
                

*Corresponding author 

E-mail address: nur-c@fst.unair.ac.id 

Received May 16, 2022 

1 

  

     Available online at http://scik.org 

     Commun. Math. Biol. Neurosci. 2022, 2022:55 

https://doi.org/10.28919/cmbn/7499 

ISSN: 2052-2541 

 

 

LOCAL POLYNOMIAL BI-RESPONSES MULTI-PREDICTORS 

NONPARAMETRIC REGRESSION FOR PREDICTING THE MATURITY OF 

MANGO (GADUNG KLONAL 21): A THEORETICAL DISCUSSION AND 

SIMULATION  

MILLATUL ULYA1,2, NUR CHAMIDAH3,4,*, TOHA SAIFUDIN3,4 

1Doctoral Study Program of Mathematics and Natural Sciences, Faculty of Science and Technology, Airlangga 

University, Surabaya 60115, Indonesia 

2Department of Agroindustrial Technology, Faculty of Agriculture, Universitas Trunojoyo Madura, Indonesia 

3Department of Mathematics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia 

4Research Group of Statistical Modeling in Life Science, Faculty of Science and Technology, Airlangga University, 

Surabaya 60115, Indonesia 

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Determination of mango maturity level can be solved by non-destructive analysis to support one of the 

SDGs, sustainable production. It is a single example with two responses and several predictors. They created a 

regression model to handle problems with bi-responses multi-predictors, particularly for local polynomial estimators. 

This research aims to theoretically build a nonparametric regression model estimate using a local polynomial 

bi-response multi-predictor. The model can be used to predict the parameters of mango maturity, including the 

sweetness and acidity of mango. We create the algorithm and R code to show the performance of a bi-response 
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multi-predictor local polynomial estimator based on simulation of three functions data, including trigonometric, 

exponential, and polynomial functions. The simulation proved that determining the optimal bandwidth based on the 

generalized cross-validation criterion is the most critical stage in the estimation process. If the bandwidth is too large, 

the estimation plot will too smooth, and vice versa.  The optimal bandwidth gives the best estimation with the mean 

square error (MSE) and mean absolute percentage error (MAPE) values less than MSE and MAPE values of 

non-optimal bandwidth. 

Keywords: local polynomial; mango; nonparametric regression; prediction; sustainable production. 

2010 AMS Subject Classification: 62G05, 62G08, 62J05, 65C10, 65D15. 

 

1. INTRODUCTION 

Regression analysis is a statistical technique for examining the functional relationship between 

response and predictor variables. In regression analysis, there are two approaches namely 

parametric regression approach and nonparametric regression approach. Nonparametric regression 

approach offers an estimation method of model parameters. It only requires weak identification 

assumptions, which reduces the risk of model misspecification [1]. Its only purpose is to be 

smoother and more flexible in determining the shape of its regression function [2]. 

Nonparametric regression analysis methods can be used to develop predictive models. 

Nonparametric regression uses several estimators, including the Kernel [3,4], local linear [5–7], 

local polynomial [8–10], spline [3,4,11–18], and Fourier series [19]. The local polynomial is a 

well-known estimator. In nonparametric regression modeling, one estimator with a distinct form is 

the local polynomial estimator. The function is calculated locally at the point to be calculated in 

local polynomial regression. This local estimation allows for the capture of nonlinearities in every 

estimation phase without the effect of data set outliers [20]. The method is data-driven and easy to 

configure [21]. 

Local polynomial regression can be implemented in multiple responses and multiple predictors 

cases. Implementations of local polynomial regression in multiple response cases can be found in 

various areas, including estimating the growth curve of children for two years using a local linear 
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estimator bi-responses [22], modeling children's weight in East Java [23], and modeling the 

number of maternal and infant deaths [24]. However, there is no study which has developed an 

estimation model for prediction the cases using a local polynomial estimator in bi-responses and 

multi-predictors variables. 

Responsible consumption and production are global goals for sustainable development [25]. 

Agricultural product producers must also produce their products sustainably and environmentally 

friendly. One method is to reduce all waste in the manufacturing process, including evaluating the 

final product's quality characteristics. In general, the sensory qualities of food products are tested, 

and their chemical content is tested in the laboratory. This process is wasteful and time-consuming 

because sample preparation takes a long time and requires skilled workers. 

Mango, also known as the "King of Fruit” of East Asia [26], is agricultural. Several quality 

characteristics, including firmness, Total Soluble Solids (TSS), Total Titratable Acid (TTA), dry 

matter, and pH of mangoes, should be tested on harvested mangoes. However, the two most 

commonly used variables are TSS and TTA, indicating mango sweetness and acidity. These two 

variables are widely used as indicators of mango ripeness. In the laboratory, TSS and total acidity 

analyses were performed destructively. However, many non-destructive tests have been developed 

using the Near Infra-red Spectroscopy tool that generates absorbance spectra data.   A regression 

model of bi-responses multi-predictors was created based on the absorbance spectra data to predict 

TSS and total acidity value. 

The research majority of fruit quality attribute prediction used parametric regression analysis 

of uni-response, such as the Partial Least Square Regression (PLSR) [27–30], Principal 

Component Regression (PCR) [27,28], Multiple Linear Regression (MLR) [27–29] and Simple 

Linear Regression (SLR) [31,32]. A few studies predict the fruit quality attributes using a 

nonparametric regression approach, including Nicolaï et al. [33] used the Kernel Partial Least 

Square Regression (KPLSR) method and [34] used Support Vector Machine (SVM) Regression 

method. Predictions of the acidity and sweetness of mangoes have been investigated using local 

polynomial regression uni-response multi-predictor [10,35,36]. Under these conditions, there has 
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been less research on local polynomial nonparametric regression bi-response multi-predictor to 

predict fruit maturity based on the NIR spectroscopy test results. 

This research aims to develop a model of local polynomial nonparametric regression with 

bi-responses and multiple predictor variables applied to predict the maturity level of mango. This 

research theoretically discusses how we estimate the model using a local polynomial estimator. 

Besides, we simulated this model in the data that have a trigonometric function. The results of this 

research are expected to be applied in cases of prediction of mango maturity. 

 

2. PRELIMINARIES 

Previous research on estimating local linear regression models for bi-response uni-predictor 

cases has been carried out [22]. This model is then used to estimate median growth curves for 

children up to two years old. Given pairs of observations (1) (2)( , , )x y y that follow bi-response 

nonparametric regression model: 

(1)         ( )y f x = +  

where ( )1 2( ) ( ), ( )
T

f x f x f x= is a vector of the unknown smooth function, (1) (2)( , )Ty y y= and 

(1) (2)( , )T  = is a random error with mean 0 and variance   where ( ) 0,E  =

,
( , ) , , 1,2.

0,         

ri si

ri si

i j
Cov r s

i j

 
 

=
= =


  

Function ( )f x  in (1) is a smooth function assumed continuous and has ( 1)d + continuous 

derivatives on an interval 0x x= . We can approach the function 1( )f x  and 2 ( )f x by Taylor 

series about 0x  as follows: 

(2)             

(1) (1)( )
(1)1 0

1 0 0 0

0 0

( )
( ) ( ) ( )( )

!

jd d
j j

j

j j

f x
f x x x x x x

j


= =

= − = −   

where 
( )( )

1 0(1)

0

( )
( ) ,

!

j

j

f x
x

j
 =

 

  and   
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(3)             

( 2) (2)( )
(2)2 0

2 0 0 0

0 0

( )
( ) ( ) ( )( )

!

jd d
j j

j

j j

f x
f x x x x x x

j


= =

= − = −   

where 
( )( )

2 0(2)

0

( )
( ) .

!

j

j

f x
x

j
 =  

Based on equations (2) and (3), ( )f x  can be expressed as follows: 

(4)             
0 0 0 0( ) ( ),  ( , )xf x X x x x h x h=  − +  

where 

              

(1)

( 2)0

0 0

0 0

1 ( ) ( ) 0 0 0

0 0 0 1 ( ) ( )

d

x
d

x x x x
X

x x x x

 − −
=  
 − − 

 

If the degree of polynomial, d = 1, we get a local linear estimator. We estimate ( )f x based on 

kernel local linear estimator around point 
0x  by taking n-pairs data sample  (1) (2)

1
, ,

n

i i i i
x y y

=
. So, 

Equation (4) can be written as: 

(5)             
0 0 0( ) ( )xf x x= X  

where ( ) ( )1 2 1 2( ) ( ), ( ) ,  ( ) ( ) ( ) ( ) ,
T T

r r r r nf x f x f x f x f x f x f x= =
 ( )(1) (2)

0 0 0 0 0 0( ) ( ), ( )
T

x x x  =  

and  

      

0

0 0

0

1 0

(1)

2 0( )

(2)

0

1

0 1
,

0

1

x r

x x

x

n

x x

X x x
X X

X

x x

− 
   −
 = = 

   
   

− 

 

Based on Equation (5), Equation (1) can be expressed as follows: 

(6)            
0 0( )xY X x = +  

where ( ) ( )(1) (2) ( ) (1) (2), and ,
T T

r

i iY y y y y y= =  . 

We obtain estimator 0( )x in Equation (6) by using weighted least square (WLS) method: 

(7)             ( ) ( )( )
0 0

1

0 0 0 0( ) ( ) ( )
T

x h xQ x Y x x Y x −= − −X Σ K X  
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where weighted matrix 1−
Σ is the invert of the covariance matrix of   and 

0( )h xK be the nr x 

nr diagonal matrix of weights: ( ) ( )( )0 0 0( ) ,  and (.)h h i h i hx diag K x x K x x K= − −K is the kernel 

function, that is: 

            
( ) ( ) ( ) ( )( )0 1 0 2 0 0, ,...,

T

h i h h h nK x x K x x K x x K x x− = − − −  

The estimation of ( )0x is obtained by minimizing 
0( )Q x , and we get: 

(8)           ( ) ( ) ( )
0 0 0

1
1 1

0 0 0
ˆ T T

x h x x hx x x Y
−

− − =  X Σ K X X Σ K
 
 

So, estimation of 0( )f x based on kernel estimator can be written as: 

(9)             
0

ˆ ˆ( ) ( )f x x=  

By substituting equation (8) into (9), we have: 

             
( ) ( )

0 0 0

1
1 1

0 0
ˆ( ) T T

x h x x hf x x x Y
−

− − =  X Σ K X X Σ K  

In the local polynomial regression, a parameter, i.e., the bandwidth (h), controls the fit 

smoothness and affects the bias-variance trade-off. We use the generalized-cross-validation 

criterion for determining optimal h. 

Estimation of the function ˆ ( )j if x for each response is: 

             
( )ˆ ( ) ( ) ,  1,2r

r i jf x A h y r= =  

where ( )jA h represents matrix as follows: 

             
( )

1
( ) ( ) ( )

1 ( ) ( )j j j

i i i

d T d d TT

j x hj i x x hj iA h e X K x X X K x
−

 =
 

 

To obtain optimal 
jh based on the GCV criterion, we minimize [37,38]: 

              
( )

1 ( ) ( ) 2

1

2

ˆ( )

( )
1 ( ) /

n
j j

i i

i
j

j

n y y

GCV h
tr A h n

−

=

−

=
 −  − 


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3. MAIN RESULTS 

In this section, we theoretically describe the estimation of local polynomial nonparametric 

regression bi-responses and multi-predictors if applied to predict the sweetness (TSS value) and 

acidity (pH value) of mango Gadung Klonal 21 based on absorbance spectra data of NIR 

spectroscopy. 

3.1. Estimating Model 

The results of the estimating local polynomial bi-responses and multi-predictors nonparametric 

regression model are presented in the following Theorem and Lemma.  

Theorem. Given the data in pairs ( )( )

1 2, ,..., , , 1,2,...,r

i i ip ix x x y i n=  where i is the number of 

observations, p is the number of predictor variables, and r is the number of response variables. 

They meet the bi-responses multi-predictors nonparametric regression model as follows: 

(10) ( )( ) ( )

1

p
r r

i ij i

j

y f x 
=

= +
 

 

where ( ) ( ) ( ) ( )( )(1) (2)

1 2, , ,
TT

i i i ij ij ijy y y f x f x f x= =  is a function of unknown shape and 

( )(1) (2),
T

i i i  = is the measurement error with mean is 0 , and variance is iΣ , so local polynomial 

estimator for estimating nonparametric regression function of bi-responses multi-predictors at 

jx  around 0 jx  is: 

(11) ( )
1

* T 1 T 1

0 0 0 0 0 0
ˆ( ) ( ) ( ( ) ( ) ( ) ( ) ( )ijf x x x x x x x x y

−
− −= h hX K V X X K V  

where 
*

* 1 0

0 *

2 0

( ) 0
( )

0 ( )

x x
x x

x x

 
=  
 

 ; *

0( )x x  is a vector of size 2n x (2+d1+d2); 0( )x  is a vector 

of size (2+d1+d2) x 1; (1) (2)

1 2

1 1

 ; ;
p p

j j

j j

d d d d
= =

= =     is a vector of size 2nx1; 1d and 2d are the 

polynomial degree of first and second response, and 
jd is the polynomial degree of the thj

predictor for  j = 1, 2, …, p. 
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Proof of Theorem.  We use a local polynomial estimator to estimate the regression function 

in estimating bi-response values. Equation (4) is a smooth function assumed to have an unknown 

shape and is estimated using a nonparametric approach based on a local polynomial estimator. 

The regression function ( )ijf x  is a smooth function with continuous and differentiable 

properties. The differentiable function can be approximated by the Taylor series expansion. The 

Taylor series for 1( )jf x  and 2 ( )jf x  at jx  around 0 jx  can be expressed as follows:  

(12) 

( ) ( ) ( )

( ) ( ) ( )

(1)
1

(1)
1

(1)
2

(1)
2

1 2
1 011 01 1 012

1 1 1 01 1 01 1 01 1 01 (1)

1

1 2
1 021 02 1 022

1 2 1 02 2 02 2 02 2 02 (1)

2

1 1 0 0

( )( ) ( )
( ) ( ) ( ) ( ) ... ( )

1! 2! !

( )( ) ( )
( ) ( ) ( ) ( ) ... ( )

1! 2! !

( ) ( ) (

d

d

d

d

p p p

f xf x f x
f x f x x x x x x x

d

f xf x f x
f x f x x x x x x x

d

f x f x x x

= + − + − + + −

= + − + − + + −

= + −
( ) ( ) ( )

(1)

(1)

1 2
1 01 0 1 02

0 0 (1)

( )( ) ( )
) ( ) ... ( )

1! 2! !

p

p

d

pp p d

p p p p p

p

f xf x f x
x x x x

d













+ − + + − 


 

Equation (12) can be written in the notation: 

(13)          
( )

(1)

(1) (1)1 0
(1)

1 0 0 0(1)
0 0

( )
( ) ( ) ( )( )

!

j

j j

d
p pj

d d

p j j j j

j jj

f x
f x x x x x x

d


= =

= − = −   

(14)       

( ) ( ) ( )

( ) ( ) ( )

( 2)
1

( 2)
1

( 2)
2

( 2)
2

1 2
2 012 01 2 012

2 1 2 01 1 01 1 01 1 01 (2)

1

1 2
2 022 02 2 022

2 2 2 02 2 02 2 02 2 02 (2)

2

2 2 0 0

( )( ) ( )
( ) ( ) ( ) ( ) ... ( )

1! 2! !

( )( ) ( )
( ) ( ) ( ) ( ) ... ( )

1! 2! !

( ) ( ) (

d

d

d

d

p p p

f xf x f x
f x f x x x x x x x

d

f xf x f x
f x f x x x x x x x

d

f x f x x x

= + − + − + + −

= + − + − + + −

= + −
( ) ( ) ( )

( 2)

( 2)

1 2
2 02 0 2 02

0 0 (2)

( )( ) ( )
) ( ) ... ( )

1! 2! !

p

p

d

pp p d

p p p p p

p

f xf x f x
x x x x

d













+ − + + − 


 

Equation (14) can be written in the notation: 

(15)        
( )

( 2)

(2) (2)2 0
2

2 0 0 0(2)
0 0

( )
( ) ( ) ( )( )

!

j

j j

d
p pj

d d

p j j j j

j jj

f x
f x x x x x x

d


= =

= − = −   
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Suppose 
( )1

1 0(1)

0

1

( )
( ) ; 0,1,2,..., ; 1,2,3,...,

!

jm

j

m j

j

f x
x m d j p

m
 = = =

 

and

( )2

2 0(2)

0

2

( )
( ) ; 0,1,2,..., ; 1,2,3,...,

!

jc

j

c j

j

f x
x c d j p

c
 = = =  , then equations (12) and (14) can be written as 

follows: 

(16)       

(1)
1

(1)
1

(1)
2

(1)
2

(1) (1) 2 (1) (1)

1 1 0 01 1 01 1 01 1 01 2 01 1 01 01

(1) (1) 2 (1) (1)

1 2 0 02 2 02 1 02 2 02 2 02 2 02 02

(1)

1 0 0

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) (

d

d

d

d

p p p

f x x x x x x x x x x x

f x x x x x x x x x x x

f x x x x

   

   



= + − + − + + −

= + − + − + + −

= + −
(1)

(1)

(1) 2 (1) (1)

0 1 0 0 2 0 0 0) ( ) ( ) ( ) ... ( ) ( )p

p

d

p p p p p p p pd
x x x x x x x  









+ − + + − 


 

(17)      

( 2)
1

( 2)
1

( 2)
2

( 2)
2

(2) (2) 2 (2) (2)

2 1 0 01 1 01 1 01 1 01 2 01 1 01 01

(2) (2) 2 (2) (2)

2 2 0 02 2 02 1 02 2 02 2 02 2 02 02

(2)

2 0 0

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) (

d

d

d

d

p p p

f x x x x x x x x x x x

f x x x x x x x x x x x

f x x x x

   

   



= + − + − + + −

= + − + − + + −

= + −
( 2)

( 2)

(2) 2 (2) (2)

0 1 0 0 2 0 0 0) ( ) ( ) ( ) ... ( ) ( )p

p

d

p p p p p p p pd
x x x x x x x  









+ − + + − 


 

where ( )0 0,j j j j jx x h x h − + ; (1)

pd is the polynomial degree in the regression function of the first 

response in the pth predictor, (2)

pd  is the polynomial degree in the regression function of the 

second response in the pth predictor. Based on equations (16) and (17), it can be formed into: 

      

( )1 1

1

( )
p

j

j

f x f x
=

=  ; ( )2 2

1

( )
p

j

j

f x f x
=

=  

      
( )1 1 1 1 2 1( ) ( ) ... ( )pf x f x f x f x= + + + ; ( )2 2 1 2 2 2( ) ( ) ... ( )pf x f x f x f x= + + +  

(18)        

( )

( )

(1)
1

(1)
1

(1)
2

(1)
2

(1) (1) 2 (1) (1)

1 0 01 1 01 1 01 1 01 2 01 1 01 01

(1) (1) 2 (1) (1)

0 02 2 02 1 02 2 02 2 02 2 02 02

(1) (1)

0 0 0 1

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ( ) ... ( ) ( )

... ( ) ( ) (

d

d

d

d

p p p

f x x x x x x x x x x x

x x x x x x x x x x

x x x x

   

   

 

= + − + − + + − +

+ − + − + + −

+ + −( )
(1)

(1)

2 (1) (1)

0 0 2 0 0 0) ( ) ( ) ... ( ) ( )p

p

d

p p p p p p pd
x x x x x x + − + + −

 

(19)       

( )

( )

( 2)
1

( 2)
1

( 2)
2

( 2)
2

(2) (2) 2 (2) (2)

2 0 01 1 01 1 01 1 01 2 01 1 01 01

(2) (2) 2 (2) (2)

0 02 2 02 1 02 2 02 2 02 2 02 02

(2) (2)

0 0 0 1

( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ( ) ... ( ) ( )

... ( ) ( ) (

d

d

d

d

p p p

f x x x x x x x x x x x

x x x x x x x x x x

x x x x

   

   

 

= + − + − + + − +

+ − + − + + −

+ + −( )
( 2)

( 2)

2 (2) (2)

0 0 2 0 0 0) ( ) ( ) ... ( ) ( )p

p

d

p p p p p p pd
x x x x x x + − + + −
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If 1 2( , ,..., )T

px x x x=  and 0 01 02 0( , ,..., )T

px x x x= then the bi-response multi-predictor nonparametric 

regression function at a certain point can be expressed in vector notation: 

(20)       * (1)

1 1 0 0( ) ( ) ( )f x x x x=
 
  and         

(21)       * (2)

2 2 0 0( ) ( ) ( )f x x x x=  

Based on equations (20) and (21), it can be expressed in matrix notation as follows: 

(22)         
*

0 0
ˆ ( ) ( )f x x x=  

where: 

( )
(1)(1) (1)

1 2

( 2) ( 2)
1 2

*

* 1

0 *

2

* 2 2 2

1 0 1 01 1 01 1 01 2 02 2 02 2 02 0 0 0

* 2 2

2 0 1 01 1 01 1 01 2 02 2 02 2 02

0
( ) ;

0

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

pdd d

p p p p p p

d d

x
x x

x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

 
=  
 

= − − − − − − − − −

= − − − − − −( )
( 2)

2

0 0 0( ) ( ) ( ) pd

p p p p p px x x x x x− − −

( )

( )

(1)

0 (1) (1) (1) (1)

0 0 0 0 1 01 0(2)

0

(2) (2) (2) (2)

0 0 0 1 01 0

( )
( ) ; ( ) ( ) ( ) ( ) ;

( )

( ) ( ) ( ) ( )

T

p p

T

p p

x
x x x x x

x

x x x x


    



   

 
 = =
 
 

=

   

By obtaining equation (22), then based on equation (4) can be written a regression model for 

each response in Equation (23) and (24). By taking n paired samples ( )(1) (2)

1 2, , , ,..., py y x x x , the 

regression model on the first response with the ith observation and jth predictor is: 

(23) 

( )
( )

(1)
1(1) (1) (1) (1) 2 (1)

1 0 0 1 01 11 01 2 01 11 01 01 11 01

(1) (1) 2 (1) (1)

1 02 12 02 2 02 12 02 02 12 02

(1) (1) 2

1 0 1 0 2 0 1 0

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ... ( )( )

... ( )( ) ( )( ) .

d

p

d

p

p p p p p p

y x x x x x x x x x x

x x x x x x x x x

x x x x x x

   

  

 

= + − + − + + − +

− + − + + −

+ − + − +( )
( )

( )

(1)

(1)
2

(1)
2

(1) (1)

0 1 0 1

(1) (1) (1) (1) 2 (1)

2 0 0 1 01 21 01 2 01 21 01 01 21 01

(1) (1) 2 (1)

1 02 22 02 2 02 22 02 02 22 02

(1)

1 0

.. ( )( )

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ... ( )( )

... (

pd

p p p p

d

p

d

p

x x x

y x x x x x x x x x x

x x x x x x x x x

x

 

   

  



+ − +

= + − + − + + − +

− + − + + −

+ ( )

( )

(1)

(1)
1

(1) 2 (1) (1)

2 0 2 0 2 0 0 2 0 2

(1) (1) (1) (1) 2 (1)

0 0 1 01 1 01 2 01 1 01 01 1 01

(1) (1) 2

1 02 2 02 2 02 2 02

)( ) ( )( ) ... ( )( )

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ...

pd

p p p p p p p p p p

d

n n n p n

n n

x x x x x x x x

y x x x x x x x x x x

x x x x x x

  

   

  

− + − + + − +

= + − + − + + − +

− + − + +( )

( )

(1)
2

(1)

(1)

02 2 02

(1) (1) 2 (1) (1)

1 0 0 2 0 0 0 0

( )( )

... ( )( ) ( )( ) ... ( )( ) p

d

p n

d

p np p p np p p p np p n

x x x

x x x x x x t t t   





















− 

+ − + − + + − +


 

Regression model on the 2nd response with the ith observation and jth predictor is: 
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(24) 

( )

( )

( 2)
1

( 2)
2

(2) (2) (2) (2) 2 (2)

1 0 0 1 01 11 01 2 01 11 01 01 11 01

(2) (2) 2 (2)

1 02 12 02 2 02 12 02 02 12 02

(2) (2) 2

1 0 1 0 2 0 1 0

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ... ( )( )

... ( )( ) ( )( )

d

p

d

p

p p p p p p

y x x x x x x x x x x

x x x x x x x x x

x x x x x x

   

  

 

= + − + − + + − +

− + − + + −

+ − + − +( )
( )

( )

( 2)

( 2)
1

( 2)
2

(2) (2)

0 1 0 1

(2) (2) (2) (2) 2 (2)

2 0 0 1 01 21 01 2 01 21 01 01 21 01

(2) (2) 2 (2)

1 02 22 02 2 02 22 02 02 22 02

(2)

1

... ( )( )

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ... ( )( )

... (

pd

p p p p

d

p

d

p

x x x

y x x x x x x x x x x

x x x x x x x x x

x

 

   

  



+ − +

= + − + − + + − +

− + − + + −

+ ( )

( )

( 2)

( 2)

(2) 2 (2) (2)

0 2 0 2 0 2 0 0 2 0 2

(2) (2) (2) (2) 2 (2)

0 0 1 01 1 01 2 01 1 01 01 1 01

(2) (2) 2

1 02 2 02 2 02 2 02

)( ) ( )( ) ... ( )( )

( ) ( )( ) ( )( ) ... ( )( )

( )( ) ( )( ) ...

p

n

d

p p p p p p p p p p

d

n n n p n

n n

x x x x x x x x

y x x x x x x x x x x

x x x x x x

  

   

 

− + − + + − +

= + − + − + + − +

− + − + +( )

( )

( 2)
2

( 2)

(2)

02 2 02

(2) (2) 2 (2) (2)

1 0 0 2 0 0 0 0

( )( )

... ( )( ) ( )( ) ... ( )( ) p

d

p n

d

p np p p np p p p np p n

x x x

x x x x x x x x x



   





















− 

+ − + − + + − +


 

Equations (23) and (24) can be expressed in vector notation as follows: 

(25)         (1) (1) (1)

1 0 0( ) ( )y x x = +X  

(26)         (2) (2) (2)

2 0 0( ) ( )y x x = +X  

Equations (19) and (20) can be expressed in matrix notation as follows: 

(27)        
0 0( ) ( )y x x = +X  

where y  is a vector of size 2nx1; 0( )xX  is a vector of size 2n x (2+d1+d2); 0( )x is a vector of 

size (2+d1+d2) x 1; (1) (2)

1 2

1 1

 ; ;
p p

j j

j j

d d d d
= =

= =     is a vector of size 2nx1. Hence, we have: 

          

( )

1

( )
1 2

2

( )

; ;

r

r

r

r

n

y

y y
y y

y

y

 
 

   
= =   
    

 
   

11 12 1

21 22 21 0

0 0

2 0

1 2

1

1( ) 0
( ) ; ( ) , 1,2;

0 ( )

1

p

p

r

n n np

x x x

x x xx
x x r

x

x x x

 
 

   = = =    
  
 

X
X X

X
 

          
( )2

1 01 1 01 1 01( ) ( ) ( ) , 1,2,...,  dan 1,2,...,jd

ij i i ix x x x x x x i n j p= − − − = =  

          

( )

0 0

(1) ( )
0 1 01( )

0 0(2)

0

( )

0

( )

( ) ( )
ˆ( ) ; ( ) ;

( )

( )

r

r

r

r

p p

x

x x
x x

x

x



 
 





 
 

 
 =   =
  

   
 
   

( )

1

( )(1)

( ) 2

(2)

( )

; .

r

r

r

r

n




 





 
 

   = =   
 

  
 
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The estimation is based on the local polynomial estimator using the kernel function Kh as 

weighting. The weight shape is determined by the kernel function, while the weight size is 

determined by the value of the parameter h called bandwidth. In the nonparametric bi-response 

regression model, it is assumed that there is a correlation between the first response error ( (1) )  

and the second response error ( (2) ) that is ( )(1) (2),corr  = , and the variances ( (1) ) and   

( (2) ) are different. A correlation  that resulted in the addition of a weighted matrix of 

covariance variance was obtained from the estimation of the unweighted model sample  ( )1−V  

at the time of estimating  . 

 Estimation of   in equation (21) using the weighted least square (WLS) can be obtained 

by minimizing the function: 

(28)        ( ) ( )1

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )
T

x y x x x y x x −= − −hQ X K V X  

where 

1

11

2

−

−  
=  
 

1 12

21 2

Σ Σ
V

Σ Σ
 is a weighting matrix of size 2nx2n. rrΣ for r = 1,2 is a diagonal 

matrix containing the kth response error variance. In contrast, diagonal matrices have the 

covariance of the first response error and the second response error, and 
hK  are a diagonal 

matrix measuring 2nx2n as in equation (23). 

(29) 
( )

( )
1 2

1 2

(1) (1) (1)

0 0 0

(2) (2) (2)

0 0 0

( ), ( ),..., ( )

( ), ( ),..., ( )

n

n

h h h

h h h

diag K x K x K x

diag K x K x K x

 
 =
 
 

h

0
K

0
 

where ( )(1) (1)

0

1

( ) ( )
j

p

h h oj

j

K x K x
=

=
 

  and  ( )(2) (2)

0

1

( ) ( ) .
j

p

h h oj

j

K x K x
=

=  

Equation (28) can be described as follows: 

  
( ) ( )

T
1

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )Q x y x x x y x x −= − −hX K V X
 
 

      
( ) ( )T T T 1

0 0 0 0 0( ) ( ) ( ) ( ) ( )y x x x y x x −= − −hX K V X  

      
T 1 T 1 T T 1 T T 1

0 0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x y y x x x x x x y x x x x x   − − − −= − − +h h h hK V K V X X K V X K V X  
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(30)     T 1 T T 1 T T 1

0 0 0 0 0 0 0 0 0 0( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).Q x y x y x x x y x x x x x  − − −= − +h h hK V X K V X K V X  

The estimated value of  is ̂ , if substituted in Equation (22), will minimize 
0( )xQ . This 

estimated value can be obtained by differentiating equation (22) with respect to  . The 

minimum value of 
0( )xQ  is reached when 0( )

0.
x




=



Q
 Therefore, it is obtained: 

T 1 T 10
0 0 0 0 0 0

( )
0 2 ( ) ( ) 2 ( ) ( ) ( ) ( ) 0

x
x x y x x x x



− −
=  − + =


h h

Q
X K V X K V X  

                    
( )T 1 T 1

0 0 0 0 0 02 ( ) ( ) ( ) ( ) ( ) ( ) 0x x y x x x x− − − − =h hX K V X K V X  

                    
T 1 T 1

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) 0x x y x x x x− − − =h hX K V X K V X  

                  
T 1 T 1

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) .x x x x x x y− − =h hX K V X X K V
 
 

(31)       ( )
1

T 1 T 1

0 0 0 0 0
ˆ ( ) ( ) ( ) ( ) ( )x x x x x y

−
− −= h hX K V X X K V  

Based on equations (22) and (31), we estimate 0( )f x by taking n samples with the ith observation 

and jth predictor, and we obtain: 

(32)        *

0 0 0
ˆ ( ) ( ) ( )f x x x x= , where ( )0 01 02 0, ,..., px x x x= , and it can be written as: 

(33)       ( )
1

* T 1 T 1

0 0 0 0 0 0 0
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .f x x x x x x x x y

−
− −= h hX K V X X K V

 

Lemma.  In bi-responses multi-predictors local polynomial nonparametric regression, there 

is a correlation between the responses, providing for model estimation using the local 

polynomial estimator. We also utilize a weighting matrix for the variance and covariance (V) of 

the vector   in addition to kernel weighting, as follows: 

(34) 
11 12

21 22

  
=  

  
V  

where ( )2( ) 2( ) 2( )

1 2, ,...,r r r

rr ndiag    = , ( )( )( ) ( )( ) ( )( )

1 2, ,...,r s r s r s

rs sr ndiag    =  = . V is a weighting 

matrix of size 2nx2n. rrΣ For r = 1,2 is a diagonal matrix containing the kth response error 

variance.  
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Proof of Lemma.  In general, the bi-response multi-predictor nonparametric regression 

model can be expressed in the following equation: 

(35) ( )y f x = +  

where ( ) ( ) ( )(1) (2) (1) (2)

1 2 ;  ; .
T T T

y y y f f f  = = =  

By taking n paired samples ( )(1) (2)

1 2, , , ,..., , 1,2,...,i i i i ipy y x x x i n=  , the equation (35) can be written 

as follows: 

(36)       ( ) , 1,2,...,i i iy f x i n= + =  

where error random   follows the following assumptions: 

(37)    ( ) ( ) ( ) ( )2 2
,   

0,  and ,
0,        

rs i

ri ri ri ri si

i i
E E E

i i


    

=
= = = 

  

for ,  1,2.r s r s = =   

Based on ith observation and for r responses, we can elaborate the equation (36) as follows: 

(38)         

( )

( )

( )

( )

( )

( )

(1) (1)

1 1 1 1

1

(1) (1)

2 1 2 2

1

(1) (1)

1

1

(2) (2)

1 2 1 1

1

(2) (2)

2 2 2 2

1

(2) (2)

2

1

p

j j

j

p

j j

j

p

n j nj n

j

p

j j

j

p

j j

j

p

n j nj n

j

y f x

y f x

y f x

y f x

y f x

y f x













=

=

=

=

=

=


= + 




= + 





= + 


= +




= + 



= +















 

Equation (37) can be expressed in the following matrix notation: 

(39)       y f = +  

where 

1

(1) (1)
1 2

(2) (2)
12

; ;  ; ( ); ;

r

p
r

r rj rj ij

j

rp

f

fy f
y f f f f x

fy

f




=

 
 

      
= = = = =      
         

 
 

   
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( )
(1)

(2)
Var Var






 
=  

 
;

(1) (2)

1 1

(1) (2)

(1) (2)2 2

(1) (2)

; .

n n

 

 
 

 

   
   
   = =
   
   
      

 

Based on equation (39), there is a correlation between the first and the second response, so to 

get the estimated model using the bi-response multi-predictor local polynomial estimator, we 

have to use weights either kernel function or kernel function covariance matrix. Statistically, the 

weight matrix is inverse of the covariance matrix of the error vector  . If we notate the 

covariance matrix as V, then we can determine V as follows: 

   
( ) ( ) ( ) ( ) ( )T T TVar E E E E       = = − =

 
V  

(1) (1) (1) (2) (2) (2) (1) (1) (1) (2) (2) (2)

1 2 1 2 1 2 1 2

T

n n n nE               =      

Next, by considering the assumption in (37), the covariance matrix of V can be obtained as 

follows: 

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2)

1 1 1 2 1 1 1 1 2 1

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2)

2 1 2 2 2 2 1 2 2 2

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2)

1 2 1 2

(

1

n n

n n

n n n n n n n nE

           

           

           


=V

2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2)

1 1 2 1 1 1 1 2 1

(2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2)

2 1 2 2 2 2 1 2 2 2

(2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2)

1 2 1 2

n n

n n

n n n n n n n n

          

           

           





















 
 
 
 

 

   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2)

1 1 1 2 1 1 1 1 2 1

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2)

2 1 2 2 2 2 1 2 2 2

(1) (1) (1) (1) (1) (1) (1) (2) (1) (2

1 2 1 2

n n

n n

n n n n n n

E E E E E E

E E E E E E

E E E E E

           

           
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(40) 11 12

21 22

  
=  

  
V

 

where ( )2( ) 2( ) 2( )

1 2, ,...,r r r

rr ndiag    = , ( )( )( ) ( )( ) ( )( )

1 2, ,..., .r s r s r s

rs sr ndiag    =  =
 

 

3.2. Simulation Study 

In this study, a simulation was conducted to determine the performance of bi-response local 

polynomial regression in predicting two response variables. Performance indicators use the mean 

square error (MAPE) and mean absolute percentage error (MAPE). This simulation study also 

creates an algorithm for estimating the bi-response multi-predictor local polynomial regression 

and its predictive performance. 

Algorithms for estimating the bi-response multi-predictor nonparametric regression model 

based on the local polynomial estimator are as follows: 

(a). Algorithm for determining the optimal bandwidth value without a weighting matrix 

(𝐕−𝟏).  

Step 1: Defining the response variable ( ) , 1,2ry r =  and the predictor variables , 1,2,..., ;jx j p=  

Step 2: Determine the kernel function used, based on the Gaussian Kernel, according to the 

equation: 
2

1 1 1
( ) exp , ;

22

x
x x

h h

  
= − −       

hK  

Step 3: Defining the matrix 0( )xX  according to equation (27); 

Step 4: Determine the set of bandwidth values on the order of 1 to d on each predictor for 

each response, namely ( )ch  where bb is the lower limit and ba is the upper limit of 



17 

PREDICTING THE MATURITY OF MANGO 

the bandwidth value, and   is the addition of the bandwidth value for each iteration.  

Step 5: Determine the diagonal matrix ( ( )xhK ) for the response variable ( ) , 1,2;ry r =  

Step 6: Calculate the GCV value for each ( ), ,ch seq bb ba    on the order of 1 to d using the 

following equation:  

( )

( )

2
1

1 1

2

ˆ ( )
( )

1 ( ) /

in m

ij iji j

j

n y f x
GCV h

tr A h n

−

= =
−

=
 −  − 

 
 where ( )

2
1

1 1

ˆ ( )
in m

ij iji j
n y f x−

= =
−  is a MSE; 

Step 7: Repeat steps (4) to (6) for different values of bandwidth ( )ch  on the order of 1 to d 

until the minimum GCV value is obtained; 

Step 8: The bandwidth value ( )ch  that produces the minimum GCV value is the optimal 

bandwidth value ( )ch on a predetermined order; 

Step 9: Plotting between bandwidth and GCV values. 

(b). Algorithm for determining weighting matrix (𝐕−𝟏). 

Step 1: Defining the response variable ( ) , 1,2ry r =  and the predictor variables , 1,2,..., ;jx j p=  

Step 2: Determine the kernel function used, based on the Gaussian Kernel, according to the 

following equation: 

2
1 1 1

( ) exp , ;
22

x
x x

h h

  
= − −       

hK  

Step 3: Defining the matrix 0( )xX  according to equation (27); 

Step 4: Enter the optimal order and bandwidth values obtained from Algorithm (a). 

Step 5: Determine the diagonal matrix ( ( )xhK ) for the response variable ( ) , 1,2;ry r =  

Step 6: Estimating the beta value as in equation (31); 

Step 7: Estimating the value of  �̂�; 

Step 8: Calculating the error value of the first response and the second response;  

Step 9: Calculating the variance and covariance of error of the two responses (equation 40), 
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which 11, 22, 12, 21, and     is obtained where 
11  the error variance of response 1, 

22  

is the error variance of response two, and 
12 21 and    are the error variance between 

the first and second response. The calculation of �̂� based on [8]: 

(41) 
11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ

  
=  

   

V  
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
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for 
0 , 1,2,...,ix x i n= = , we have: 

( )( ) ( )
0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ,  where 1,2 ; 1,2,...,
i i i i

r r r r r r r

x x x h i x x h iA X X K x X X K x r i n
−

= = =  

Step 10: Form a diagonal matrix of each element that has been replicated N times where N is  

the vector length of ( ) , 1,2;r r =  

Step 11:  Merge the diagonal matrices obtained in Step (10).  

(c). Algorithm for determining the optimal bandwidth value with a weighting matrix (𝐕−𝟏). 

Step 1: Defining the response variable ( ) , 1,2ry r =  and the predictor variables 

, 1,2,..., ;jx j p=  

Step 2: Determine the kernel function used, based on the Gaussian Kernel, according to the 

following equation: 

2
1 1 1

( ) exp , ;
22

x
x x

h h

  
= − −       

hK  
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Step 3: Defining the matrix 
0( )xX  according to equation (27); 

Step 4: Determine the weighting matrix (𝐕−𝟏) obtained in equation (41); 

Step 5: Determine the set of bandwidth values on the order of 1 to d on each predictor for 

each response, namely ( )ch  where bb is the lower limit and ba is the upper limit of 

the bandwidth value, and    is the addition of the bandwidth value for each 

iteration;  

Step 6: Determine the diagonal matrix ( ( )xhK ) for the response variable ( ) , 1,2;ry r =  

Step 7: Calculate the GCV value for each ( ), ,ch seq bb ba    on the order of 1 to d using the 

following Equation:  

( )

( )

2
1

1 1

2

ˆ ( )
( )

1 ( ) /

in m

ij iji j

j

n y f x
GCV h

tr A h n

−

= =
−

=
 −  − 

 
 where ( )

2
1

1 1

ˆ ( )
in m

ij iji j
n y f x−

= =
−  is a MSE; 

Step 8: Repeat steps (4) to (6) for different values of bandwidth ( )ch  on the order of 1 to d 

until the minimum GCV value is obtained; 

Step 9: The bandwidth value ( )ch  that produces the minimum GCV value is the optimal 

bandwidth value ( )ch on a predetermined order; 

Step 10:  Plotting between bandwidth and GCVvalues. 

(d). The model estimation algorithm uses a weighted matrix (𝐕−𝟏). 

Step 1: Defining the response variable ( ) , 1,2ry r =  and the predictor variables , 1,2,..., ;jx j p=  

Step 2: Determine the kernel function used, based on the Gaussian Kernel, according to the 

following equation: 

2
1 1 1

( ) exp , ;
22

x
x x

h h

  
= − −       

hK  

Step 3: Defining the matrix 0( )xX  according to equation (27); 

Step 4: Enter the optimal order and bandwidth values obtained from Algorithm (a); 
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Step 5: Inserting the weighting matrix (𝐕−𝟏) obtained in equation (41); 

Step 6: Determine the diagonal matrix (
hK ) for the response variable ( ) , 1,2;ry r =  

Step 7: Estimating the beta value as in equation (31); 

Step 8: Estimating the value of (�̂�); 

Step 9: Calculating the error value of the first and second responses; 

Step 10: Calculating MAPE and MSE values. 

(e). Implementation of the nonparametric model for trigonometric function. 

Firstly, we generate a uniformly distributed 𝑥𝑖variables, 𝑥𝑖~𝑈(1,4). Next, we determine the 

regression functions ( ),  1,2 , 1,2,...,120r if x r i= = ; namely 1( ) 4 2sin(2 )i if x x= +  and 

2 ( ) 3 3sin(2 );i if x x= +  and then we determine the Ω matrix by giving values: 

2 2

12 1 20.9;  0.2;  0.25.  = = =      

Scatter plots for the first and the second responses of simulation data for trigonometric functions 

are given in Figure 1.  

 

Figure 1. Scatter plots data simulation data for trigonometric functions. 

  

In this step, the data is divided into two randomly, 30 out-sample data and 90 in-sample data. The 

optimal bandwidth for each response is determined at polynomial degrees one to three (d=1,2,3) 

on in-sample data. The optimal bandwidth to be used is the bandwidth at the polynomial degree, 
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which has the minimum GCV value. Based on the in-sample data in the simulation, the optimal 

bandwidth is obtained based on the minimum GCV value on a second degrees polynomial (see 

Table 1). 

 

Table 1. Bandwidth and GCV values of polynomial degree d=1,2,3 for the first response. 

Polynomial Degrees h1 GCV 

1 0.05 0.06892674 

2 0.10 0.05236624 

3 0.11 0.05328136 

 

 

Figure 1. Plot of bandwidth versus GCV of trigonometric function type (d=2, r=1). 

 

Table 2. Bandwidth and GCV values of polynomial degree d=1,2,3 for the second response. 

Polynomial Degrees h2 GCV 

1 0.05 0.10431970 

2 0.10 0.08492393 

3 0.12 0.08703441 

 

Based on Table 1 and Table 2, the optimal bandwidth used as a smoothing parameter in the local 

polynomial regression estimation process is h1 = 0.10 and h2 = 0.10 at second degree polynomial 
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(d = 2) as presented in bold letter of Table 1 and Table 2. 

 

Figure 2. Plot of bandwidth versus GCV of trigonometric function type (d=2, r=2). 

 

Based on the optimal bandwidth (h1 = 0.10 and h2 = 0.10) for the second-degree polynomial, the 

plot of the estimated results of the two responses on in-sample data is shown in Figure 3. 

 

 

(a) 

 

(b) 

 

Figure 3. Plots of observation, estimation, and population function of the first response (a) and 

         the second response (b) for function trigonometric using optimal bandwidth values. 

 

We also simulate the estimation of the two responses for in-sample data based on greater than the 

optimal bandwidth values, i.e., h1=0.55 and h2 = 0.6 (Fig. 4a and 4b), or smaller than the optimal 

bandwidth values, i.e., h1=0.01 and h2=0.02 (Fig. 4c and 4d). The results are given in Figure 4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Plots of observation, estimation, and population function of two responses for function  

        type of trigonometric using greater than optimal bandwidth values [plots (a) and (b)],  

        and using smaller than optimal bandwidth values [plots (c) and (d)]. 

 

Figure 4 shows that the estimation of the regression function using the optimal bandwidth 

gives an estimation plot that closes to the population values. It can be seen from the red line 

(estimated), which coincides with the blue line at optimal bandwidth conditions. While the 

estimation for greater than optimal bandwidth value, it gives a smoother estimation plot, but the 

estimated value (red line) is far from the population (blue line). On the other hand, the estimation 

for smaller than the optimal bandwidth values gives a rough plot, and the estimated value closes 

to the observed value. 

After determining the bandwidth and estimating the in-sample data, the next step is to predict 

the values of the response variable on the out-sample data. The goodness of fit of prediction 
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values is measured based on two criteria, including the MSE (mean squared error) value and the 

MAPE (mean absolute percentage error) value. Table 3 shows the MSE and MAPE values for 

the out-sample data prediction process using the optimal bandwidth, greater than, and smaller 

than the optimal bandwidth values. While Figure 5 shows an estimation plot for out-sample data 

at various bandwidth values. 

 

Table 3. Comparison of MSE and MAPE values in the three estimation conditions on 

trigonometric functions. 

Bandwidth MSE Value MAPE Value 

Optimal bandwidths (h1=0.1 ; h2=0.1) 0.056518 10.70283 

Greater than optimal bandwidths (h1=0.55 ; h2 = 0.6) 0.581681 41.55267 

Smaller than optimal bandwidths (h1=0.01 ; h2=0.02) 2.121037 19.07117 

 

 

 

 

          Figure 5. Plots of observation, estimation, and population function of the first 

                  response for function trigonometric using optimal bandwidth, greater  

                  and smaler than optimal bandwidth values. 
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       Figure 6.  Plots of observation, estimation, and population function of the second  

                 response for function type of trigonometric using optimal bandwidth,  

                 greater and smaller than optimal bandwidth values. 

(f). Implementation of the nonparametric model for the exponential function. 

Firstly, we generate a uniformly distributed 𝑥𝑖variables, 𝑥𝑖~𝑈(1,4). Next, we determine the 

regression functions ( ),  1,2 , 1,2,...,120r if x r i= = : namely 1( ) 4exp(2 )i if x x=  and 
2 ( ) 3exp(2 );i if x x==  

and then we determine the Ω matrix by giving values: 2 2

12 1 20.8;  0.6;  0.8.  = = =  

 

Figure 7. Plots of the first and the second responses on simulation data  

                   for the exponential function. 

In this step, the data is divided into two randomly, 30 out-sample data and 90 in-sample data. 

Determination of the optimal bandwidth for each response is carried out at polynomial degrees 

one to three (d=1,2,3). The optimal bandwidth to be used is the bandwidth at the polynomial 

degree, which has the minimum GCV value. Based on the in-sample data in the simulation, the 

optimal bandwidth is obtained based on the minimum GCV value on a second degrees 

polynomial (see Table 4 and Table 5). 
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Table 4. Bandwidth and GCV values of polynomial degree d=1,2,3 for the first response. 

Polynomial Degrees h1 GCV 

1 0.07 0.4871139 

2 0.16 0.4235946 

3 0.18 0.4322939 

 

 

Figure 8. Plot of bandwidth versus GCV for the exponential function type (d=2, r=1). 

 

Table 5. Bandwidth and GCV values of polynomial degree d=1,2,3 for the second response. 

Polynomial Degrees h2 GCV 

1 0.10 0.8520331 

2 0.22 0.8017685 

3 0.44 0.7953196 

 

Figure 9. Plot of bandwidth versus GCV for the exponential function type (d=2, r=2). 
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Based on the optimal bandwidth (h1 = 0.16 and h2 = 0.22), we obtain the plot of the estimated 

results of the two responses on in-sample data which is shown in Figure 10. In addition, we 

simulate the estimation for in-sample data using non-optimal bandwidth values. Figures 11a and 

11b are estimation plots using bandwidth values that greater than the optimal bandwidth values, 

h1=3.5, and h2=3.7. Figures 11c and 11d are estimation plots using bandwidth values that smaller 

than the optimal values, h1=0.009, and h2=0.009. 

 

 

(a) 

 

(b) 

Figure 10. Plots of observation, estimation and population function for the first response (a) and  

         the second response (b) for trigonometric function type using optimal bandwidth  

         values (h1 = 0.16 and h2 = 0.22). 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 11. Plots of observation, estimation, and population function of two responses for 

      Exponential function type using greater and smaller than optimal bandwidth values. 

 

Next, we predict the two responses on out-sample data based on the optimal bandwidth on 

in-sample data. Besides, we also used non-optimal bandwidth values to indicate the two 

responses on out-sample data. This step can provide that optimal bandwidth is crucial because of 

affects the roughness of the estimation plot and the MSE and MAPE values (see Table 6). 

 

Table 6.  Comparison of MSE and MAPE values in the three estimation conditions on 

             exponential functions. 

Bandwidth MSE Value MAPE Value 

Optimal bandwidths (h1 = 0.16 ; h2 = 0.22) 0.642678 1.977667 

Greater than optimal bandwidths (h1=3.5 ; h2=3.7) 12.82616 7.368667 

Smaller than optimal bandwidths (h1=0.009 ; h2=0.009) 1.970840 3.989000 

 

Table 6 shows the MSE and MAPE values in the out-sample data prediction process using the 

optimal bandwidth, greater and smaller than the optimal bandwidth values. While Figures 12 and 

13 provide estimation plots on out-sample data at various bandwidth values. 
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Gambar 12. The plot of observation, estimation, and population function of first response for 

           exponential function type using optimal bandwidth, above and below optimal  

           bandwidth value. 

 

 

Gambar 13. The plot of observation, estimation, and population function of second response 

           for exponential function type using optimal bandwidth, above and below optimal 

           bandwidth value. 

 

(g). Implementation of the nonparametric model for the polynomial function. 

Firstly, we generate a uniformly distributed 𝑥𝑖variables, 𝑥𝑖~𝑈(1,4). Next, we determine the 

regression functions ( ),  1,2 , 1,2,...,120r if x r i= = : namely 2

1( ) 4 2if x x x= − +  and 

2

2 ( ) 5 3;if x x x== − +  and then determine the Ω matrix by giving values:

2 2

12 1 20.9;  0.15;  0.18.  = = =  
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Figure 12. Simulation data for the polynomial function. 

We divided the data into two parts, 90 as in-sample data and 30 as out-sample data. The 

optimal bandwidth is determined based on the minimum GCV value on in-sample data. This 

process is done at one to three degrees polynomial (see Table 7 and Table 8). Then, we choose 

the one that has the minimum GCV value. 

Table 7. Bandwidth and GCV values at polynomial degree d=1,2,3 in the first response. 

Polynomial Degrees h1 GCV 

1 0.14 0.01635847 

2 2.18 0.01487016 

3 7.18 0.01484882 

 

Figure 13. The plot of bandwidth and GCV on the polynomial function type (d=2, r=1). 
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Table 8. Bandwidth and GCV values at polynomial degree d=1,2,3 in the second response. 

Polynomial Degrees h1 GCV 

1 0.16 0.02550365 

2 2.77 0.02271762 

3 20.4 0.02285883 

 

Figure 14. The plot of bandwidth and GCV on the polynomial function type (d=2, r=2). 

We estimate in-sample data using the optimal bandwidth (h1 = 2.18 and h2 = 2.77) for the 

polynomial of the second degree. The plot of the estimated results of the two responses is shown 

in Figure 15. 

 

(a) 

 

(b) 

 

Figure 15. Plot of observation, estimation dan population function for first response (a) and 

         second response (b) for trigonometric function type using optimal bandwidth  

         (h1 = 2.18 and h2 = 2.77). 
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In addition, we simulate estimates using non-optimal bandwidth values on in-sample data. 

Figures 12a and 12b are estimation plots using bandwidth that greater than the optimal values, h1 

= 3.5 and h2 = 3.8. Figures 12c and 12d are estimation plots using bandwidth that smaller than 

the optimal values, h1 = 0.01 and h2 = 0.02. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 16. Plots of observation, estimation, and population function of two responses for 

    polynomial function type using greater and smaller than optimal bandwidth value. 

We predict the two responses on out-sample data based on the optimal bandwidth on 

in-sample data. Furthermore, we used non-optimal bandwidth values to represent the two 

responses on out-of-sample data. This step can provide optimal bandwidth, which is essential 

because it affects the roughness of the estimation plot and the MSE and MAPE values. The 

results are presented in Table 9. 
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Table 9. Comparison of MSE and MAPE values in the three estimation conditions on 

polynomial functions. 

Bandwidth Nilai MSE Nilai MAPE 

Optimal bandwidths (h1 = 2.18 ; h2 = 2.77) 0.02006232 12.375 

Greater than optimal bandwidths (h1=3.5 ; h2=3.8) 0.02035597 12.60083 

Smaller than optimal bandwidths (h1=0.01 ; h2=0.02) 0.05771129 26.73333 

 

 

Figure 17. Plots of observation, estimation, and population function of first response for  

         function type of polynomial using optimal bandwidth, greater and smaller than  

         optimal bandwidth values. 

 

Figure 18. Plots of observation, estimation, and population function of second response  

         for function type of polynomial using optimal bandwidth, greater and smaller than 

         optimal bandwidth values. 

-3

-2

-1

0

1

2

3

4

0.8 1.8 2.8 3.8

Y1

X

Population Function

Observation

Estimation (h opt)

Estimation (h > h opt)

Estimation (h < h opt)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0.5 1.5 2.5 3.5 4.5

Y2

X

Population Function

Observation

Estimation (h opt)

Estimation (h > h opt)

Estimation (h < h opt)



34 

MILLATUL ULYA, NUR CHAMIDAH, TOHA SAIFUDIN 

Based on the simulation results, it can be seen that the optimal use of bandwidth in the 

estimation process of local polynomial regression is essential because it affects the roughness or 

smoothness of the estimation line and the size of the MSE and MAPE values. The plot results 

show that the regression estimation line (red line) will coincide with the optimal bandwidth's 

population function line (blue line). It means that our estimation results can approach the 

population value. It is evidenced by the better MSE and MAPE scores. The optimal bandwidth 

selection has a significant impact, resulting in smooth regression estimates [39]. In addition, the 

resulting MAPE value is less than 20% which means it is included in the accurate category [40]. 

However, the estimation line is too smooth at greater than optimal bandwidth values and does not 

coincide with the population function line. The MSE and MAPE values are also above the MSE 

and MAPE values at optimal bandwidth. Likewise, in the estimation using a bandwidth value 

smaller than optimal bandwidth values, the estimation line is too rough and close to the observed 

value. It causes the MSE and MAPE values to be smaller than the MSE and MAPE values at the 

optimal bandwidth. We usually estimate with a small mean squared error (MSE). The selection 

of bandwidth h is commonly critical due to bias-variance trade-offs. A small value of h gives a 

lot of weight to data points close to X0, resulting in a slight bias and a large variance because 

only a few data points are used for estimation. Estimation with a large value of h, has a 

significant bias and a minor variance, and vice versa [41].
 

 

4. CONCLUSIONS 

Theoretically, bi-response multi-predictor local polynomial nonparametric regression can predict 

the value of the parameters determining the mango maturity, including TSS and the pH value of 

mango. Simulation results on data with trigonometric, exponential, and polynomial functions 

indicate that estimates must be made using the optimal bandwidth value to obtain a smooth 

estimation plot and have accurate prediction with small values of MSE and MAPE. 
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