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Abstract. Recently, the pandemic of Covid-19 attacked many countries, and many public establishments were

closed because of this pandemic. As well, the Covid-19 pandemic hurt the economy and various activities of coun-

tries around the world. Mathematical Modeling and numerical analysis can help governments to find solutions for

controlling the propagation of the Covid-19 pandemic. In the present paper, we consider a stochastic Lévy jumps

epidemic model that models the propagation of Covid-19 in a population divided into six groups of individuals.

We investigate the extinction and persistence of our stochastic systems with and without Lévy jumps. Furthermore,

we give a detailed numerical comparison of disease for the stochastic and deterministic systems.
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1. INTRODUCTION

The first positive case infected by the Covid-19 epidemic was initially detected in December

2019 in China, precisely in Wuhan. Then, the case of infections has been fast-growing since
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the onset of the epidemic. As of 2 November, 2021, (WHO, [20]) situation report shows there

are 246, 594, 191 and 4, 998, 784 official reported cases and deaths, respectively. According

to this situation report, the Covid-19 situation has been worse in some nations like the United

States, Italy, India. More than 40 case reports and deaths have occurred from these countries.

Although China was the first zone to be hit by COVID-19, it is now well placed in tackling the

disease. The cumulative case report of China (126,078) is about 362 times less than the USA

report (45,635,708), 272 times less than the India report (34,285,814), 173 times less than the

Brazil report (21,804,094).

WHO considers safe and effective vaccines can represent tools to control the propagation

of Covid-19 epidemic (for more detail, see, [21]). For this reason, several research teams

jumped to the challenge and created vaccinations that protect against SARS-CoV-2 in less than

a 5 year after the epidemic began. As of June 3, 2021, AstraZeneca/Oxford vaccine, Johnson

and Johnson, Moderna, Pfizer/BionTech, Sinopharm, and Sinovac are vaccinations against

COVID-19 and have met the WHO’s safety and efficacy standards (see, [21]). However,

making these vaccines available to people around the world remains a challenge for the globe.

Limited access to vaccines in low and middle-income nations, particularly in Africa, where

HIV is most prevalent, can be regarded as an indicator for the challenge in vaccine distribution.

With all efforts made by the policymakers to control the impact of COVID-19 disease

transmission. Human behavior represents the principal point to fight the epidemic of Covid-19

via compliance with health measures and wearing masks. WHO (Organization et al., [23])

recognizes the value of human behavior in managing pandemics. Margraf et al. [22] and Lin &

Chen [24] recommend that to considerably reduce the disease’s impact, governments should

engage in behavior modification at the societal, community, and individual levels.

COVID-19 disease propagation rules and predictions necessitate theoretical, quantitative, and

simulation investigation. The investigation is inextricably linked to a mathematical model de-

veloped for infectious diseases. Mathematical models have been very beneficial in providing
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various reasons for the dynamics of disease and designing practical controlling strategies. Many

mathematical models have been proposed according to the specificity of each region. Hence, the

different mathematical approaches are used to propose models that describe more realistically

the propagation of Covid-19. For example, Arfan et al. in [1], to describe the effect of memory

on the propagation of Covid-19 in Pakistan, proposed an epidemic model that divided the pop-

ulation into six classes and under the Atangana-Baleanu Caputo derivative [3]. Atangana and

Araz [2], presented an epidemic model of Covid-19 for South Africa and Turkey. They showed

a detailed analysis of the proposed model with the application to real data of South Africa and

Turkey Covid-19. In [4], the authors formulated an epidemic SEIQR model of COVID-19 and

proved a numerical investigation with the real data of the propagation Covid-19 in Pakistan.

Gu et al. [5], modeled the propagation of the Covid-19 epidemic with a model of ordinary dif-

ferential equations with six groups of the population including the isolation individuals. They

proved a theoretical and numerical analysis of their proposed model. Also, they studied the

sensitivity of model parameters. Other authors have used the stochastic approach to express the

effect of environmental fluctuation on the transmission of Covid-19 in the population. We cite,

for example, the work of Zhang [6] in which the authors affected a direct perturbation on the

transmission rate of disease to study the effect of white noise on the transmission of Covid-19

in a population composed of four classes (Susceptible-Infected-Recovered). Rihan et al. [7],

presented a stochastic epidemic model with general perturbation proportional to the variables,

including a retard parameter that describes the incubation period of the viral infection (For more

detail, see, [8]). The remains of this paper are organized as follows. In Section 2, we present a

deterministic model of Covid-19 epidemic and its parameters. Our stochastic model is studied

numerically and presented in Section 3. We close the paper by conclusion and future recherche

direction in Section 4.

2. DETERMINISTIC MODEL

In the following, we consider a mathematic deterministic epidemic model that describes the

transmission of the Covid-19 pandemic proposed by Li et al. in [9] and divide the population

into six groups, namely, Susceptible individuals (S), Exposed individuals (E), Symptomatic
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individuals (I), Asymptomatic individuals (A), super-spreader individuals (P), Recovered indi-

viduals (R). N(t) is the total population number such as

N(t) = S(t)+ I(t)+E(t)+A(t)+P(t)+R(t).

The model is presented by the differential equations system follow:

(1)



dS(t)
dt = Λ−β1

(I(t)+Ψ1A(t))S(t)
N(t) −β2

P(t)S(t)
N(t) −µS(t),

dE(t)
dt = β1

(I(t)+Ψ1A(t))S(t)
N(t) +β2

P(t)S(t)
N(t) − (θ +µ)E(t),

dI(t)
dt = θω1E(t)− (τ1 +µ +ζ1)I(t),

dP(t)
dt = θω2E(t)− (τ2 +µ +ζ2)P(t),

dA(t)
dt = θ(1−ω1−ω2)E(t)− (τ3 +µ)A(t),

dR(t)
dt = τ3A(t)+ τ2P(t)− τ1I(t)−µR(t),

with:

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0,E(0) = E0 ≥ 0,A(0) = A0 ≥ 0,

P(0) = P0 ≥ 0,R(0) = R0 ≥ 0,

where S(t), E(t), I(t), P(t), A(t), R(t) represent the density of Susceptible individuals, Ex-

posed individuals, Symptomatic individuals Super-spreader individuals, Asymptomatic indi-

viduals and Recovered individuals from the disease at time t, respectively. The parameter of

model (1) are all positive and have the following meanings:

• Λ is the recruitment rate.

• µ represents the natural mortality rate for all groups of population.

• β1 denotes the disease transmission rates of symptomatic and asymptomatic COVID-19

individuals.

• β2 is the disease transmission rate of super-spreader individuals
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• Ψ1 represents the proximate infectiousness rate corresponding A(t).

• The parameter θ represent the incubation period.

• A fraction ω1 of exposed individuals develop the disease signs(or symptoms) and thus

join symptomatic compartment and a fractional ω2 (with or without disease signs) join

the superspreader class while the remaining with no or mild disease signs move to the

asymptomatic class A(t) [9].

• The parameters τ1, τ2 and τ3 are the recovery rates for the class of symptomatic, super-

spreader, and asymptomatic infected individuals, respectively.

• ζ1 is the mortality rate due to Covid-19 in the symptomatic individuals.

• ζ2 is the mortality rate due to Covid-19 in the super-spreader individuals.

The theoretical results of (1) are discussed in [9] by the following details. The region (or the

biologically feasible region)

∆ =

{
(S(t),E(t), I(t),P(t),A(t),R(t)) ∈ R6

+ : S(t)+E(t)+ I(t)+P(t)+A(t)+R(t)≤ Λ

µ

}
.

is positive invariant set for model (1). The basic reproduction number of system (1) is defined

by

R0 =
θ [ω1(τ3 +µ)+ψ1(τ1 +µ +ζ1)(1−ω1−ω2)]β1

(θ +µ)(τ1 +µ +ζ1)(τ3 +µ)
+

θω2β2

(θ +µ)(τ2 +µ +ζ2)

They are obtained by the use of the next generation matrix approach [25], namely, the basic

reproduction number is provided by the largest eigenvalue of FV−1 with F and V are the

required Jacobian matrices obtained from (1) as follows

F =


0 β1 β2 ψ1β1

0 0 0 0

0 0 0 0

0 0 0 0

 ,

V =


θ +µ 0 0 0

−θω1 τ1 +µ +ζ1 0 0

−θω2 0 τ2 +µ +ζ2 0

−θ(1−ω1−ω2) 0 0 τ3 +µ


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In epidemiology, the basic reproduction number is very significant for a deterministic system

because it makes it possible to determine the comportment of the system ie if R0 is less than one

the disease disappears from the population if not if R0 is greater than one the disease prevails

in population.

3. STOCHASTIC MODELS AND NUMERICAL INVESTIGATION

3.1. Stochastic models. In reality, biological systems are usually perturbed by environmental

noises (see, [10–15]). El Koufi et al. in [10] have affirmed that environment fluctuation conduct

to the system to fluctuate around a means value, and they expressed the stochastic effect by the

direct perturbation of the disease transmission coefficient by the white noise. Hence, many woks

have studied the effect of the stochastic perturbation on deterministic models to know how the

power of environmental fluctuation on the dynamics of biologic systems. In this paper, we firstly

suppose that the stochastic perturbation is proportional to the variables S(t), E(t), I(t), P(t),

A(t) and R(t). And it’s of the white noise type. Then, the stochastic Covid-19 epidemic model

corresponding to the deterministic one (1) is presented by the following stochastic differential

equations system

(2)



dS(t) =
[
Λ−β1

(I(t)+Ψ1A(t))S(t)
N(t) −β2

P(t)S(t)
N(t) −µS(t)

]
dt +σ1S(t)dB1(t),

dE(t) =
[
β1

(I(t)+Ψ1A(t))S(t)
N(t) +β2

P(t)S(t)
N(t) − (θ +µ)E(t)

]
dt +σ2E(t)dB2(t),

dI(t) = [θω1E(t)− (τ1 +µ +ζ1)I(t)]dt +σ3I(t)dB3(t),

dP(t) = [θω2E(t)− (τ2 +µ +ζ2)P(t)]dt +σ4P(t)dB4(t),

dA(t) = [θ(1−ω1−ω2)E(t)− (τ3 +µ)A(t)]dt +σ5A(t)dB5(t),

dR(t) = [τ3A(t)+ τ2P(t)− τ1I(t)−µR(t)]dt +σ6R(t)dB6(t),

where Bi(t), (i = 1,2,3,4,5,6) are a standard Brownian motions (see definition ) defined on

a complete probability space (Ω,F ,{Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual
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conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets), σi,

(i = 1,2,3,4,5,6) are the noises intensities.
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Figure 1. Paths of the deterministic systems (1).
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Figure 2. Paths of the deterministic systems (1).

Definition 3.1. [16] The positive real-time numbers process (B(t))t≥0 is called the Wiener

process if

(1) B(0) = 0, P−a.s.

(2) ∀ 0≤ s < t, B(t)−B(s) are independent of Fs.

(3) ∀ 0≤ s < t, B(t)−B(s)v N (0, t− s).

Brownian motion is a valuable tool for describing random motion for continuous systems.

In addition, they have many good statistical properties, namely, the trajectory of the brownie
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motion is continuous, finite moments. Also, large theoretical literature that existent to use for

solving the Brownian motion-related problems.
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Figure 3. Comparison between the paths of stochastic (2) and deterministic (1) sys-

tems.
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On the other hand, as you know, the solution of the stochastic system with white noise is

continuous, though, in a biological environment, the populations are always subject to some

massive and severe phenomena like volcanoes, tsunamis, earthquakes, and famines. These

events can make break the continuity of the solution. Also, we use the stochastic differential

equations with Lévy jumps to will describe these events. Thus, to express a stochastic system

with Lévy jumps, we need to use the discontinuous Lévy jump process. A Lévy jump process

represents a stochastic process with stationary and independent increments. Mathematically, it’s

divided into the sum of three terms [11] that are: linear drift process, Brownian motion, com-

pensated Poisson process. Motivated by the above discussion in the present paper we propose

the following stochastic model with Lévy jumps process for the Covid-19 epidemic:

(3)



dS(t) =
[
Λ−β1

(I(t)+Ψ1A(t))S(t)
N(t) −β2

P(t)S(t)
N(t) −µS(t)

]
dt +σ1S(t)dB1(t)

+
∫
H

η1(k)S(t−)Ñ(dt,dk),

dE(t) =
[
β1

(I(t)+Ψ1A(t))S(t)
N(t) +β2

P(t)S(t)
N(t) − (θ +µ)E(t)

]
dt +σ2E(t)dB2(t)

+
∫
H

η2(k)E(t−)Ñ(dt,dk),

dI(t) = [θω1E(t)− (τ1 +µ +ζ1)I(t)]dt +σ3I(t)dB3(t)+
∫
H

η3(k)I(t−)Ñ(dt,dk),

dP(t) = [θω2E(t)− (τ2 +µ +ζ2)P(t)]dt +σ4P(t)dB4(t)+
∫
H

η4(k)P(t−)Ñ(dt,dk),

dA(t) = [θ(1−ω1−ω2)E(t)− (τ3 +µ)A(t)]dt +σ5A(t)dB5(t)

+
∫
H

η5(k)A(t−)Ñ(dt,dk),

dR(t) = [τ3A(t)+ τ2P(t)− τ1I(t)−µR(t)]dt +σ6R(t)dB6(t)+
∫
H

η6(k)R(t−)Ñ(dt,dk),

where S(t−), E(t−), I(t−), P(t−), A(t−) and R(t−) are the left limit of S(t), E(t), I(t),

P(t), A(t) and R(t−), respectively. Ñ(dt,dk) = N(dt,dk)− ν(k)dt, N is a Poisson counting

measure with characteristic measure ν on measurable subset H of [0,∞), with ν(H) < ∞, and
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ηi : H×Ω −→ R (i = 1,2,3,4,5,6) represents the effects of random jumps it’s bounded and

continuous with respect to ν and B(H)×Ft-measurable.

Theorem 3.1. [16] For any initial value (S(0),E(0), I(0),P(0),A(0),R(0)) ∈ R6
+, there is a

unique solution (S(t),E(t), I(t),P(t),A(t),R(t)) to Equation (2) on t ≥ 0 and the solution will

remain in R6
+ with probability one, namely (S(t),E(t), I(t),P(t),A(t),R(t)) ∈ R6

+ for all t ≥ 0

almost surely (briefly a.s.).

We can prove the above theorem by the same method of Theorem 2.1. presented in [11]. In

the following section, we will present numerical simulations for the models (1), (2) and (3) to

demonstrate the effect of white and Lévy noises on the dynamics of the Covid-19 epidemic in

the Kingdom of Saudi Arabia.

4. NUMERICAL INVESTIGATION

The stochastic models with white noise and Lévy jumps are used to analyze the cases

infected by Covid-19 reported in the Kingdom of Saudi Arabia from the start of the pan-

demic. Then, to show the numerical simulation of systems (1), (2) and (3) we use the Euler

scheme presented in [17]. The initial conditions are presented as follows: S(0) = 34806870,

E(0) = 20000, I(0) = 2, P(0) = 100, A(0) = R(0) = 0. We consider the parameters registered

in the Kingdom of Saudi Arabia (KSA) since the start of the pandemic of Covid-19. According

to [9], the total population size is 35694557, and the value of the parameters Λ is 1254.9 per

day under the hypothesis that the current total population of KSA is susceptible to infection.

The average lifespan in years in the Kingdom of Saudi Arabia is 74.7, then, the natural mortal-

ity rate is reported by µ = (74.7∗365)−1. Also, we present the rest of the parameters in Table 1.

Therefore, by simple computation, we can obtain that R0 = 1.3965, then the disease

will persist in the population for the deterministic model (1) (see, Figure 2). If we arrive

to decrease the rate of transmission of the disease β1 and the transmission of disease rate

β2 due to (P), we find that the basic reproduction number will be less than one. For ex-

ample, for β1 = 0.3030 and β2 = 0.4242 we find exactly R0 = 0.8308 < 1. Hence, the

disease will die out in the population for the deterministic model (1) Figure 1. confirms
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this remark. In addition, we conclude that the coefficients β1 and β2 can likewise decrease

if we reduce the contact between the infected individuals and the other groups of the population.

On the other hand, we keep the same parameter values grouped in Table 1 (the case where

R0 = 1.3965), and to study the effect of environmental fluctuation on the dynamics of Covid-19,

we choose the white noise values in model (2) as: σ1 = 0.03, σ2 = 0.03, σ3 = 0.03, σ4 = 0.03,

σ5 = 0.03 and σ6 = 0.03. We note that the addition of the white noise terms to the systems (1)

leads to reduce the cases of infected individuals, Figure 3 validate this result. Next, we compare

the trajectory of the solution of systems (1) and (2) using different noises values such as:

Case 1.: σ1 = 0,σ2 = 0,σ3 = 0,σ4 = 0,σ5 = 0,σ6 = 0.

Case 2.: σ1 = 0.03,σ2 = 0.03,σ3 = 0.03,σ4 = 0.03,σ5 = 0.03,σ6 = 0.03.

Case 3.: σ1 = 0.05,σ2 = 0.05,σ3 = 0.05,σ4 = 0.05,σ5 = 0.05,σ6 = 0.05.

So, in the above cases, we observe in Figure 4 that when the value of white noise intensity

increases, the number of infected individuals with Covid-19 decreases. Similarly, in the

case where (R0 = 0.8308 < 1), we see that the disease tends more quickly to extinction in

the stochastic system (2) (see, Figure 5) and when the noise value increases (see, Figure 6).

Consequently, the large values of the white noise parameters lead to controlling the propagation

of the epidemic.

Therefore, in order to compare the spread of the epidemic in the three system (deterministic

(1), stochastic with white noise (2) and Stochastic with jumps (3), we keep the same parameter

values grouped in Table 1, we choose E = (0,1), ν(k) = 0.5, and the Lévy noise parameters

η1 = 0.01, η2 = 0.01, η3 = 0.01, η4 = 0.01, η5 = 0.01, η6 = 0.01. So, the result of the computer

running presented in Figure 7 shows that the environmental noises conduct to control the spread

of diseases.
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Table 1. Values of the parameters used in the simulation.

Parameter Value Source

Λ 14 Estimated

µ 1/(74.87*365) [18]

Ψ1 0.1001 Fitted

β1 0.5030 Fitted

β2 0.7242 Fitted

θ 0.1600 Fitted

ω1 0.4718 Fitted

ω2 0.4430 Fitted

ζ1 0.0124 Estimated

ζ2 0.0100 Fitted

τ1 0.3265 Fitted

τ2 0.5030 Fitted

τ3 0.0601 Fitted
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Figure 4. Comparison between the paths of stochastic (2) and deterministic (1) sys-

tems with different noise values.
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tems with different noise values..
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5. CONCLUSION

In this investigation, we proposed a stochastic differential equations system with and with-

out Lévy jumps that models the dynamics of Covid-19, and we applied it to the Kingdom of

Saudi Arabia case study. Our proposed model divides the population into six groups: suscep-

tible, exposed, symptomatic individuals super-spreader, asymptomatic and recovered. We have

impacted an environmental perturbation of white and Lévy noises types in the model (1) to

examine the effect of environment fluctuation and the grave and massive events on the trans-

mission of Covid-19. We have used the Euler scheme [17] to see the trajectory of the solution

and give a comparison between the models (1), (2), and (3) in the function of noise value and

the transmission rates. Then, we presented graphs (with, MATLAB 9.4) that show the power of

randomness to reduce the number of infected individuals by the Covid-19 epidemic in the King-

dom of Saudi Arabia. In our future direction and to ameliorate the model (3), we will examine

the effect of another environment noise named the Telegraphic or colored noise which repre-

sents the case where the transmission of Covid-19 in the population is affected by the diversity

of environmental regimes.
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