
1

r2r3
V1φ

(
V
V1

)
+

1
r2r4

Z.

We have

∇L1(u). f (u) = −(d +β1N1)
(S−S1)

2

S
− B

r2r3

(V −V1)
2

VV1
− d + ε4

r2r4
Z

+
d(d + ε1)(d + ε2)

Ar1r2β1

(
A2−A1−

ABr1β1β3

d(d + ε1)(d + ε2)(d + ε3)

)
T.

Then ∇L1(u). f (u)≤ 0 when A2 ≤A1 +
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
.

Let

L1 =
∫

Ω

L1(x, t)dx.

Obviously, we get

IS(L1,Ω) = S1

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0,

IN(L1,Ω) =
N1

r1

∫
IR2n

Ω2

(N(x, t)−N(y, t))2

N(x, t)N(y, t)|x− y|n+2s dxdy ≥ 0,

IT (L1,Ω) = 0,

IV (L1,Ω) =
V1

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0,

IZ(L1,Ω) = 0.



14 A. EL HASSANI, K. HATTAF, N. ACHTAICH

Thus, the condition (10) is satisfied and L1 is a Lyapunov functional for the diffusion model

(23) at E1 when A2 ≤A1 +
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
.

3) For the equilibrium E2, consider the functional

L2(u) = S2φ

(
S
S2

)
+

1
r1

N +
1
r2

T2φ

(
T
T2

)
+

1
r2r3

V2φ

(
V
V2

)
+

1
r2r4

Z.

We have

∇L2(u). f (u) =−(d +β2T2)
(S−S2)

2

S
− B

r2r3

(V −V2)
2

VV2
−β1(

d + ε1

r1β1
−S2)N−

β4

r2
(
d + ε4

r4β4
−T2)Z.

Since

d + ε4

r4β4
−T2 = 1+

β2(d + ε4)

r4β4d
+

B(β2(d + ε4)+ r4β4d)
r3d(d + ε2)(d + ε4)(A3−1)

−A2,

and

d + ε1

r1β1
−S2 = 1+

β2(d + ε3)

r3β3d
−A1−

Bβ2

r3d(d + ε2)(
A2
A1
−1)

,

we deduce that L2 is a Lyapunov functional for ODE model (22) at E2 when 1+ β2(d+ε3)
r3β3d ≥

A1 +
Bβ2

r3d(d+ε2)(
A2
A1
−1)

and A2 ≤ 1+ β2(d+ε4)
r4β4d + B(β2(d+ε4)+r4β4d)

r3d(d+ε2)(d+ε4)(A3−1) .

Denote

L2 =
∫

Ω

L2(x, t)dx.

We have

IS(L2,Ω) = S2

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0,

IN(L2,Ω) = 0,

IT (L2,Ω) =
T2

r2

∫
IR2n

Ω2

(T (x, t)−T (y, t))2

T (x, t)T (y, t)|x− y|n+2s dxdy ≥ 0,

IV (L2,Ω) =
V2

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0,

IZ(L2,Ω) = 0.

Then L2 is a Lyapunov functional for (23) at E2 when 1+ β2(d+ε3)
r3β3d ≥A1 +

Bβ2

r3d(d+ε2)(
A2
A1
−1)

and

A2 ≤ 1+ β2(d+ε4)
r4β4d + B(β2(d+ε4)+r4β4d)

r3d(d+ε2)(d+ε4)(A3−1) .
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4) For E3, consider the functional

L3(u) = S3φ

(
S
S3

)
+

1
r1

N3φ

(
N
N3

)
+

1
r2

T3φ

(
T
T3

)
+

1
r2r3

V3φ

(
V
V3

)
+

1
r2r4

Z.

We have

∇L3(u). f (u) =−(d +β2T3 +β1N3)
(S−S3)

2

S
− B

r2r3

(V −V3)
2

VV3
− β4

r2
(
d + ε4

r4β4
−T3)Z.

Since

d + ε4

r4β4
−T3 =

((d + ε4)r3β3− r4β4(d + ε3))V3 +Br4β4

r3β3r4β4

=
d(d + ε1)(d + ε4)(1−A3)

Ar1β1r4β4(
A2
A1
−1)

(
A2−A1 +

ABr1β1r4β4

r3d(d + ε1)(d + ε2)(d + ε4)(1−A3)

)
,

we deduce that L3 is a Lyapunov functional for ODE model (22) at E3 when A2
A1

> 1, A3 > 1,

A2 > A1 +
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
and A1 +

Bβ2

r3d(d+ε2)(
A2
A1
−1)

> 1+ β2(d+ε3)
r3β3d .

Let

L3 =
∫

Ω

L3(x, t)dx.

We get

IS(L3,Ω) = S3

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0,

IN(L3,Ω) =
N3

r1

∫
IR2n

Ω2

(N(x, t)−N(y, t))2

N(x, t)N(y, t)|x− y|n+2s dxdy ≥ 0,

IT (L3,Ω) =
T3

r2

∫
IR2n

Ω2

(T (x, t)−T (y, t))2

T (x, t)T (y, t)|x− y|n+2s dxdy ≥ 0,

IV (L3,Ω) =
V3

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0,

IZ(L3,Ω) = 0.

Hence, the condition (10) is satisfied and L3 is a Lyapunov functional for model (23) at E3

when A2
A1

> 1, A3 > 1, A2 > A1 +
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
and A1 +

Bβ2

r3d(d+ε2)(
A2
A1
−1)

> 1+ β2(d+ε3)
r3β3d .

5) For the treatment failure equilibrium E4, consider the functional

L4(u) = S4φ

(
S
S4

)
+

1
r1

N +
1
r2

T4φ

(
T
T4

)
+

1
r2r3

V4φ

(
V
V4

)
+

1
r2r4

Z4φ

(
Z
Z4

)
.
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We have

∇L4(u). f (u) =
d
S
(2S4S−S2−S2

4)+β2T4(2S4−
S2

4
S
−S)

+(β1S4−
d + ε1

r1
)N +

B
r2r3

(2− V4

V
− V

V4
)

= −(d +β2T4)
(S−S4)

2

S
+β1(S4−

d + ε1

r1β1
)N− B

r2r3

(V −V4)
2

VV4
.

Since

S4−
d + ε1

r1β1
=

Ar1β1r4β4− (d + ε1)(β2(d + ε4)+ r4β4d)
r1β1(β2(d + ε4)+ r4β4d)

=
r4β4d(d + ε1)

r1β1(β2(d + ε4)+ r4β4d)
(A1−1− β2(d + ε4)

r4β4d
).

Then ∇L4(u). f (u)≥ 0 when A1 ≤ 1+ β2(d+ε4)
r4β4d . Consider the functional

L4 =
∫

Ω

L4(x, t)dx.

We have

IS(L4,Ω) = S4

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0,

IN(L4,Ω) = 0,

IT (L4,Ω) =
T4

r2

∫
IR2n

Ω2

(T (x, t)−T (y, t))2

T (x, t)T (y, t)|x− y|n+2s dxdy ≥ 0,

IV (L4,Ω) =
V4

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0,

IZ(L4,Ω) =
Z4

r2r4

∫
IR2n

Ω2

(Z(x, t)−Z(y, t))2

Z(x, t)Z(y, t)|x− y|n+2s dxdy ≥ 0.

Then L4 is a Lyapunov functional for (23) at E4 when A1 ≤ 1+ β2(d+ε4)
r4β4d .

6) For the equilibrium E5 let the functional

L5(u) = S5φ

(
S
S5

)
+

1
r1

N5φ

(
N
N5

)
+

1
r2

T5φ

(
T
T5

)
+

1
r2r3

V5φ

(
V
V5

)
+

1
r2r4

Z5φ

(
Z
Z5

)
.

We have

∇L5(u). f (u) = −(d +β1N5 +β2T5)
(S−S5)

2

S
− B

r2r3

(V −V5)
2

VV5
.
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Then ∇L5(u). f (u) ≤ 0 when A3 > 1, A1 > 1 + β2(d+ε4)
r4β4d and A2 > A1 +

ABr1β1r4β4
r3d(d+ε1)(d+ε2)(d+ε4)(A3−1) .

Let

L5 =
∫

Ω

L5(x, t)dx.

We have

IS(L5,Ω) = S5

∫
IR2n

Ω2

(S(x, t)−S(y, t))2

S(x, t)S(y, t)|x− y|n+2s dxdy ≥ 0

IN(L5,Ω) =
N5

r1

∫
IR2n

Ω2

(N(x, t)−N(y, t))2

N(x, t)N(y, t)|x− y|n+2s dxdy ≥ 0,

IT (L5,Ω) =
T5

r2

∫
IR2n

Ω2

(T (x, t)−T (y, t))2

T (x, t)T (y, t)|x− y|n+2s dxdy ≥ 0,

IV (L5,Ω) =
V5

r2r3

∫
IR2n

Ω2

(V (x, t)−V (y, t))2

V (x, t)V (y, t)|x− y|n+2s dxdy ≥ 0,

IZ(L5,Ω) =
Z5

r2r4

∫
IR2n

Ω2

(Z(x, t)−Z(y, t))2

Z(x, t)Z(y, t)|x− y|n+2s dxdy ≥ 0.

Thus, the condition (10) is satisfied and L5 is a Lyapunov functional for model (23) at E5 when

A3 > 1, A1 > 1+ β2(d+ε4)
r4β4d and A2 > A1 +

ABr1β1r4β4
r3d(d+ε1)(d+ε2)(d+ε4)(A3−1) .

We summarize the study of this system in following results.

(i) When A2 ≤ 1+ Bβ3
(d+ε2)(d+ε3)

and A1 ≤ 1, the equilibrium E0 of model (23) is globally

asymptotically stable.

(ii) Assume that A1 > 1. When A2 ≤A1+
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
, the equilibrium E1 of model

(23) with non-trivial initial functions is globally asymptotically stable.

(iii) Assume that A2 > 1 + Bβ3
(d+ε2)(d+ε3)

, A2
A1

> 1 and A3 > 1. Then the treatment fail-

ure immune-free equilibrium E2 of system (23) is globally asymptotically stable if

1+ β2(d+ε3)
r3β3d ≥A1 +

Bβ2

r3d(d+ε2)(
A2
A1
−1)

and A2 ≤ 1+ β2(d+ε4)
r4β4d + B(β2(d+ε4)+r4β4d)

r3d(d+ε2)(d+ε4)(A3−1) .

(iv) Suppose that A2
A1

> 1, A3 > 1, A2 >A1+
ABr1β1β3

d(d+ε1)(d+ε2)(d+ε3)
and A1+

Bβ2

r3d(d+ε2)(
A2
A1
−1)

>

1+ β2(d+ε3)
r3β3d . Then, the partial success immune-free equilibrium E3 of model (23) is

globally asymptotically stable if A2 ≤A1− ABr1β1r4β4
r3d(d+ε1)(d+ε2)(d+ε4)(1−A3)

.
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(v) Assume that A3 > 1 and A2 > 1 + β2(d+ε4)
r4β4d + B(β2(d+ε4)+r4β4d)

r3d(d+ε2)(d+ε4)(A3−1) . Then the treat-

ment failure equilibrium E4 of model (23) is globally asymptotically stable if A1 ≤

1+ β2(d+ε4)
r4β4d .

(vi) When A3 > 1, A1 > 1+ β2(d+ε4)
r4β4d and A2 > A1 +

ABr1β1r4β4
r3d(d+ε1)(d+ε2)(d+ε4)(A3−1) , the coex-

istence equilibrium E5 for system (23) is globally asymptotically stable.

Example 3: Consider the following delayed SIR model with Hattaf-Yousfi functional response

like in [24] given by

(26)


dS
dt = A−µS(t)− βS(t)I(t)

α0+α1S(t)+α2I(t)+α3S(t)I(t) ,

dI
dt =

βS(t−τ)I(t−τ)e−µτ

α0+α1S(t−τ)+α2I(t−τ)+α3S(t−τ)I(t−τ) − (µ +ν +d)I(t),
dR
dt = νI(t)−µR(t),

where S(t), I(t), and R(t) are the populations of susceptible, infected, and recovered individuals,

respectively. The parameters A, µ , d, and ν are respectively, the recruitment rate, the natural

death rate, the death rate due to disease, and the recovery rate. The non-negative constants

αi, i = 0,1,2,3, measure the saturation, inhibitory, or psychological effects, and the positive

constant β is the infection rate.

Since the state variable R does not appear in the two first equations of model (26), we can

reduce (26) to the following system:

(27)

 dS
dt = A−µS(t)− βS(t)I(t)

α0+α1S(t)+α2I(t)+α3S(t)I(t) ,

dI
dt =

βS(t−τ)I(t−τ)e−µτ

α0+α1S(t−τ)+α2I(t−τ)+α3S(t−τ)I(t−τ) − (µ +ν +d)I(t).

To model the mobility of people within a country or even worldwide like in Example 1, we

propose the following model

(28)

 ∂S
∂ t =−dS(−∆)sS(x, t)+A−µS(x, t)−ψ

(
S(x, t), I(x, t)

)
I(x, t),

∂ I
∂ t =−dI(−∆)sI(x, t)+ψ

(
S(x, t− τ), I(x, t− τ)

)
I(x, t− τ)e−µτ −ηI(x, t),

where ψ(S, I) =
βS

α0 +α1S+α2I +α3SI
and η = µ + ν + d. Constants dS and dI are the dif-

fusion coefficients for the susceptible and infected individuals. We consider model (28) with

non-local Neumann boundary conditions:

(29) NsS = NsI = 0, in IRn \Ω× (0,+∞),
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and initial conditions

(30) S(x,θ) = S0(x,θ)≥ 0, I(x,θ) = I0(x,θ)≥ 0, in Ω× [−τ,0].

Similarly to [25], we can prove that system (28) has always an disease-free equilibrium point

E f = (S0,0) with S0 = A
µ

and the basic reproduction number

R0 =
ψ(A

µ
,0)e−µτ

η
,

and if R0 > 1, then the system (28) has a unique endemic equilibrium E∗(S∗, I∗) with S∗ ∈
(
0, A

µ

)
and I∗ > 0.

For E f , consider the following functional

V (u) = S−S0−
∫ S

S0

ψ(S0,0)
ψ(X ,0)

dX + eµτ I +
∫ t

t−τ

ψ
(
S(θ), I(θ)

)
I(θ)dθ ,

where u = (S, I). Calculating the time derivative of V along the positive solution of system (27)

as in [25] gives

dV
dt

=µS0
(

1− S
S0

)(
1− ψ(S0,0)

ψ(S,0)

)
+ηeµτ I

(
ψ(S, I)
ψ(S,0)

R0−1
)

≤µS0
(

1− S
S0

)(
1− ψ(S0,0)

ψ(S,0)

)
+ηeµτ I(R0−1).

Then dV
dt ≤ 0 when R0 ≤ 1. Therefore, we construct the Lyapunov functional for fractional

diffusion model (28) at E f as follows:

W =
∫

Ω

V (u(x, t))dx.

We have

dW
dt

=
∫

Ω

{
µS0

(
1− S

S0

)(
1− ψ(S0,0)

ψ(S,0)

)
+ηeµτ I

(
ψ(S, I)
ψ(S,0)

R0−1
)}

dx

−
∫

Ω

dS

(
1− ψ(S0,0)

ψ(S(x, t),0)

)
(−∆)sS(x, t)dx−

∫
Ω

dIeµτ(−∆)sI(x, t)dx.
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Since
∫

Ω
eµτ(−∆)sI(x, t)dx = 0 and the function S 7→ ψ(S,0) is non-negative, increasing on

IR+, we have∫
Ω

(
1− ψ(S0,0)

ψ(S(x, t),0)

)
(−∆)sS(x, t)dx

= ψ(S0,0)
∫
IR2n

Ω2

ψ(S(x, t),0)−ψ(S(y, t),0)
S(x, t)−S(y, t)

(S(x, t)−S(y, t))2

ψ(S(x, t),0)ψ(S(y, t),0)|x− y|n+2s dxdy

≥ 0.

Therefore, dW
dt ≤ 0 when R0 ≤ 1. Then W is a Lyapunov functional for system (28) at equilib-

rium E f , which implies that E f is globally asymptotically stable when R0 ≤ 1.

Similarly to the above and based on the results in [25], we can easily construct a Lyaponuv

functional to prove that endemic equilibrium E∗ is globally asymptotically stable when R0 > 1.
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