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Abstract. Aim: Multi-morbidity remains poorly understood due to the multifactorial complexity of this phe-

nomenon and the lack of a standardized methodology for building and analysing Multimorbidity network. A

comparative analysis of methods of modeling Multimorbidity network in literature may help to understand the

pros and cons of these methods, then to facilitate a consensus about a standardized methodology. We propose to

study two approaches for building Multimorbidity network focusing in their technical specificities.

Subject and Methods: We propose to model Multimorbidity using Ising Model, a Markov Random field based

approach, and to compare its performance to the approach consisting in building a network of co-occurence using

pairwise association strength estimated by Multimorbidity Coefficient. Besides, we illustrate how to use network

science techniques to extract structural knowledge from Multimorbidity network.

Results: The results show that the Ising model is able to detect a similar structural patern as the approach of

computing Multimorbidity coefficient for all paires of diseases. An evaluation of the stability and precision of the

obtained comorbidity network has proved its reliability.

Conclusion: Defining methods and algorithms of detecting Multimorbidity network in formal language may

help interdisciplinary cooperative research. Ising Model is a machine learning based on a probabilistic formalism
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capable of detecting the same pattern as traditional approaches in Multimorbidity research literature. Understand-

ing how diseases co-occur at the same time will help physicians to reason on multimorbidity burden as a complex

system rather than reasoning on diseases as single and isolated entities.

Keywords: multimorbidity; comorbidity; centrality analysis; machine learning; graph theory.

2010 AMS Subject Classification: 92C42.

1. INTRODUCTION

With the increase of the average life expectancy, the aging phenomenon has led to a sub-

stantial increase in chronic diseases, therefore rising the prevalence of multimorbidity. Multi-

morbidity, i.e. two or more than two diseases in the same patient are diagnosed at the same

time [37], is a significant health problem in modern medicine. It has been associated with poor

prognosis, lower quality of life [29], increased health care costs, polypharmacy and the risk of

premature death [11]. The management of multimorbidity is a complex process, and has be-

come an emerging priority for public healthcare professionals. Unfortunately, multimorbidity

remains not well understood due to its multifactorial complexity aspects, and to the health sys-

tems that are still designed in a single disease paradigm rather than multimorbidity. However,

the transition from disease-centered care, to patient-centered care is ongoing [37]. Recently,

increasing initiatives to exploit data-driven techniques and the increasing amount of electronic

healthcare data [33] are taken to get more insight into this phenomenon.

There is a debate in the literature which has called for consistent and replicable methodology

for the study of multimorbidity [18, 32, 45]. In a recent review, Jones et al. [19] highlighted the

lack of a consensus in defining and measuring Multimoridity which results in no recommended

standard method for calculating networks in multimorbidity. One way to facilitate a consensus

about a standard methodology is to express the problem in a formal langage. In this work we

try to adress this problem by proposing a formal definition of building a network of Multimor-

bidity, formal definitions helps in expliciting definitions and hypothesis about the problem and

thus building common terminologies for researchers that may facilitate communicating their

findings. Further, comparative analysis of different approaches in literature can reveal better

understanding of pros and cons of each approach.
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In particular, we propose to model comorbidity pattern detection using Ising model, a pair-

wise Markov random field-based approach (pMRF). It is a machine learning algorithm that

estimates from binary data an undirected network of conditional dependences using regular-

ization techniques. In addition, we compare the proposed approach with a baseline algorithm

based on estimating Multimorbidity Coefficient (MC) between all pairs of diseases (will be de-

noted MC−Algorithm in the paper). The studied methods will be applied on a case study of

real medical data to detect comorbidity pattern of some selected valvular heart related diseases.

After performing the two proposed approaches, we will compare the outcomes of their corre-

sponding algorithms. Besides, we will analyze structural information characteristics revealed

by the obtained networks. The results show that Ising and MC−Algorithm outputted the same

Comorbidity Disease Network. Further, we will illustrate how a mesoscopic analysis of the

obtained multimorbidity network/pattern can be used to suggest an individual care strategy to

manage patients who suffer from multimorbidity.

In section 2 we review literature related to the multimorbidity modeling. Section 3 presents

an overview of the studied diseases in this work. Section 4 is devoted to data and methods used

in this work. We define mathematically automatic detection of Multimorbidity pattern problem,

and then develop its corresponding algorithm. We present and discuss the obtained results in

section 5 before concluding in section 6.

2. RELATED WORKS

Recently, deep studies in medical literature were conducted to tackle multimorbidity burden,

to explore its risk factors, its impact on quality of life in terms of mortality, costs and healthcare

utility [46]. More technically, the methods and models differ either on the data, (cross sectional,

temporal dimension, etc.), or whether the goal of the model is to explain, explore or to predict.

Earlier medical research relied on regression models, which were applied on single diseases

and which ignore the hidden structure of the multimorbidity complexity. Recently, combina-

tions of traditional data analysis and machine learning were proposed as multimorbidity re-

search methods. In [49] the authors used Classification/regression trees and random forest

applied to data of elderly adults to model and identify how specific combinations of chronic

conditions, functional limitations, and geriatric syndromes affect costs and inpatient utilization.
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In [47] applied non-hierarchical cluster analysis based on k-means on cross-sectional study us-

ing electronic health records of patients aged between 45 and 64 years to identify and separate

population groups from others. In [50] added fuzziness upon k-means algorithm to estimate

clusters of patients as well as membership matrix indicating the membership degree of a patient

to a given cluster. In [48] a multilevel analysis of the influence of individual and area level

factors on patterns of physical–mental multimorbidity and healthcare used in the general popu-

lation. Applying this method allows detecting the isolated and combined influence of variables

of each level on the outcome variables.

Other approaches in literature focused on probabilistic formulation and longitudinal data.

In [51], Lappenschaar et al. summarize and classify some terminologies used in definitions of

concepts of multimorbidity. They proposed a probabilistic framework to model these concepts

using causal Bayesian network [54]. In [52], the authors proposed Bayesian network structure

learning methods for modeling the interactions between risk factors explaining co-occurrences

of malignant tumors in oncological area. This model was extended with a temporal dimension

in [53]. Authors in [55] proposed a latent-based approach to model multimorbidity related

events in temporal electronic health records. They introduced the notion of clusters of hidden

states allowing the exploration of multiple dynamics that underlie events in data.

Network science is a relatively new approach to investigate Multimorbidity. To build Mul-

timorbidity network, researchers estimate association strengths between diseases like Salton

Cosine Index [20], odd ratio [1], Relative Risk [35], the standardized lift and confidence scores

of the association rules as a probabilistic measuring of how conditionally the diseases are re-

lated [17]. Then the obtained network can be analyzed to reveal some structural caracteristics

using for instance weighted degree, closeness and betweenness centrality [20], clustering coef-

ficient, Page Rank and degree centrality [1], community detection algorithms [17].

In this work, we propose to study two methods to build Multimorbidity network. The first

based on estimating Multimorbidity Coefficient (MC) as association strength of all paires of

diseases. The second is based on estimating an Ising Model for the co-occurence of the diseases.

Ising model was used as a data analytic model to estimate dependencies between binary

variables [14]. This method is becoming frequentely in psychology [38]. For example, it was
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used to model theoretical assumptions of political beliefs, attitudes, and depression [6, 9]; and

as an analytic tool in psychometric network [5, 22, 43]. We apply the two methods to build

network co-occurence of valvular heart diseases, then we investigate if they output the same

Multimorbidity network.

3. COMORBID VALVULAR HEART DISEASES OVERVIEW

The human heart is viewed as a pump consisting of four chambers and four valves keeping

enough blood flowing in a one-way direction: mitral, pulmonary, tricuspid and aortic as in

Figure 1a. During a heartbeat, valves open to let blood flow from their chamber and close to

stop the blood flowing backwards. Diseased or damaged valves impair the heart function [10];

this makes heart muscles become overworked and cannot pump properly. This may generate

other problems like pulmonary hypertension, heart failure, stroke and others [16,26,28,39,41].

In Figure 1 there are two types of heart valve dysfunction: valvular stenosis (Figure 1a), and

regurgitation or insufficiency (Figure 1b). Valvular stenosis refers to narrowing in the valve,

which does not open enough and blood flow is therefore slowed. Insufficiency (leakage) occurs

when the valve doesn’t close properly and so the heart has to work harder to work properly.

Valvular heart diseases can have various causal patterns: degenerative in origin, inflamma-

tory or bacterial infection, like streptococcus pyogenes which can cause, in long term, rheumatic

valvular heart diseases [10]. These functional disorders are accompanied by dilatation and car-

diac fatigue: shortness of breath and risk of edema of the lower extremities, malaise, sometimes

loss of consciousness, palpitations, congestive heart failure. Furthermore, multimorbid patients

will suffer from increasing burden and lowering quality of life. Therefore, understanding the

tendency of comorbidity between these diseases can help healthcare systems to anticipate valvu-

lar heart disease patients’ needs and reduce unnecessary charges in managing multimorbid pa-

tients profiles.
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(A) Normal valvular components

(B) Valvular stenosis and insufficiency

(regurgitation)

FIGURE 1. Heart anatomy schematic, from [44] website
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4. METHODOLOGY

4.1. Problem Setting.

4.1.1. Problem Overview. This section presents the mathematical formulation of the problem.

We encourage the reader to read the appendices (Section 7) to take an overall view of the

notations and abreviations used in this methodological section.

Let us start with the following assumptions: Let |S| denotes the number of elements of a set S.

Let D = {d1,d2, . . . ,d|D|} be a finite set containing |D| number of diseases present in a medical

dataset.

Let R be a k-ary relation over Cartesian product sets Dk. The diseases d1,d2. . .dk are related

by the relation R if and only if they satisfy a predefined condition that depends on the context

of the study. It can be for example the fact of being correlated, causally related, being in the

same category or conditionally related. In this work R represent multimorbidity relation over k

diseases. The relation R defines an undirected weighted hypergraph G = (D,R) such that the

vertices D are the nodes/diseases and hyperedges R represent the multimorbid diseases. The

weights of the hypergraph are a measure of the strength of co-occurrence of these k multi-

morbid diseases in data. Each hypergraph G represents a Multimorbidity pattern. We define the

Automatic Multimorbidity Pattern Detection problem (AMPD) as the conceptualization and the

study of algorithms that automatically detect hidden Multimorbidity patterns given a medical

data set.

We use in this work a probabilistic framework to model AMPD problem. Let X =

{X1,X2, . . . ,X|X |} represent the set of |X | patients. Each patient is characterized by a set of

a tuple of diagnoses Xi = (x1,i,x2,i, ..,x|Xi|,i) where x j,i ∈ D is a random variable for the ith pa-

tient of the jth diagnosis. We suppose that X are random variables that are independent (in

general it is supposed in the case in cross-sectional data like our data of application) and iden-

tically distributed (i.i.d) samples (the data are governed by the same underlying Multimorbidity

Mechanism described by the joint probability distribution noted P∗ over the variables X). The

data X can be indexed by diseases X = {Xd|d ∈ D} such that Xd is a binary random variable

of the presence (or absence) of disease d ∈ D over the patients (In the following the random

variable Xd and the node/disease d will be used interchangeably).
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Statistically, R is estimated in function of observations X . We consider the hypothesis space

H = {Rθ (X)|θ the parameters of the model.}. Given a family of models Rθ (X), our task is

to learn some models R∗
θ
(X) ∈ H that best fit the distribution P∗ from which our data X were

sampled. This is done by minimizing an expected loss function L(X ,Rθ ) which measures the

loss that a model distribution Rθ makes on input observation X .

In this work, we focus on the special case of learning Comorbidity Disease Network (CDN)

(thus learning an ordinary graph with ordinary edges). We define the binary relation between

comorbid diseases using two approaches: Multimorbidity Coefficient based on strength compu-

tation approach and probabilistic dependency-based approaches. We will use the first approach

as a baseline to evaluate the second proposed approach.

4.1.2. Multimorbidity Coefficient-based approach. Let P(di) stands for the occurrence prob-

ability of the disease di ∈ D. The disease di is represented by the binary random variables for

the presence (or absence) of the ith disease. P(d1,d2) stands for the occurrence probability of

the diseases d1 and d2 at the same time.

We use Van Den Akker et al. definition of cluster comorbidity [42]: if d1 has occured, then

d2 will be more likely to occur than what would be expected just by chance. We consider d1 and

d2 are in positive comorbidity, i.e., they tend to appear together, if P(d1,d2) > P(d1)P(d2). If

P(d1)P(d2) = P(d1,d2) we consider that the co-occurrence of the two diseases is what would be

expected just by chance. The final case P(d1,d2) < P(d1)P(d2) can be interpreted as d1andd2

are in protective comorbidity (for instance, myopia may be protective against diabetic retinopa-

thy [24]).

To measure how strongly disorders are associated, a multimorbidity coefficient (MC) is cal-

culated. MC is commonly used method for measuring pairwise association [2]. MC is defined

as the division of observed rate of comorbidity (multimorbidity) by the rate which is expected

under the null hypothesis of no association between the separate disorders. Using the Table 1

notations, the MC score for Disease 1 and Disease 2 is equal to:

(1) MC =
a
N

a+c
N ·

a+b
N

=
aN

(a+ c) · (a+b)
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TABLE 1. Cases of co-occurence of two diseases. For example, the number

of cases in which disease 1 and disease 2 co-occur at the same time is a. The

number of cases in which disease 1 is present and disease 2 is absent is b.

Disease2

Occurence Absence Total

Disease1
Occurence a b a+b

Absence c d c+d

Total a+c b+d a+b+c+d = N

We implement this pairwise approach to learn the weighted undirected structure of the CDN

(See MC-Algorithm in section 4.2). One of the advantages of this approach is its interpretabil-

ity, since it mimics a clinical intuition: to decide if two diseases are comorbid, look for their

co-occurrence frequency and decide, based on a threshold, if a multimorbidity pattern can be

detected.

4.1.3. Conditional dependence based approach. Another possible definition of the binary re-

lation R to model structure of CDN, rather than the association strength concept, is to fit inter-

diseases probabilistic dependences/independences structures and search for the optimal struc-

ture given a Loss measure.

Let P(D) be the power set of diseases/binary random variables. Given the graph G= (D,R),

the set of random variables (Xd)d∈D form a Markov Random field in respect to G if any two

subsets of variables are conditionally independent given a separating subset:

(2) XA⊥PXB|XS A,B,S ∈P(D)

Where every path from a node in A to a node in B passes through S. Let P(X = x) be the

probability of finding that the random variables X take on the particular value x. We suppose

that the hidden distribution P∗ underlying our multimorbid data can be factorized in the form:

(3) P∗(X = x) = P∗(x1,x2, . . . ,x|D|) =
1
Z ∏

c∈R
Ψc(xc)
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where R denotes the set of hyperedges of G, and each factor Ψc is a non-negative function

over the variables in a hyperedges/multimorbid diseases c from R. The partition function

(4) Z = ∑
x1,x2,. . . ,x|D|

∏
c∈R

Ψc(xc)

is a normalizing constant that ensures that the distribution sums to one.

Markov Random Fields (MRFs) can compactly represent independence assumptions that

Bayesian network (directed acyclic graph) cannot represent and visualize a probability distribu-

tion in undirected graph terminology: A Pairwise Markov Random Field (pMRF) is a network

in which nodes represent variables, connected by undirected edges indicating conditional de-

pendence structure. Two variables that are not connected (i.e. no edge between them) verify the

Markov property: two nodes are conditionally independent given the set of all other nodes in

the network. Further, pMRFs are well defined and have no equivalent models, unlike Bayesian

network [25]. Therefore, they facilitate a clear interpretation of the edge-weight parameters as

strength of unique associations between variables, which in turn may highlight potential causal

relationships. Besides, Conditional independencies are also to be expected in many causal

structures [34].

A pMRF can be parameterized as a product of strictly positive potential functions Ψi for all

nodes i and j from D such that i 6= j [31]:

(5) P∗(X = x) =
1
Z ∏

i∈D
Ψi(xi) ∏

i, j∈D
Ψi, j(xi,x j)

Where: Ψi(xi) is the node potential function that can map a unique potential for every possible

realization of Xi. Ψi, j(xi,x j) the pairwise potential functions that can likewise map unique

potentials to every possible pair of outcomes for Xi and X j.

4.2. Methods.

4.2.1. Ising Model. For the estimation of CDN, we used the Ising model to model the prob-

ability distribution for the comorbidity pattern of valvular heart disease and some related con-

ditions. The Ising model can be used to estimate the pairwise Markov Random Field (pMRF)
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for binary variables. Taking into account the equation 5, the potential functions are repre-

sented in Ising Model by log-linear model, such that: for all nodes i ∈ D: lnψi(xi) = αixi and

lnψi, j(xi,x j) = ωi, jxix j. This results in:

P∗(X = x) =
1
Z ∏

i∈D
Ψi(xi) ∏

i, j∈D
Ψi, j(xi,x j)(6)

=
1
Z

e[∑i∈D αixi+∑i, j∈D ωi, jxix j](7)

Where Z is a normalizing constant and defined as:

(8) Z = ∑
x1,x2,. . . ,x|D|

e[∑i∈D αixi+∑i, j∈D ωi, jxix j]

We can view the Ising model as a probability distribution that is governed by main effects αi

and pairwise interactions/edges ωi, j. The model can be represented by an undirected weighted

graph G = (D,R) such that edge weight ωi, j are a real valued measures of dependence between

nodes/diseases i and j:

(9) ωi, j =


0 i f (i, j) 6∈ R

a non zero real valued number i f (i, j) ∈ R

The higher (lower) ωi, j becomes, the more nodes Xi and X j prefer to be in the same (different)

state (they tend to be both present or both absent in the same patient at the same time) and αi

can be viewed as a threshold parameter that denotes the tendency for node i to be in some

state (the tendency to be present or absent in a patient). Ravikumar et al. used L1 regularized

logistic regression [36] to estimate the structure of the Ising model (known as the least absolute

shrinkage and selection operator [40]). The pseudo likelihood is used to approximate the full

likelihood. For each node i, the expression which is maximized is [15]:

(10) max
αi,ωi

Likelihoodi(ωi,αi,x)−λPen(ωi)

The pseudolikelihood PL approximates the likelihood with the product of univariate conditional

likelihoods:

(11) lnPL =
|D|

∑
i=1

Likelihoodi(ωi,αi,x)
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Where ωi is the ith row (or column due to symmetry) of the Ising structure network ω . The

λ is the regularization tuning parameter and Pen(ωi) denotes the penalty function, which is

defined in terms of the LASSO as follows:

(12) Pen(ωi) =‖ ωi ‖1=
|D|

∑
j=1, j 6=i

|ωi, j|

FIGURE 2. With a pseudo-likelihood estimation, we first estimate the neighbor-

hood of each diseases node. This is performed through one logistic regression

per node (here, we consider a simple three-node example). We combine the

neighborhoods into a single network model whose weight matrix is ω , through

the AND rule: an edge is present if both βi, j and β j,i are non-zero. This step is

necessary because each node is both the dependent and independent variables;

hence, we have two β estimates: βi, j and β j,i.
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(13) ωi, j =


1
2βi, jβ j,i i f βi, j 6= 0 and β j,i 6= 0

0 otherwise

In Figure 2, this conditional probability is shown for each node of a simple three-node net-

work. More importantly, if x1,x2 and x3 are observed variables, this equation translates directly

into a logistic regression. Hence, we can estimate β and α with one regression per node. For

example, in Figure 2 network estimation is performed on three nodes by three regressions:

(14) Regression 1 : P(x1|x2,x3) =
x1x2β1,2+x1x3β1,3+α1x1

1+ex1x2β1,2+x1x3β1,3+α1x1

(15) Regression 2 : P(x2|x1,x3) =
x2x1β2,1+x2x3β2,3+α2x2

1+ex2x1β2,1+x2x3β2,3+α2x2

(16) Regression 3 : P(x3|x1,x2) =
x3x1β3,1+x3x2β3,2+α3x3

1+ex3x1β3,1+x3x2β3,2+α3x3

A caveat is that we will have two estimates per edge, βi, jand β j,i, because each node serves both

as the dependent and independent variables. However, they will converge as sample size goes to

infinity. To solve this and complete the weight matrix ω , researchers in [43] used the and-rule:

any edge is the average β if both βi, jand β j,i are non-zero, otherwise ωi, j = 0. This multiple

logistic regression approach inflates the rate of false positives, because of performing multiple

testing. Authors in [43] used LASSO regularization (Least Absolute Shrinkage and Selection

Operator) to overcome this problem. The LASSO procedure shrinks estimates towards zero,

lowering the amount of detected edges and their strengths [40], and thus dropping out of the

model the spurious edges letting just interpretable and important edges [43], limiting effect on

over-fitting for smaller samples and leading to better out-of-sample generalizability [12]. The

amount of shrinkage depends on a hyper-parameter γ which determines whether false positives

or negatives are preferred. Lower γ favours more edges, while higher γ favours stronger shrink-

age and hence, sparser networks. Therefore, a low γ increases the false-positive rate, while a

high γ inflates the false-negative rate. This tuning parameter γ can be selected by minimizing

the Extended Bayesian Information Criterion (EBIC) [7], such that
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(17) EBIC =−2Likelihood(X)+ |ωi|ln(|X |)+2γ|ωi|ln(|D|−1)

in which |ωi| is the number of nonzero parameters in ωi and |X | is the number of observations.

The EBIC has been shown to be consistent for model selection (e.g. in psychometric domain

[3, 43]), and to perform best with hyper parameter γ = 0.25 for the Ising model [3].

4.2.2. Multimorbidity Coefficient based Algorithm (MC-Algorithm). In this section we define

and implement the pairwise association strength computation methodology for building Comor-

bidity Disease Network which will be considered as a benchmark to compare to. We will call

this algorithm MC−Algorithm.

Let Ndiag denote the number of diagnoses and Ndis the maximum number of diagnoses per

patient in the dataset. Let D = {d1,d2,d3, ...,dNdis} the disease set present in the dataset.

Mk ⊂ D such k > 1, is the subset of size k diseases from D. e.g M2 is the subset of possible

comorbidities. Let f : I ⊂ N→{D1,D2, ...,DNdiag} ⊂P(D) be an application that maps every

patient i ∈ I to his recorded diagnoses f (i) = {xi
1,x

i
2, ...,x

i
Ndiag
}. The MC-Algorithm search for

Ndis!
(Ndis−2)!2! = O(N2

dis) comorbid distinct combinations and estimates co-occurrence strength by

attributing MC for each combination. If the MC is significantly higher than 1 then the algorithm

considers that these two diagnoses are in comorbidity. If the MC is significantly less than 1 then

we consider that these two diagnoses are in protective comorbidity. The bigger this number is,

the stronger the association is considered. We will focus our analysis on positive comorbidity

only.



DEFINING AND ANALYSIS OF MULTIMORBIDITY PATTERN 15

Algorithm 1 MC-Algorithm
Require: a patient−diagnosis f unction map f : I ⊂N→{D1;D2; ...;DNdiag} a disease set D,

Ensure: a Comorbidity Disease Network G = (V,E)

1: for M2 ∈P(D) do

2: Wexpected ←∏d∈M2 Count({d}, I)

3: Wobserved ←Count(M2, I)

4: MC← Wobserved∗Ndiag
Wexpected

5: if H0 : ”Wexpected ≥Wobserved” is rejected at risk α then

6: Ed1,d2 ←MC, such that {d1,d2}= M2

7: end if

8: end for

9:

10: procedure Count(Mk, I)

11: Soccurence← /0

12: for X ∈Mk do

13: for i ∈ I do

14: Soccurence← Soccurence
⋃
(X

⋂
f (i))

15: end for

16: end for

17: return |Soccurence|

18: end procedure

The count(S : I) procedure counts incrementally the number of occurrences of a disease

d ∈ S in diagnosis records indexed by i ∈ I. a sequential search will count the number of

occurrences by iterating over the diagnosis records f (I) resulting in O(|X |max{ f (i)}). This

algorithm can be easily generalized from comorbidity to Multi-morbidity using hypergraph

formalism. Interested reader can be referred to [30].

4.3. Data. The analysis was applied in a case study of real medical dataset [4], a hospital

inpatients’ diagnosis dataset. Each diagnosis of an admitted patient is encoded by ehe Tenth
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Revision of the International Classification of Diseases (ICD 10). The data contain 78451pa-

tients (34639 males, and 43812 females). The maximum number of registered diagnosis per

admission is 20. This study is applied to the analysis of the following diseases node: Non-

rheumatic mitral and tricuspid and aortic (valve) insufficiency (coded respectively in ICD10

as I34.0 and I36.1 and I35.1). Non-rheumatic aortic (valve) stenosis (I35.0). Rheumatic tri-

cuspid insufficiency (I07.1). Rheumatic disorders of both mitral and tricuspid valves (I08.1).

Combined rheumatic disorders of mitral, aortic and tricuspid valves (I08.3). Other pulmonary

hypertension (I27.2). Other ill-defined heart diseases (I51.89). these diseases have the potential

to exhibit causal relationships [26, 27, 39, 41].

4.4. Evaluation methodology. After performing Ising model to estimate pairwise Markov

random field representing joint probability distribution for the studied valvular heart diseases,

we compared the CDN outputted by Ising Model and MC-Algorithm (ω Ising and ωMC−Alg).

If we conceptualize the outputted network as a distance matrices such that the distance in

each pair of diseases corresponds to similarities in their level of co-occurrence, ranging from 0

(does not co-occur) to 1 (co-occur almost always), then we can perform Mantel test to measure

the similarity of the two outputted networks [23].

The Mantel test is used for correlation between two proximity matrices ω Ising and ωMC−Alg

and tests the null hypothesis H0: ”proximity among diseases in the matrix ω Ising are not linearly

related to the corresponding proximity in the matrix ωMC−Alg” against the alternative hypothesis

H1: ”proximity among diseases in matrix ω Ising are linearly correlated to the corresponding

proximity in the matrix ωMC−Alg”. The Mantel statistic can be normalized to range between -1

and +1:

(18)

r = 1
n−1 ∑

|D|
i ∑

|D|
j

ω
Ising
i, j −average(ω Ising)

std(ω Ising)

ω
MC−Alg
i, j −average(ωMC−Alg)

std(ωMC−Alg)

with i 6= j and i and j are the row and column indices and n the number of distances in one of

the matrix ω without accounting for the diagonal. std() is the standard deviation. The statistical

significance of the Mantel coefficient can be tested by performing a permutation test. It consists

in simulating the realizations of the null hypothesis by repeated permutations of the lines and
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columns in one of the matrices ω Ising and ωMC−Alg and recomputing the Mantel statistic. The

result is a sampling distribution of the Mantel statistic under the null hypothesis. If there is

no relationship between the matrices, the observed r value is near the center of the sampling

distribution, while if a relationship is present, one would expect the observed value to be more

extreme than most of the values obtained by permutation.

After that, we assessed how accurate networks are estimated, and how stable inferences from

the network structure are. We estimate the accuracy of edge weights using bootstrapped Con-

fidence intervals (CI) [13]. Then we estimated if edge-weights/centralities significantly differ.

This can be done by checking if zero value is in the constructed bootstrapped CI of differences

of edge-weights/centralities [8]. Once a network is computed, centrality indices can give in-

formation on the importance of each node. We will consider three main centrality indices. 1)

Strength centrality is defined as the sum of the absolute weights of the edges incident to a node,

a node has a high strength if it has strong connections with many others. 2) closeness centrality

is the inverse of the sum of the distances of the a node from all the others. A node has a high

closeness centrality if it is well connected to other nodes either by strong direct edges or by

short indirect paths. The closeness of each node depends on the connectivity of all others to the

network: Increasing the distance of a node from the rest of the network makes the closeness of

all other nodes increase as well. 3) Betweenness centrality is the number of times a node occur-

ing in the shortest path between two nodes, thus quantifying how much a node is important for

other nodes to affect each other.

While assessing accuracy of edges can be measured by bootstrapped Confidence interval,

centrality measure can result in biased results. Researchers in [13] suggested to assess stability

of centralities by the coefficient of stability (CS). The correlation stability coefficient (CS coef-

ficient) is based on case dropping bootstrap and is defined as the maximum proportion of cases

that can be dropped such that the resulting centrality estimate correlates more than 0.70 with the

original centrality estimate with 95% probability. Cutoff values of 0.25 and 0.50, respectively,

have been suggested to indicate sufficient stability and good stability [13]. The stability analysis

indicates if the order of centrality indices does not change after re-estimating the Comorbidity

network using less data.
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5. RESULTS AND DISCUSSION

We performed MC-Algorithm on the valvular heart diseases data mentioned in section 4.3.

Visualizations are performed using R Studio software. We see in Figure 3 the weighted graph of

detected comorbidity disease network for male patients (older adulthood more than 65 years).

The MC-Algorithm outputted a graph with 12 non-zero edges over 36 possible edges. The

thickness of edges shows visual differences of calculated MC weights between each pair of

diseases. If an edge is absent between two pairs, this means either their association is random

or not significant (the null hypothesis was not rejected at risk 0.01) or both cases. In Figure

3 for example, Non rheumatic tricuspid insufficiency co-occurs with non-rheumatic mitral in-

sufficiency 20.8 times more than what would be expected just by chance. This high score can

indicate a potential causal relationship, which can be explained by functional abnormalities in

heart functioning. The magnitude of weights show the strength of relationship between the stud-

ied valvular heart related diseases. Some diseases have strong connections (for example I27.2 –

I36.1, I27.2-I08.1 and I34.0-I36.1), whereas others have weaker connections (e.g. I34.0-I35.0

and I27.2-I35.1). The nodes I27.2 and I34.0 have the highest degree centrality in the graph,

which suggests their potential importance in the obtained graph.

I27

I34

I35.0

I35.1

I36I51

I07

I08.1

I08.3

FIGURE 3. Comorbidity Disease Network detected by MC-Algorithm for males

patients aged ≥ 65 years. See section 4.3 for more details about the abreviations

of the codes. MC scores are presented by thickness of lines between nodes (See

Table 2 for the values).
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TABLE 2. MC scores computed by MC-algorithm (section 4.2.2) for the struc-

ture of co-occurrence of Fig. 3. Since the built graph is undirected, the weight

matrix is symmetric (just the lower triangular is filled). The cases with ”-” sym-

bols mean that either the MC score is equal to one, or the null hypothesis is not

rejected, or both.

I34.0 7.70

I35.0 - 3.17

I35.1 4.54 7.97 -

I36.1 19.07 20.8 - -

I51.89 5.03 9.42 - - -

I07.1 14.21 16.13 - - - -

I08.1 15.07 - - - - - -

I08.3 13.42 - - - - - - -

I27.2 I34.0 I35.0 I35.1 I36.1 I51.89 I07.1 I08.1

To assess the performance of Ising Model to detect comorbidity in valvular hear diseases,

we applied Ising Model to the same data as MC-Algorithm, and we compared the outputted

weighted graphs. The Figure 4 bring together MC-Algorithm (Figure 4a), Ising Model (Figure

4b) and Polychoric correlation (Figure 4c) based graphs. To be able to compare in a fair way the

outputs, we rescaled the weights Wi, j of the graphs using Min-Max normalization to the same

interval [a,b]:

(19) W trans f ormed
i, j = a− [W original

i, j −min(W original
i, j )](b−a)

max(W original
i, j )−min(W original

i, j )

Typically, these intervals reflect a scale between the absence (a=0) or the opposite direction

of association (a=-1) to the full presence/positive strength (b=1). In Figure 4 the weights are

rescaled in [a,b] = [0,1]. MC-Algorithm and Ising Model outputted the same structural co-

morbidity pattern, the same detected skeleton of the CDN and some differences between edge

weights (12/36 non-zero edges and mean weight of 0.6702). Comparing weights of graph is a
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challenging task. The Figure 5a presents weight distribution for edges for MC-Algorithm and

Ising Model both rescaled in [0,1]. A Two-sample Kolmogorov-Smirnov test resulted in D =

0.25, p-value = 0.8475, then we did not reject the null hypothesis that the samples are drawn

from the same distribution. In Figure 5b we plotted the difference between MC-Algorithm and

Ising Model adjacency matrices respectively. The difference fluctuates around Zero. If we con-

sider the two adjacency matrices as a distance matrices between all pairs of diseases (diseases

with strong weight edges have longer distance between them and vice versa), then a Mantel test

between the two matrices can be used to test their similarity under the null hypothesis of there

being no relation between the two matrices. We obtained significant p-value (≤0.01) for Mantel

score, thus we rejected the null hypothesis ”there is no correlation between the weights of the

two matrices ω Ising and ωMC−Alg”.

As a conclusion, the outputted CDN structure by Ising and MC-Algorithm are significantly

similar. However, without knowing the accuracy of the network structure and the stability of

the centrality estimates, we cannot conclude whether the differences of centrality estimates are

really interpretable or not.

To assess the accuracy of the obtained CDN we used bootstrapped methods to construct con-

fident intervals (CIs). Figure 6b shows the edge value estimated in the sample after performing

1000 bootstrapped networks. The lines surrounding the dots (i.e. means) indicate the width

of the bootstrapped CIs. Many of edges are estimated as zero (e.g. I34.0-I08.1). Some edges

are larger than zero, but their bootstrapped CIs contain zero value (e.g. I27.2-I51.89 and I34.0-

I35.0). For a smaller number of edges, the estimates are larger than 0 and the CIs do not include

zero (e.g. I27.2-I08.1 and I27.2-I34.0). Edges I27.2-I36.1 and I27.2-I08.1 are significantly

stronger than almost all of other detected edges in the CDN. The absence of an edge does not

present evidence that the edge is in fact exactly zero. Some edges were estimated to be zero but

have bootstrapped mean more than zero (I51.89-I08.1, I35.1-I07.1, I35.1-I36.1, I35.1- I51.89,

I35.0-I07.1, I27.2-I35.0). Due to shrinkage of LASSO, these small quantities were set to be ze-

ros. Similarly, MC-Algorithm outputted these edges to be either not significant or MC score was

equal to 1, i.e. they randomly co-occur. We can interpret these results by supposing that these

edges being spurious edges and their occurrences can be due to chance or other con unmeasured
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I08.1

I08.3

(A) MC-Algorithm

I27

I34

I35.0

I35.1

I36I51

I07

I08.1

I08.3

(B) Ising Model

I27

I34

I35.0

I35.1

I36I51

I07

I08.1

I08.3

(C) polychoric correlation based graph.

FIGURE 4. Comparison of the outputted CDN for MC-Algorithm and Ising

Model

confounding variable. This latter is supported by the fact that they do have connections in the

Polychoric correlation network.

Other edges have low weights edges but their confidence interval contains zero, which sug-

gests that they should be interpreted as weak edges (visually weak thickness in Figure 4). These

edges were detected by all outputted networks. Besides, some edges have moderate weights and

long bootstrapped Confidence Interval (e.g. I34.0-I36.1), which require more careful interpre-

tations. Other edges have strong weights (I27.2-I08.1) and relatively narrow Bootstrapped CI

(e.g. I27.2-I34.0). Many edges have overlapping Bootstrapped CI and different means, which

suggests that these means may be not significantly different (e.g. I27.2-I08.1 and I27.2-I36.1).
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MC_Alorithm IsingModel

0.0
0.2

0.4
0.6

0.8
1.0

(A) Weight distribution for edges in for be-

tween MC-Algorithm and Ising Model

(B) Difference between MC-Algorithm and

Ising Model adjacency matrices respectively.

FIGURE 5. Comparison of the outputted CDN for MC-Algorithm and Ising

Model

In contrast, some Bootstrapped CI were not overlapped (e.g. I27.2-I08.1 and I34.0-I35.1) which

suggests that differences in edge weights are meaningful. To investigate more the differences in

edge weights, we conducted bootstrapped difference test. We set the following hypothesis null:

H i, j,k,l
0 : ”edge weights ei, j and ek,l are equal” for all nodes k, l, i, j, with significance threshold

α = 0.05. Figure 6a shows the results. Black squares indicate significance and gray ones in-

dicates non significance. The blue squares in the diagonal represent the weights. For example,

I34.0-I35.1 bootsrtrapped confidence interval overlaps with almost all other edges, and which

makes its interpretation misleading. But for difference significance testing, it is significantly

different from I27.2- I07.1 and I27.2–I08.1.

Besides investigating accuracy of weights of CDN, misoscopic analysis of components/nodes

of the CDN can give insights about the importance of nodes contribution to form the structural

information hidden in the connections pattern between diseases in CDN. The importance of

individual nodes in the network can be assessed by investigating the node centrality. Figure

7a presents Centralities normalized as Z-score. For example, I07.1 and I36.1 have medium

strength centrality and there is not significant difference between them. Nodes I27.2 and I34.0

were the most performing in closeness and betweenness centralities, this is because except I27.2

and I34.0, all nodes have one single connection. I35.0 have the smallest closeness centrality
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(A) Edge difference tests. Black squares indi-

cate significance and gray ones indicates non

significance. The blue squares in the diagonal

represent the weights.
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(B) Accuracy of the edge weight estimates (dots) by

Ising Model and the 95% confidence intervals (lines)

for the estimates.

FIGURE 6. Accuracy of edge weights and their differences.

because it has the weakest connection towards other nodes (MC=3.14 ) which makes her almost

an isolated node. According to strength centrality, I27.2 and I34.0 were the most central nodes,

followed by I36.1. Their centrality indicates that these nodes were those more likely to affect or

to be affected directly by other nodes in the network. Nodes strength has gradually increasing

scores which makes the interpretation of differences in these scores are not straightforward.

To investigate more the strength scores, we performed hypothesis testing -similar to edge

weights difference test-. The null hypothesis in which we set α = 0.05, H i, j
0 : “ strength cen-

trality scores of node i and j are equal” for all nodes with i and j. Figure 7b shows the results.

While I27.2 and I34.0 strength centralities are not significantly different from each other, these

two nodes are significantly different from and stronger than all other nodes in the CDN, which

supports our earlier remark about their potential importance in the network. A straightforward
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FIGURE 7. Centrality measures of nodes of CDN and their difference signifi-

cance of strength centrality.

conclusion is that other secondary pulmonary hypertension I27.2 and non-rheumatic mitral in-

sufficiency I34.0 are key players in the detected CDN pattern and their activation has crucial

influence in the other nodes in the network. Thus, they should be prioritized to be targeted in a

therapeutical operation whenever a patient case exhibits these comorbid diseases. Targeting this

highest centrality is a strategy to read off the comorbidity pattern and thus help to deconstruct

these comorbid components and alleviates the multimorbidity burden put upon the patients.

While assessing accuracy of centrality measure can result in biased results, researchers in [13]

suggest assessing the stability of centralities by the coefficient of stability CS. Figure 8a shows

the results of the average correlation with the original sample for strength centrality of our data.

Figure 8b shows the resulting plot of the strength indices for each edge in the network. The

percentage of the sample included in the estimates decreases (the subset samples decrease from

95% of the original sample to 20% of the sample). We can see that the average correlation with

original sample is excellent and close to 1, and start to decline by 45% of sampled cases in more

than 0.8 such that bootstrapped confidence interval can reach 0.7. Although there is a drop in

the correlation between the subsample estimate and the estimate from the original entire sample

and even for the samples including only 50% of the individuals of the complete sample, the

correlation with the centrality indices of the samples stays strong.
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(A) (B)

FIGURE 8. Stability plot of the centrality estimates of the CDN. (a) Overall

average correlation stability with the original sample in respect to cases dropped.

The lines represent the variations of the mean correlations between the given

sampled percentage and the complete (original) sample and the shades represent

the area between the 2.5% and 97.5% percentile of the sampled. (b) Average

correlation stability for each edge in the CDN.

To further investigate the stability of the strength estimates, we can plot how much each

strength estimate fluctuates in the different samples. As can be seen in Figure 8b, the ordering

of the strength estimates is sufficiently stable: Only nodes that have the same strength estimates

in the complete sample change their position in the different samples. I27.2 and I34.0 are clearly

stable in comparison with the remaining nodes. The order starts to be instable by sampling 20%

of the original sample. For example, I36.1 and I07.1 tend to the same strength once dropping

20% of the original sample. As a result, it is thus possible to interpret the estimated strength

estimates of the CDN. Overall, the pattern suggests an excellent stability of the centrality indices

for strength centrality.

Ising Model present some advantages for reducing spurious edges, and the regularization

technique estimates a statistical model while including a penalty for model complexity has been

shown to converge to the generating network structure under the assumption that the network
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is sparse [36] and simulation studies reported that the LASSO has a low likelihood of false

positives [21].Thus, The LASSO yields a more parsimonious graph (fewer connections between

nodes) that reflects the most important empirical relationships hidden in the data. However, the

nature of the relationship represented as an edge needs to be further investigated and interpreted

(the edge could represent a direct causal pathway between nodes, or it could reflect the common

effect of a latent variable not included in the network model).

As a conclusion, regularization technique reduces over-fitting and removes false positive

edges, to exclude spurious relationships and to make networks more parsimonious, robust, and

interpretable. It is however, important to consider that the detected morbidity can be affected by

the number and the nature of the selected diseases. For example a strong relationship detected

between two diseases can be caused by a third disease acting as a latent variable not included in

the analyzed network. Thus the replication of this study by other researchers on more diseases

is important and crucial for investigating such limits.

6. CONCLUSIONS AND PERSPECTIVES

In this work, we proposed pairwise Markov Random field approach to detect the comor-

bidity pattern of some valvular heart diseases. Using Ising Model suited for binary data; the

obtained results suggest that this model can detect potential causal links among diseases and

provide Comorbidity Disease Network comparable to widespread and traditional approach in

multimorbidity research. We applied these methods on a case study of a real dataset. An assess-

ment of the stability and accuracy of the obtained Network suggests that the obtained network

is reliable and the degree of confidence with which edge weight and centrality rankings can be

interpreted is meaningful.

The proposed method presents advantages of lowering the risk for over-fitting due to regu-

larization technique which is controlled by a hyper parameter included in the model, and more

investigation is needed for the exploration of performance of this model in Multimorbidity

field. Besides, we conducted a mesoscopic analysis of the Comorbidity disease Network to

better understand important nodes in the emergence of the detected pattern. The results suggest

that Secondary Pulmonary hypertension and Non rheumatic Mitral (valve) insufficiency played

crucial role in the skeleton of the Network. Thus, prioritizing these diseases in patients with
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valvular heart Multimorbidity may alleviates the burden of Multimorbidity resulted from the

effect of a strong significant co-occurrence between diseases, and hopefully protect the patients

from complicated states.

Further investigation of Ising Model to other data and other diseases is required. The repli-

cation of this study will constitute accumulative evidence to best understand to what extend

network analysis and machine learning techniques offers the potential for insight, into struc-

tural relations among core Multimorbidity processes and build integral research framework, as

mining tool, which help physicians to accumulate empirical evidences necessary to understand

the complex phenomenon of Multimorbidity.

7. APPENDICES

7.1. Abbreviations. We collect in Table 3 some abbreviations used in this paper.

TABLE 3. Abbreviations.

Abbreviation Meaning

AMPD Automatic Multimorbidity Pattern Detection.

CDN Comorbidity Disease Network.

ICD 10 The International Classication of Diseases, Tenth Revision.

MC Multimorbidity Coefficient.

EBIC Extended Bayesian Information Criterion.

CI Confidence Interval.

CIs Confidence Intervals.

CS Correlation Stability coefficient.

pMRF Pairwise Markov Random Field.

7.2. Notations used in Methodology sections (4.1).

7.2.1. Notations of Problem Overview section (4.1.1). This section introduce the general

mathematical formulation of Automatic Multimorbidity Pattern Detection probem. See no-

tations in Table 4.
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TABLE 4. Notations of Problem Overview section (4.1.1).

Notation Meaning

|S| The number of elements of a set S.

D = {d1,d2, . . . ,d|D|} The set of the studied diseases.

R k-ary relation over Cartesian product sets Dk.

di The disease number i.

G = (D,R) Hypergraph such that the vertices D are the nodes

and hyperedges are represented by R.

X = {X1,X2, . . . ,X|X |} The set of observed data of patients.

Xi = (x1,i,x2,i, ..,x|Xi|,i) Tuple of diagnoses of the patient i.

x j,i ∈ D The diagnosis j for the ith patient.

P∗ The joint probability distribution over X .

X = {Xd|d ∈ D} The data X indexed by diseases d ∈ D.

Xd Binary random variable of the presence of disease

d ∈ D over the patients of the dataset.

Rθ (X) Family of models estimated from the data X .

H The hypothesis space defined by a parametrization

of the relation Rθ (X).

R∗
θ
(X) ∈ H The model that best fit the distribution P∗.

L(X ,Rθ ) The expected loss function which measures the

loss that a model distribution Rθ makes on input

observation X .

7.2.2. Notations of Multimorbidity Coefficient-based approach section (4.1.2). This section

introduce the mathematical definition of the Relation R (which defines a Multimorbidity pattern)

using Multimorbidity Coefficient score. See notations in Table 5.

7.2.3. Notations of Conditional dependence- based approach section (4.1.3). This section

introduce the mathematical definition of the Relation R using probabilistic framework. See

notations in Table 6.
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TABLE 5. Notations of Multimorbidity Coefficient-based approach section

(4.1.2).

Notation Meaning

di Binary random variable for the presence or (absence)

of the disease number i.

P(di) The probability of observing di.

P(di,d j) The probability of observing di and d j at the same time.

TABLE 6. Notations of Conditional dependence-based approach section (4.1.3).

Notation Meaning

P(D) The power set of diseases/binary random variables.

P(X = x) The probability that the random variables X take on the

particular value x.

c ∈ R An element of hyperedges R (i.e. multimorbid diseases).

Ψc Non-negative function over the variables in a hyperedges c.

Z Normalizing constant that ensures that the distribution

sums to one.

Ψi(xi) The node potential function for a realization of xi.

Ψi, j(xi,x j) The pairwise potential functions for a pair of realizations

of xi and x j.

7.2.4. Notations of Ising model section (4.2.1). This section proposes an algorithmic imple-

mentation of the Relation R using Ising Model which implements the Pairewise Markov Ran-

dom Field. See notations in Table 7.

7.2.5. Notations of Multimorbidity Coefficient based Algorithm (MC-Algorithm) section

(4.2.2). This section proposes an algorithmic implementation of the Relation R using Multi-

morbidity Coefficient score. See notations in Table 8.
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TABLE 7. Notations of Ising model section (4.2.1).

Notation Meaning

αi Estimate parameter of the logistic regression for the variable i.

βi, j Estimate parameter of the logistic regression for the dependent

variable i and the independent variables j.

β The set of estimte parameters βi, j.

ωi, j Edge weight of the Ising structure network that links nodes i

and j.

ω The weight matrix of the Ising structure network.

ωi The ith row (or column due to symmetry) of the Ising structure

network ω .

λ The regularization tuning parameter.

Pen(ωi) The penalty function which is defined in terms of the LASSO.

γ The parameter of shrinkage.

TABLE 8. Notations of Multimorbidity Coefficient based Algorithm (MC-

Algorithm) section (4.2.2).

Notation Meaning

Ndiag The number of diagnoses in the dataset.

Ndis The number of diseases presented in the dataset.

D = {d1,d2,d3, ...,dNdis} The diseases in the dataset.

Mk ⊂ D such k > 1 The subset of size k diseases from D.

P(D) The power set of D.

f : I→{D1,D2, ...,DNdiag} The application that maps every patient i to his recorded

diagnosis {xi
1,x

i
2, ...,x

i
Ndiag
}.

O(n2) The upper bound computational complexity.

Wexpected Current expected Weight of d1 and d2.

Wobserved Current observed Weight of d1 and d2.

Ed1,d2 The weighted edge in the CDN/ the graph G( V, E) that

maps two nodes/diseases d1 and d2.
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