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Abstract: A mathematical model of a Holling type -II food web comprising prey-predator-scavenger is created and 

investigated in this study. Fear and quadratic harvesting are discussed. The properties of the system's solution are 

described in detail. All of the potential equilibrium points have been identified. Analytical research is done on local 

and global stability, persistence, local bifurcation, and Hopf- bifurcation. Numerical simulation is often used to explore 

the system's global dynamical behavior as well as the effects of altering parameter values. The solution appears to 

approach either the asymptotic stable point or a Hopf-bifurcation. Furthermore, both fear and harvesting have a 

stabilizing effect on the system's behavior up to a certain point, and then extinction occurred. 
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1. INTRODUCTION 

For ecologists and applied mathematics, the modeling study of predator-prey relationships is 

becoming the most important research issue. The basic predator-prey models of Lotka and Volterra 
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are, in fact, mathematical ecology's cornerstones. Several scholars have explored the Lotka and 

Volterra models thoroughly since they were initially introduced in the early 1900s. Their models 

have been improved, resulting in more realistic models like [1-4], for example. 

Nolting, Paullet, and Previte [5] investigated the effects of incorporating scavengers into a 

predator-prey system. They've discovered the condition that ensures scavengers' survival. Gupta 

and Chandra [6] explored the impacts of quadratic harvesting in a Lotka-Volterra type predator-

prey system with scavenger species. They discovered a Hopf-bifurcation in the model around the 

co-existing equilibrium point. Furthermore, the model depicts a period-doubling path to chaos, 

which can be controlled and made stable by a sufficient quantity of predator harvesting. Later, 

Satar, and Naji [7] devised and studied a prey-predator-scavenger model with a Michaelis-Menten 

type of harvesting function. They discovered that the suggested model is quite sensitive to changes 

in parameter values, particularly those related to the scavenger, and exhibits several sorts of local 

bifurcation. On the other hand, a Lotka-Volterra food web model that includes scavengers, 

toxicants, and harvesting is explored by Satar and Naji[8]. They explained that the model is 

extremely sensitive to changes in parameter values and that it experiences transcritical bifurcation 

at several equilibrium points. In the literature, there are also few research studies [9-12] that look 

at predator-prey interactions in the existence of scavenger species.  

Predation hazards are well known to have a negative impact on prey biomass and efficiency of 

the growth, and hence predators have an impact on the structure of food webs. Fear can cause prey 

to die, and it can also limit productivity, thus fear can be equally as important as predator killing 

in reducing prey populations [13–14]. Many prey-predator models have been proposed and 

thoroughly explored, in which the predator kills the prey or the predator's presence changes the 

behavior of the prey population due to predation fear [15-17]. The impact of prey fear and team 

defense versus predation on the dynamics of the food-web model was examined by Maghool and 

Naji [18]. They discovered that the fear factor acts as a system stabilizer up to a certain point, after 

which it causes the predator to become extinct. However, enhancing the prey's team defense causes 

predator species to become extinct. Fear has an effect on a stage structure prey-predator system 



3 

DYNAMICS OF A PREY-PREDATOR-SCAVENGER MODEL 

with anti-predator behavior, according to Rahi, Kurnaz, and Naji [19]. Ibrahim, Bahlool, Satar, 

and Naji [20] suggested and investigated a prey-predator system with a Holling type II functional 

response, which combines predation fear with a predator-dependent prey's refuge. They discovered 

that the system is bistable between a limit cycle and a coexistence equilibrium point, however, the 

fear has a destabilizing effect on the system's dynamics. 

Fear's effect on the dynamics of the prey-predator-scavenger model with quadratic refuge is 

addressed in this work. The formulation of the model is the subject of the next section. Local 

stability analysis is discussed in section three. The model's persistence criteria are provided in 

section (4). Section (5), on the other hand, is concerned with global stability. The local bifurcation 

was examined in Section (6). The Hopf bifurcation, on the other hand, is addressed in section (7). 

In section (8), there is a numerical simulation. The study's result is presented in section (9). 

 

2. FORMULATION OF THE MODEL 

This section deals with the mathematical formulation of a real-world food web system. It is 

assumed that the food web consists of prey, a predator, and a scavenger that feeds on the prey 

carcasses of the predator.  

According to the Holling type II functional response, the food is assumed to be transferred between 

the food web levels. However, the growth rate of the prey is affected due to the prey’s fear of the 

predators. The scavenger consumes the carcasses of the predator whenever they existed according 

to the linear type of functional response. Finally, there is proportional quadratic harvesting on the 

predator and scavenger. As a result, the dynamics of a food web system that follows the above 

assumptions can be represented mathematically using the following set of first-order nonlinear 

differential equations. 

 

𝑑𝑋

𝑑𝑇
=

𝑟𝑋

1+𝑓(𝑌+𝑍)
− 𝑏𝑋2 −

𝑎1𝑋𝑌

𝑏1+𝑋
−

𝑎2𝑋𝑍

𝑏2+𝑋
,

𝑑𝑌

𝑑𝑇
=

𝑎3𝑋𝑌

𝑏1+𝑋
− 𝑑1𝑌 − 𝑞1𝐸1𝑌

2,                

𝑑𝑍

𝑑𝑇
=

𝑎4𝑋𝑍

𝑏2+𝑋
+ 𝑎5𝑌𝑍 − 𝑑2𝑍 − 𝑞2𝐸2𝑍

2,

                            (1)  

where 𝑋(0), 𝑌(0) , and 𝑍(0)  are all positive and denote the population density of prey, the 
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population density of predator, and the population density of scavengers at time 𝑇 respectively. 

The description of model parameters can be described in the following table (1). 

All the above parameters are positive with 𝑓 ≥ 0. The next non-dimensional food web model, 

which is easier to study and analyze, is created by utilizing the following non-dimensional 

variables and parameters. 

 

Table 1: parameters description 

Parameter Description 

𝑟 The net growth rate 

𝑓 The fear rate 

𝑏 The intraspecific competition 

𝑎1, 𝑎2 The attack rates of predator and scavenger respectively 

𝑎3, 𝑎4 The conversion rates of prey’s biomass to predator and scavenger respectively 

𝑏1, 𝑏2 The half-saturation constant of predator and scavenger respectively 

𝑎5 The conversion rate of the predator’s carcasses biomass to scavenger 

𝑑1, 𝑑2 The death rates of predators and scavengers respectively 

𝑞1, 𝑞2 The catchability constants of predator and scavenger respectively 

𝐸1, 𝐸2 The harvesting efforts of predator and scavenger respectively 

𝑡 = 𝑟𝑇, 𝑥 =
𝑏

𝑟
𝑋, 𝑦 =

𝑎1𝑏

𝑟2
𝑌, 𝑧 =

𝑎2𝑏

𝑟2
𝑍

𝑤0 =
𝑟2𝑓

𝑎2𝑏
,𝑤1 =

𝑎2

𝑎1
, 𝑤2 =

𝑏1𝑏

𝑟
, 𝑤3 =

𝑏2𝑏

𝑟
, 𝑤4 =

𝑎3

𝑟
, 𝑤5 =

𝑑1

𝑟
 ,

       

𝑤6 =
𝑞1𝑟𝐸1

𝑎1𝑏
,𝑤7 =

𝑎4

𝑟
, 𝑤8 =

𝑎5𝑟

𝑎1𝑏
,𝑤9 =

𝑑2

𝑟
, 𝑤10 =

𝑞2𝑟𝐸2

𝑎2𝑏
 .         

 

However, the non-dimensional food web model that corresponds system (1) takes the form: 

 

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0(𝑤1𝑦+𝑧)
− 𝑥 −

𝑦

𝑤2+𝑥
−

𝑧

𝑤3+𝑥
] = 𝑥𝑓1(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑤4𝑥

𝑤2+𝑥
− 𝑤5 − 𝑤6𝑦] = 𝑦𝑓2(𝑥, 𝑦, 𝑧),                         

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑤7𝑥

𝑤3+𝑥
+ 𝑤8𝑦 − 𝑤9 − 𝑤10𝑧] = 𝑧𝑓3(𝑥, 𝑦, 𝑧).           

                    (2) 
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Obviously, system (2) is defined on the following domain ℝ+
3 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3: 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥

0} . Moreover, the functions of the right-hand side of the system (2) are continuous and have 

continuous partial derivatives, hence they are Lipschitz functions. Therefore, the solution of 

system (2) exists and is unique. Furthermore, the solution is uniformly bounded as discussed in 

the following theorem. 

Theorem (1): The solutions of the system (2) are uniformly bounded. 

Proof. Assume that (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is any solution of system (2), then from the first equation, 

it is observed that 

 
𝑑𝑥

𝑑𝑡
≤ 𝑥 [

1

1+𝑤0(𝑤1𝑦+𝑧)
− 𝑥] ≤ 𝑥(1 − 𝑥). 

Hence, 𝑥(𝑡) ≤ 1  as  𝑡 → ∞ . Now, define the function: 𝑁1(𝑡) = 𝑥(𝑡) +
𝑦(𝑡)

𝑤4
, then after some 

algebraic calculation we have 

𝑑𝑁1

𝑑𝑡
≤ 𝑥 −

𝑤5

𝑤4
𝑦 ≤ (1 + 𝑤5)𝑥 − 𝑤5 (𝑥 +

𝑦

𝑤4
). 

Hence it is getting that 

      
𝑑𝑁1

𝑑𝑡
+𝑤5𝑁1 ≤ (1 + 𝑤5). 

By using Gronwall inequality, we obtain that 𝑦 ≤
𝑤4(1+𝑤5)

𝑤5
= 𝛽1 as 𝑡 → ∞. 

Now, we define 𝑁2(𝑡) = 𝑥 +
𝑦(𝑡)

𝑤4
+

𝑧(𝑡)

𝑤7
, then 

      
𝑑𝑁2

𝑑𝑡
≤ 2𝑥 − 𝑥 −

𝑤5

𝑤4
𝑦 −

(𝑤9−𝑤8𝛽1)

𝑤7
𝑧 ≤ 2 − 𝜇 (𝑥 +

𝑦

𝑤4
+

𝑧

𝑤7
),   

where 𝜇 = 𝑚𝑖𝑛 {1, 𝑤5, 𝑤9 − 𝑤8𝛽1}.   Thus, it is getting that 

      
𝑑𝑁2

𝑑𝑡
+ 𝜇𝑁2 ≤ 2 gives 𝑁2 ≤

2

𝜇
 as 𝑡 → ∞.  

Hence all solutions are uniformly bounded and that guarantees their validity.             

3. LOCAL STABILITY ANALYSIS 

There are at most five non-negative equilibrium points of the system (2), existing conditions and 

stability analyses of them are described below: 

The evanescence equilibrium point 𝑃0 = (0,0,0) always exists.  
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The predation-free equilibrium point 𝑃𝑥 = (1,0,0) always exists too. 

The scavenger-free equilibrium point that denoted by 𝑃𝑥𝑦 = (�̂�, �̂�, 0), where 

�̂� =
𝑤4�̂�−𝑤5(𝑤2+�̂�)

(𝑤2+�̂�)𝑤6
,                                 (3) 

with �̂� is a positive root of the fourth-order equation: 

𝛾1𝑥
4 + 𝛾2𝑥

3 + 𝛾3𝑥
2 + 𝛾4𝑥 + 𝛾5 = 0,                                                    

where: 

𝛾1 = −𝑤0𝑤1𝑤6(𝑤4 + 𝑤5) − 𝑤6
2 < 0,  

𝛾2 = −2𝑤0𝑤1𝑤2𝑤6(𝑤4 −
3

2
𝑤5) + 𝑤6

2(1 − 3𝑤2), 

𝛾3 = (−𝑤0𝑤1𝑤4
2 + 2𝑤0𝑤1𝑤4𝑤5 − 𝑤0𝑤1𝑤5

2 − 𝑤4𝑤6 − 𝑤0𝑤1𝑤2
2𝑤4𝑤6

+𝑤5𝑤6 + 3𝑤0𝑤1𝑤2
2𝑤5𝑤6 + 3𝑤2𝑤6

2 − 3𝑤2
2𝑤6

2),
 

𝛾4 = 2𝑤0𝑤1𝑤2𝑤5(𝑤4 − 𝑤5) − 𝑤2𝑤6(𝑤4 − 2𝑤5) + 𝑤0𝑤1𝑤2
3𝑤5𝑤6 − 𝑤2

2𝑤6
2(𝑤2 − 3), 

𝛾5 = −𝑤2
2[𝑤0𝑤1𝑤5

2 − 𝑤6(𝑤5 + 𝑤2𝑤6)]                                                                                     

Therefore, 𝑃𝑥𝑦 exists uniquely in the interior of the positive quadrant of the 𝑥𝑦 −plane provided 

that the following sufficient conditions are met. 

0 <
𝑤2𝑤5

(𝑤4−𝑤5)
< �̂�,                                                (4a)                                                                            

 𝑤0𝑤1𝑤5
2 < 𝑤6(𝑤5 + 𝑤2𝑤6),                           (4b) 

  𝛾2 < 0,                                       (4c) 

 𝛾4 > 0.                                       (4d) 

The predator-free equilibrium point 𝑃𝑥𝑧 = (�̅�, 0, 𝑧̅), where 

𝑧̅ =
𝑤7�̅�−𝑤9(𝑤3+�̅�)

(𝑤3+�̅�)𝑤10
,                                       (5) 

with �̅�  is a positive root of the fourth-order equation: 

𝜔1𝑧
4 + 𝜔2𝑧

3 + 𝜔3𝑧
2 + 𝜔4𝑧 + 𝜔5 = 0,                                                   

where: 

𝜔1 = −𝑤0𝑤10(𝑤7 − 𝑤9) − 𝑤10
2 < 0, 

𝜔2 = (−2𝑤0𝑤3𝑤7𝑤10 + 3𝑤0𝑤3𝑤9𝑤10 + 𝑤10
2 − 3𝑤3𝑤10

2 ), 

𝜔3 = (−𝑤0𝑤7
2 + 2𝑤0𝑤7𝑤9 − 𝑤0𝑤9

2 − 𝑤7𝑤10 − 𝑤0𝑤3
2𝑤7𝑤10 + 𝑤9𝑤10

+3𝑤0𝑤3
2𝑤9𝑤10 + 3𝑤3𝑤10

2 − 3𝑤3
2𝑤10

2 ),
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𝜔4 = (2𝑤0𝑤3𝑤7𝑤9 − 2𝑤0𝑤3𝑤9
2 − 𝑤3𝑤7𝑤10 + 2𝑤3𝑤9𝑤10

+𝑤0𝑤3
3𝑤9𝑤10 + 3𝑤3

2𝑤10
2 − 𝑤3

3𝑤10
2 ),

 

𝜔5 = −𝑤3
2 [𝑤0𝑤9

2 − 𝑤10(𝑤9 + 𝑤3𝑤10)]. 

Accordingly, 𝑃𝑥𝑧  exists uniquely in the interior of the positive quadrant of the 𝑥𝑧 − plane 

provided that the following sufficient conditions are met. 

0 <
𝑤9𝑤3

(𝑤7−𝑤9)
< �̅�,                                      (6a) 

𝑤0𝑤9
2 < 𝑤10(𝑤9 + 𝑤3𝑤10),                              (6b) 

 𝜔2 < 0,                                        (6c) 

 𝜔4 > 0.                                        (6d) 

The coexistence equilibrium point 𝑃𝑥𝑦𝑧 = (𝑥∗, 𝑦∗, 𝑧∗), where 

𝑦∗ =
(𝑤4−𝑤5)𝑥∗−𝑤2𝑤5   

𝑤6(𝑤2+𝑥∗)
                 

𝑧∗ =
1

𝑤10
[

𝑤7𝑥∗

𝑤3+𝑥∗ + 𝑤8𝑦
∗ − 𝑤9]

},                           (7) 

with 𝑥∗ is a positive root of the seven-order equation: 

𝛿1𝑥
7 + 𝛿2𝑥

6+𝛿3𝑥
5 + 𝛿4𝑥

4 + 𝛿5𝑥
3 + 𝛿6𝑥

2 + 𝛿7𝑥 + 𝛿8 = 0,          

where: 𝛿1 = 𝑤0𝑤6𝑤10(𝑤1𝑤10 + 𝑤8)(𝑤4 − 𝑤5) + 𝑤10
2𝑤6

2 + 𝑤0𝑤10𝑤6
2(𝑤7 − 𝑤9) > 0, 

    

𝛿8 = 𝑤10
2𝑤2

2𝑤3
3𝑤5(𝑤0𝑤1𝑤5 − 𝑤6) + 𝑤10𝑤2

3𝑤3
2(𝑤0𝑤1𝑤5

2𝑤8 − 𝑤10𝑤6
2)

+𝑤2
3𝑤3

2𝑤5𝑤8𝑤10(𝑤0𝑤5 − 𝑤6) + 𝑤0𝑤2
3𝑤3

2𝑤5
2𝑤8

2

+𝑤0𝑤1𝑤10𝑤2
3𝑤3

2𝑤5𝑤6𝑤9 + 𝑤10𝑤2
2𝑤3

2𝑤6𝑤9(𝑤0𝑤3𝑤5 − 𝑤10𝑤2𝑤6)

+2𝑤0𝑤2
3𝑤3

2𝑤5𝑤6𝑤8𝑤9 + 𝑤0𝑤2
3𝑤3

2𝑤6
2𝑤9

2,

 

while, 𝛿𝑖; 𝑖 = 2,3,4,5,6,7 are complicated functions of systems’ parameters. 

Accordingly, 𝑃𝑥𝑦𝑧 exists uniquely in the interior of the positive octant (𝑖𝑛𝑡. ℝ+
3 ) provided that the 

following sufficient conditions are met. 

  0 <
𝑤2𝑤5

(𝑤4−𝑤5)
< 𝑥∗,                                       (8a) 

  𝑤9 < 𝑤7,                                        (8b) 

with one set of the following sets of conditions: 

  

𝛿2 > 0, 𝛿3 > 0, 𝛿4 > 0, 𝛿5 > 0, 𝛿6 < 0, 𝛿7 < 0, 𝛿8 < 0,
𝛿2 > 0, 𝛿3 > 0, 𝛿4 > 0, 𝛿5 < 0, 𝛿6 < 0, 𝛿7 < 0, 𝛿8 < 0,
𝛿2 > 0, 𝛿3 > 0, 𝛿4 > 0, 𝛿5 > 0, 𝛿6 > 0, 𝛿7 > 0, 𝛿8 < 0,
𝛿2 < 0, 𝛿3 < 0, 𝛿4 < 0, 𝛿5 < 0, 𝛿6 < 0, 𝛿7 < 0, 𝛿8 < 0.

}                      (8c) 
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For the stability analysis of the above equilibrium points, consider the Jacobian matrix 𝑀 at the 

point (𝑥, 𝑦, 𝑧) that can be written as: 

  𝑀((𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑥

𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥

𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦

𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧

𝜕𝑓3

𝜕𝑦
𝑧

𝜕𝑓3

𝜕𝑧
+ 𝑓3]

 
 
 
 

,                     (9) 

where 

     
𝜕𝑓1

𝜕𝑥
= −1 +

𝑦

(𝑤2+𝑥)2
+

𝑧

(𝑤3+𝑥)2
, 

𝜕𝑓1

𝜕𝑦
= −

𝑤0𝑤1

(1+𝑤0(𝑤1𝑦+𝑧))2
−

1

𝑤2+𝑥
,  

𝜕𝑓1

𝜕𝑧
= −

𝑤0

(1+𝑤0(𝑤1𝑦+𝑧))2
−

1

𝑤3+𝑥
, 

𝜕𝑓2

𝜕𝑥
=

𝑤2𝑤4

(𝑤2+𝑥)2
, 

𝜕𝑓2

𝜕𝑦
= −𝑤6, 

𝜕𝑓2

𝜕𝑧
= 0, 

𝜕𝑓3

𝜕𝑥
=

𝑤3𝑤7

(𝑤3+𝑥)2
, 

𝜕𝑓3

𝜕𝑦
= 𝑤8, 

𝜕𝑓3

𝜕𝑧
= −𝑤10 

Now, by substituting the above equilibrium points in Jacobian 𝑀(𝑥, 𝑦, 𝑧) one at a time and then 

computing their eigenvalues it is observed that: 

At the evanescence equilibrium point, the eigenvalues of the matrix 𝑀(𝑃0) are given by (1, −𝑤5, 

and −𝑤9). As a result, 𝑃0 is a saddle point. 

At the predation-free equilibrium point, the eigenvalues of the matrix 𝑀(𝑃𝑥) are determined as: 

𝜆11 = −1, 𝜆12 =
𝑤4

𝑤2+1
− 𝑤5, and 𝜆13 =

𝑤7

𝑤3+1
− 𝑤9.                  (10)  

Consequently, 𝑃𝑥 is a locally asymptotically stable if and only if the following conditions are met: 

𝑤4 < 𝑤5(𝑤2 + 1).                                  (11a) 

𝑤7 < 𝑤9(𝑤3 + 1).                                (11b) 

For the scavenger-free equilibrium point the Jacobian matrix can be written as: 

 𝑀(𝑃𝑥𝑦) =

[
 
 
 
 �̂� (−1 +

�̂�

(𝑤2+�̂�)2
) −�̂� (

𝑤0𝑤1

(1+𝑤0𝑤1�̂�)2
+

1

𝑤2+�̂�
) −�̂� (

𝑤0

(1+𝑤0𝑤1�̂�)2
+

1

𝑤3+�̂�
)

�̂� (
𝑤2𝑤4

(𝑤2+�̂�)2
) −𝑤6�̂� 0

0 0
𝑤7�̂�

𝑤3+�̂�
+ 𝑤8�̂� − 𝑤9 ]

 
 
 
 

     (12) 

The characteristic equation of 𝑀(𝑃𝑥𝑦) can be written as follows: 

  [𝜆2 − 𝑇𝑥𝑦𝜆 + 𝐷𝑥𝑦] [
𝑤7�̂�

𝑤3+�̂�
+ 𝑤8�̂� − 𝑤9 − 𝜆] = 0,                    (13) 

where: 
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   𝑇𝑥𝑦 = �̂� (−1 +
�̂�

(𝑤2+�̂�)2
) − 𝑤6�̂� , 

 𝐷𝑥𝑦 = −𝑤6�̂��̂� (−1 +
�̂�

(𝑤2+�̂�)2
) + �̂��̂� (

𝑤0𝑤1

(1+𝑤0𝑤1�̂�)2
+

1

𝑤2+�̂�
) (

𝑤2𝑤4

(𝑤2+�̂�)2
). 

Therefore, the eigenvalues of 𝑀(𝑃𝑥𝑦) are determined as 𝜆2𝑖 =
𝑇𝑥𝑦

2
±

1

2
√𝑇𝑥𝑦

2 − 4𝐷𝑥𝑦, for 𝑖 =

1,2 and 𝜆23 =
𝑤7�̂�

𝑤3+�̂�
+ 𝑤8�̂� − 𝑤9. Accordingly, all the eigenvalues have negative real parts and 

then 𝑃𝑥𝑦 is said to be locally asymptotically stable if and only if the following conditions hold. 

 �̂� <
𝑤3(𝑤9−𝑤8�̂�)

𝑤7−(𝑤9−𝑤8�̂�)
.                                      (14a) 

  �̂� < (𝑤2 + �̂�)2                        (14b) 

For the predator-free equilibrium point the Jacobian matrix can be written as: 

  𝑀(𝑃𝑥𝑧) =

[
 
 
 
 �̅� (−1 +

�̅�

(𝑤3+�̅�)2
) −�̅� (

𝑤0𝑤1

(1+𝑤0�̅�)2
+

1

𝑤2+�̅�
) −�̅� (

𝑤0

(1+𝑤0�̅�)2
+

1

𝑤3+�̅�
)

0
𝑤4�̅�

𝑤2+�̅�
− 𝑤5 0

𝑧̅ (
𝑤3𝑤7

(𝑤3+�̅�)2
) 𝑤8𝑧̅ −𝑤10𝑧̅ ]

 
 
 
 

      (15) 

The characteristic equation of 𝑀(𝑃𝑥𝑧) can be written as follows: 

  [𝜆2 − 𝑇𝑥𝑧𝜆 + 𝐷𝑥𝑧] [
𝑤4�̅�

𝑤2+�̅�
− 𝑤5 − 𝜆] = 0,                          (16) 

where: 

  𝑇𝑥𝑧 = �̅� (−1 +
�̅�

(𝑤3+�̅�)2
) − 𝑤10𝑧̅ , 

  𝐷𝑥𝑧 = −𝑤10�̅�𝑧̅ (−1 +
�̅�

(𝑤3+�̅�)2
) + �̅�𝑧̅ (

𝑤0

(1+𝑤0�̅�)2
+

1

𝑤3+�̅�
) (

𝑤3𝑤7

(𝑤3+�̅�)2
). 

Therefore, the eigenvalues of 𝑀(𝑃𝑥𝑧)  are determined as 𝜆2𝑖 =
𝑇𝑥𝑧

2
±

1

2
√𝑇𝑥𝑧

2 − 4𝐷𝑥𝑧 , for 𝑖 =

1,3 and 𝜆22 =
𝑤4�̅�

𝑤2+�̅�
− 𝑤5. Accordingly, all the eigenvalues have negative real parts and then 𝑃𝑥𝑧 

is said to be locally asymptotically stable if and only if the following conditions hold. 

  �̅� <
𝑤2𝑤5

𝑤4−𝑤5
.                                       (17a) 

  𝑧̅ < (𝑤3 + �̅�)2.                                    (17b) 

Theorem (2): Suppose that the coexistence equilibrium point of the system (2) exists, then it is a 

locally asymptotically stable provided that the following sufficient conditions hold 



10 

MOHAMMED ABDELLATIF AHMED, DAHLIA KHALED BAHLOOL 

𝑦∗

(𝑥∗+𝑤2)2
+

𝑧∗

(𝑥∗+𝑤3)2
< 1.                                                (18a) 

𝑎11𝑎22𝑎33 − 𝑎13𝑎21𝑎33 < 0.                                            (18b) 

Proof: The Jacobian matrix of the system (2) at 𝑃𝑥𝑦𝑧 = (𝑥∗, 𝑦∗, 𝑧∗), can be written as: 

𝑀(𝑃𝑥𝑦𝑧) = [𝑎𝑖𝑗]3∗3
,                                      (19) 

where: 

  𝑎11 = 𝑥∗ (−1 +
𝑦∗

(𝑤2+𝑥∗)2
+

𝑧∗

(𝑤3+𝑥∗)2
), 𝑎12 = −𝑥∗ (

𝑤0𝑤1

(1+𝑤0(𝑤1𝑦∗+𝑧∗))2
+

1

𝑤2+𝑥∗),  

𝑎13 = −𝑥∗ (
𝑤0

(1+𝑤0(𝑤1𝑦∗+𝑧∗))2
+

1

𝑤3+𝑥∗
), 𝑎21 =

𝑤2𝑤4𝑦∗

(𝑤2+𝑥∗)2
, 𝑎22 = −𝑤6𝑦

∗,𝑎23 = 0, 

𝑎31 =
𝑤3𝑤7𝑧∗

(𝑤3+𝑥∗)2
, 𝑎32 = 𝑤8𝑧

∗, 𝑎33 = −𝑤10𝑧
∗. 

Therefore the characteristic equation of 𝑀(𝑃𝑥𝑦𝑧) can be written as: 

  𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0,                                 (20) 

where 

  𝐴 = −(𝑎11 + 𝑎22 + 𝑎33), 𝐵 = 𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 + 𝑎22𝑎33, 

  𝐶 = −(𝑎11𝑎22𝑎33 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎12𝑎21𝑎33). 

with 

  

∆= 𝐴𝐵 − 𝐶 = −(𝑎11+𝑎22)[𝑎11𝑎22 − 𝑎12𝑎21]                                             

−(𝑎11+𝑎33)[𝑎11𝑎33 − 𝑎13𝑎31] − (𝑎22𝑎33)[𝑎11+𝑎22+𝑎33]
−𝑎11𝑎22𝑎33 + 𝑎13𝑎21𝑎32.

 

Note that, an application to the Routh-Hurwitz criterion, which is required that 𝐴 > 0, 𝐶 > 0, 

and ∆> 0, ensures that all the roots of equation (20) have negative real parts. Direct computation 

shows that all the requirements of the Routh-Hurwitz criterion are satisfied under sufficient 

conditions (18a)-(18b). Hence, 𝑃𝑥𝑦𝑧 is locally asymptotically stable.                                             

4. PERSISTENCE 

The survival of all species as time passes without limit is addressed in this section. In the 

deterministic sense, a species' persistence refers to its continuing existence. Persistence, on the 

other hand, indicates that lim
𝑡→∞

inf 𝑥𝑖(𝑡) > 0  for each population 𝑥𝑖(𝑡)  when 𝑥𝑖(0) > 0 . This 
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means that each of the system's (2) trajectories is eventually restricted away from the coordinate 

planes. As a result, if each variable 𝑥, 𝑦, and 𝑧 survives, system (2) is said to persist. Accordingly, 

the possibility of the existence of periodic dynamics in the boundary planes is investigated first.  

There are two subsystems that can be driven from the system (2). These are written as follows: 

Subsystem A, which is in the 𝑥𝑦 −plane, is written as: 

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0𝑤1𝑦
− 𝑥 −

𝑦

𝑤2+𝑥
] = ℎ1(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑤4𝑥

𝑤2+𝑥
− 𝑤5 − 𝑤6𝑦] = ℎ2(𝑥, 𝑦).    

                         (21) 

Subsystem B, which is in the 𝑥𝑧 −plane, is written as: 

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤0𝑧
− 𝑥 −

𝑧

𝑤3+𝑥
] = 𝑔1(𝑥, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑤7𝑥

𝑤3+𝑥
− 𝑤9 − 𝑤10𝑧] = 𝑔2(𝑥, 𝑧).

                        (22) 

Consider the Dulac functions as 𝐵1(𝑥, 𝑦) =
1

𝑥𝑦
, and 𝐵2(𝑥, 𝑧) =

1

𝑥𝑧
, which satisfy 𝐵𝑖 > 0; 𝑖 = 1,2, 

and 𝐶1  functions in the 𝐼𝑛𝑡. ℝ+
2   of the 𝑥𝑦 −  and 𝑥𝑧 − planes respectively. Hence, direct 

computation shows that  

∆(𝑥, 𝑦) =
𝜕(𝐵1 ℎ1)

𝜕𝑥
+

𝜕(𝐵1 ℎ2)

𝜕𝑦
= −

1

𝑦
+

1

(𝑤2 +  𝑥)2
−

𝑤6

𝑥
 

Then ∆(𝑥, 𝑦)  does not identically zero in the 𝐼𝑛𝑡. ℝ+
2  of the 𝑥𝑦 −plane and does not change the 

sign if and only if the following condition holds: 

  

1

(𝑤2+ 𝑥)2
>

𝑤6

𝑥
+

1

𝑦

𝑂𝑅
1

(𝑤2+ 𝑥)2
 <

𝑤6

𝑥
+

1

𝑦

}                                 (23) 

A similar result is obtained regarding ∆(𝑥, 𝑧) if and only if the following condition holds: 

  

1

(𝑤3+ 𝑥)2
>

𝑤10

𝑥
+

1

𝑧

𝑂𝑅
1

(𝑤3+ 𝑥)2
 <

𝑤10

𝑥
+

1

𝑧

}                                   (24) 

Thus, under the conditions (23) and (24), there is no closed curve in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑥𝑦 − and 

𝑥𝑧 −planes according to the Dulac-Bendixson criterion [20]. As a result, the Poincare-Bendixon 

theorem [21] states that the unique equilibrium point in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑥𝑦 − and 𝑥𝑧 −planes, 



12 

MOHAMMED ABDELLATIF AHMED, DAHLIA KHALED BAHLOOL 

as defined by 𝑃𝑥𝑦  and 𝑃𝑥𝑧 , is globally asymptotically stable whenever they are locally 

asymptotically stable. 

Theorem (3): If conditions (23)-(24) and the following requirements are met, system (2) is 

uniformly persistent. 

  𝑤4 > 𝑤5(𝑤2 + 1),                                            (25a) 

  𝑤7 > 𝑤9(𝑤3 + 1),                                      (25b) 

  �̂� >
𝑤3(𝑤9−𝑤8�̂�)

𝑤7−(𝑤9−𝑤8�̂�)
,                                      (25c) 

  �̅� >
𝑤2𝑤5

𝑤4−𝑤5
.                                            (25d) 

Proof: According to the method of average Lyapunov function [22], define the following function 

𝜑(𝑥, 𝑦, 𝑧) = 𝑥𝑞1 𝑦𝑞2 𝑧𝑞3 , where 𝑞𝑗 , ∀𝑗 = 1,2,3  are positive constants. Hence, 𝜑(𝑥, 𝑦, 𝑧) > 0 , 

for all (𝑥, 𝑦, 𝑧) ∈ 𝑖𝑛𝑡. ℝ+
3  and 𝜑(𝑥, 𝑦, 𝑧) → 0 when anyone of their variables approaches zero. 

Therefore, it is obtained that 

Ω(𝑥, 𝑦, 𝑧) =
𝜑′(𝑥, 𝑦, 𝑧)

𝜑(𝑥, 𝑦, 𝑧)
= 𝑞1 [

1

1 + 𝑤0(𝑤1𝑦 + 𝑧)
− 𝑥 −

𝑦

𝑤2 + 𝑥
−

𝑧

𝑤3 + 𝑥
]

+𝑞2 [
𝑤4𝑥

𝑤2 + 𝑥
− 𝑤5 − 𝑤6𝑦] + 𝑞3 [

𝑤7𝑥

𝑤3 + 𝑥
+ 𝑤8𝑦 − 𝑤9 − 𝑤10𝑧] .

      

 

Now, according to the average Lyapunov function the proof is done if Ω(𝑃) > 0 for any attractor 

point 𝑃 in the boundary planes, for a suitable selection of constants 𝑞𝑖 > 0, 𝑖 = 1,2,3. 

Since 

 Ω(𝑃0) = 𝑞1 − 𝑤5𝑞2 − 𝑤9𝑞3,    

Ω(𝑃𝑥) = 𝑞2 [
𝑤4

𝑤2+1
− 𝑤5] + 𝑞3 [

𝑤7

𝑤3+1
− 𝑤9], 

 Ω(𝑃𝑥𝑦) = 𝑞3 [
𝑤7�̂�

𝑤3+�̂�
+ 𝑤8�̂� − 𝑤9], 

 Ω(𝑃𝑥𝑧) = 𝑞2 [
𝑤4�̅�

𝑤2+�̅�
− 𝑤5]. 

Then, selecting 𝑞1  to be a sufficiently large value leads to Ω(𝑃0) > 0 . However, Ω(𝑃𝑥) > 0 , 

Ω(𝑃𝑥𝑦) > 0 , and Ω(𝑃𝑥𝑧) > 0  provided that conditions (25a), (25b), (25c), and (25d) hold 

respectively. Thus the proof is done.      
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5. GLOBAL STABILITY 

The basin of attraction that belongs to 𝑖𝑛𝑡. ℝ+
3   for each locally asymptotically stable point is 

determined utilizing the method of the Lyapunov function in this section. The equilibrium point is 

said to be globally asymptotically stable if its basin of attraction is the 𝑖𝑛𝑡. ℝ+
3 . 

Theorem (4): Suppose that 𝑃𝑥 is locally asymptotically stable, then it is globally asymptotically 

stable if the following conditions are met: 

𝑤5

 𝑤4
> 𝑤0𝑤1 +

1

 𝑤2
                                                                    (26a) 

𝑤9

 𝑤7
>

𝑤8

 𝑤7
 𝛽1 + 𝑤0 +

1

 𝑤3
                                                            (26b) 

 Proof: Define the real-valued function, V1 = q1 (𝑥 − �̃� − �̃� ln
x

�̃�
) + q2𝑦 + q3𝑧 , with �̃� = 1 . 

Direct computation shows that V1: 𝑈1 → ℝ, where 𝑈1 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0}, so 

that V1(𝑃𝑥) = 0 , and V1(𝑥, 𝑦, 𝑧) > 0 , for all (𝑥, 𝑦, 𝑧) ∈ 𝑈1 − 𝑃𝑥 . Moreover, straightforward 

computation gives that:  

𝑑V1

𝑑𝑡
= q1

𝑑𝑥 

𝑑𝑡
(
𝑥−�̃�

𝑥
) + q2

𝑑𝑦 

𝑑𝑡
+ q3

𝑑𝑧 

𝑑𝑡
, 

𝑑V1

𝑑𝑡
≤ −𝑞1(𝑥 − �̃�)2 +

𝑞1𝑤0𝑤1 �̃�𝑦

1+𝑤0𝑤1𝑦+𝑤0𝑧
+

𝑞1𝑤0�̃�𝑧

1+𝑤0𝑤1𝑦+𝑤0𝑧
                         

−(𝑞1 − 𝑤4𝑞2)
𝑥𝑦

𝑤2+𝑥
− (𝑞1 − 𝑤7𝑞3)

𝑥𝑧

𝑤3+𝑥
+

𝑞1�̃�𝑦

𝑤2+𝑥

+
𝑞1�̃�𝑧

𝑤3+𝑥
− 𝑞2𝑤5𝑦 + 𝑞3𝑤8𝑦𝑧 − 𝑞3𝑤9𝑧.

. 

Selecting the positive constant values as q1 = 1, q2 = 
1

 𝑤4
, and q3 =

1

 𝑤7
, then using maximize 

concept with the upper bound constant 𝛽1 yields that: 

𝑑V1

𝑑𝑡
≤ −(𝑥 − 1)2 − (

𝑤5

𝑤4
− 𝑤0𝑤1 −

1

𝑤2
) 𝑦 − (

𝑤9

𝑤7
−

𝑤8

𝑤7
𝛽1 − 𝑤0 −

1

 𝑤3
) 𝑧. 

Hence, conditions (26a), and (26b) give that 
𝑑V1

𝑑𝑡
< 0. Hence, 𝑃𝑥 is globally asymptotically stable.   

Theorem (5): Suppose that 𝑃𝑥𝑦 is locally asymptotically stable, then it is globally asymptotically 

stable if the following conditions are met: 

�̂� < 𝑤2(𝑤2 + �̂�).                                                                  (27a) 

α12
2 < 4𝛼11𝛼22.                                                                    (27b) 



14 

MOHAMMED ABDELLATIF AHMED, DAHLIA KHALED BAHLOOL 

�̂�

𝑤3
+

𝑤8

𝑤7
𝛽1 <

𝑤9

𝑤7
.                                                                   (27c) 

 Proof: Define the real-valued function, V2 = 𝛼1 (𝑥 − �̂� − �̂�ln
x

�̂�
) + 𝛼2 (𝑦 − �̂� − �̂� ln

y

�̂�
) + α3𝑧. 

Direct computation shows that V2: 𝑈2 → ℝ, where 𝑈2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0}, so 

that V2(𝑃𝑥𝑦) = 0 , and V2(𝑥, 𝑦, 𝑧) > 0 , for all (𝑥, 𝑦, 𝑧) ∈ 𝑈2 − 𝑃𝑥𝑦 . Moreover, straightforward 

computation gives that: 

𝑑V2

𝑑𝑡
= α1 (

𝑥−�̂�

𝑥
)

𝑑𝑥 

𝑑𝑡
+ α2 (

𝑦−�̂�

𝑦
)

𝑑𝑦 

𝑑𝑡
+ α3

𝑑𝑧 

𝑑𝑡
. 

Direct calculation and using maximize concept with the upper bound constant 𝛽1 yields that: 

 

𝑑V2

𝑑𝑡
≤ −[1 −

�̂�

(𝑤2+𝑥)(𝑤2+�̂�)
] 𝛼1(𝑥 − �̂�)2 − 𝑤6𝛼2(𝑦 − �̂�)2                                   

− [
𝛼1𝑤0𝑤1

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0𝑤1�̂�)
+

𝛼1(𝑤2+�̂�)−𝑤2𝑤4𝛼2

(𝑤2+𝑥)(𝑤2+�̂�)
] (𝑥 − �̂�)(𝑦 − �̂�)

−(𝛼1 − 𝑤7𝛼3)
𝑥𝑧

𝑤3+𝑥
− (𝑤9𝛼3 −

𝛼1�̂�

𝑤3
− 𝑤8𝛼3𝛽1) 𝑧.

 

Now, selecting the positive constant values as 𝛼1 = 1, α2 = 
 𝑤2+�̂�

 𝑤2𝑤4
, and α3 =

1

 𝑤7
 gives: 

 

𝑑V2

𝑑𝑡
≤ −[1 −

�̂�

(𝑤2+𝑥)(𝑤2+�̂�)
] (𝑥 − �̂�)2 − 𝑤6

 𝑤2+�̂�

 𝑤2𝑤4
(𝑦 − �̂�)2                                   

− [
𝑤0𝑤1

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0𝑤1�̂�)
] (𝑥 − �̂�)(𝑦 − �̂�)

− (
𝑤9

 𝑤7
−

�̂�

𝑤3
−

𝑤8

 𝑤7
𝛽1) 𝑧.

 

Using conditions (27a)-(27b) it is obtained that: 

𝑑V2

𝑑𝑡
≤ −[√𝛼11(𝑥 − �̂�) + √𝛼22(𝑦 − �̂�)]2 − [

𝑤9

𝑤7
−

�̂�

𝑤3
−

𝑤8

𝑤7
𝛽1] 𝑧, 

where: 

 𝛼11 = 1 −
�̂�

(𝑤2+𝑥)(𝑤2+�̂�)
, 𝛼12 =

𝑤0𝑤1

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0𝑤1�̂�)
, 𝛼22 = 𝑤6

 𝑤2+�̂�

 𝑤2𝑤4
. 

Hence, condition (27c) gives that  
𝑑V2

𝑑𝑡
< 0. Hence, 𝑃𝑥𝑦 is globally asymptotically stable.   

Theorem (6): Suppose that 𝑃𝑥𝑧 is locally asymptotically stable, then it is globally asymptotically 

stable if the following conditions are met: 

𝑧̅ < 𝑤3(𝑤3 + �̅�).                                                                  (28a) 

𝑤0𝑤1�̅�

1+𝑤0�̅�
+

�̅�

𝑤2
<

𝑤5

𝑤4
.                                                                  (28b) 

k13
2 < 2𝑘11𝑘33.                                                                    (28c) 
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k23
2 < 2𝑘22𝑘33.                                                                   (28d) 

Proof: Define the real-valued function, V3 = 𝜌1 (𝑥 − �̅� − �̅� ln
x

�̅�
) + 𝜌2𝑦 + 𝜌3 (𝑧 − 𝑧̅ − 𝑧̅ ln

z

�̅�
) . 

Direct computation shows that V3: 𝑈3 → ℝ, where 𝑈3 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0}, so 

that V3(𝑃𝑥𝑧) = 0 , and V3(𝑥, 𝑦, 𝑧) > 0 , for all (𝑥, 𝑦, 𝑧) ∈ 𝑈3 − 𝑃𝑥𝑧 . Moreover, straightforward 

computation gives that: 

𝑑V3

𝑑𝑡
= ρ1 (

𝑥−�̅�

𝑥
)

𝑑𝑥 

𝑑𝑡
+ ρ2

𝑑𝑦 

𝑑𝑡
+ ρ3 (

𝑧−�̅�

𝑧
)

𝑑𝑧 

𝑑𝑡
. 

Similarly, direct calculation using maximize concept yields that: 

 

𝑑v3

𝑑𝑡
≤ −𝜌1 [1 −

�̅�

(𝑤3+𝑥)(𝑤3+�̅�)
] (𝑥 − �̅�)2 − 𝜌3𝑤10(𝑧 − 𝑧̅)2 − 𝜌2𝑤6𝑦

2          

− [
𝜌1𝑤0

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0�̅�)
+

𝜌1(𝑤3+�̅�)−𝜌3𝑤3𝑤7

(𝑤3+𝑥)(𝑤3+�̅�)
] (𝑥 − �̅�)(𝑧 − 𝑧̅)

              −(𝜌1 − 𝑤4𝜌2)
𝑥𝑦

𝑤2+𝑥
− [𝜌2𝑤5 −

𝜌1𝑤0𝑤1�̅�

(1+𝑤0�̅�)
−

𝜌1�̅�

𝑤2
] 𝑦 + 𝜌3𝑤3𝑦(𝑧 − 𝑧̅).

 

Now, selecting the positive constant values as 𝜌1 = 1, ρ2 = 
1

 𝑤4
, and 𝜌3 =

𝑤3+�̅�

𝑤3 𝑤7
 leads to: 

 

𝑑v3

𝑑𝑡
≤ − [1 −

�̅�

(𝑤3+𝑥)(𝑤3+�̅�)
] (𝑥 − �̅�)2 − 𝑤10

𝑤3+�̅�

𝑤3 𝑤7
 (𝑧 − 𝑧̅)2 −

𝑤6

 𝑤4
𝑦2          

− [
𝑤0

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0�̅�)
] (𝑥 − �̅�)(𝑧 − 𝑧̅)

             − [
𝑤5

 𝑤4
−

𝑤0𝑤1�̅�

(1+𝑤0�̅�)
−

�̅�

𝑤2
] 𝑦 + 𝑤3

𝑤3+�̅�

𝑤3 𝑤7
𝑦(𝑧 − 𝑧̅).

 

Using conditions (28a), (28c), and (28d) it is obtained that: 

𝑑v3

𝑑𝑡
≤ −[√𝑘11(𝑥 − �̅�) + √

𝑘33

2
(𝑧 − 𝑧̅)]

2

− [√𝑘22𝑦 − √
𝑘33

2
(𝑧 − 𝑧̅)]

2

−[
𝑤5

𝑤4
−

𝑤0𝑤1�̅�

1 + 𝑤0𝑧̅
−

�̅�

𝑤2
] 𝑦,

 

where:  

𝑘11 = 1 −
�̅�

(𝑤3+𝑥)(𝑤3+�̅�)
, 𝑘22 =

𝑤6

 𝑤4
, 𝑘33 = 𝑤10

𝑤3+�̅�

𝑤3 𝑤7
 ,  

𝑘13 =
𝑤0

(1+𝑤0𝑤1𝑦+𝑤0𝑧)(1+𝑤0�̅�)
, 𝑘23 = 𝑤3

𝑤3+�̅�

𝑤3 𝑤7
. 

Hence, condition (28b) gives that  
𝑑V3

𝑑𝑡
< 0. Hence, 𝑃𝑥𝑧 is globally asymptotically stable.   

Theorem (7): Suppose that 𝑃𝑥𝑦𝑧 is locally asymptotically stable, then it is globally asymptotically 

stable if the following conditions are met: 
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𝑦∗

Λ2Λ2
∗ +

𝑧∗

Λ3Λ3
∗ < 1.                                         (29a) 

 (𝑙12)
2 < 𝑙11𝑙22.                                           (29b) 

 (𝑙13)
2 < 𝑙11𝑙33.                                           (29c) 

  (𝑙23)
2 < 𝑙22𝑙33.                                           (29d) 

Proof: Define the real-valued function, V4 = (𝑥 − 𝑥∗ − 𝑥∗ ln
x

𝑥∗) + (𝑦 − 𝑦∗ − 𝑦∗ 𝑙𝑛
𝑦

𝑦∗) + (𝑧 −

𝑧∗ − 𝑧∗ ln
z

𝑧∗
) . Direct computation shows that V4: 𝑈4 → ℝ , where 𝑈4 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+

3 : 𝑥 >

0, 𝑦 > 0, 𝑧 > 0} , so that V4(𝑃𝑥𝑦𝑧) = 0 , and V4(𝑥, 𝑦, 𝑧) > 0 , for all (𝑥, 𝑦, 𝑧) ∈ 𝑈4 − 𝑃𝑥𝑦𝑧 . 

Moreover, straightforward computation gives that: 

𝑑V4

𝑑𝑡
= 𝛾1 (

𝑥−𝑥∗

𝑥
)

𝑑𝑥 

𝑑𝑡
+ 𝛾2 (

𝑦−𝑦∗

𝑦
)

𝑑𝑦 

𝑑𝑡
+ 𝛾3 (

𝑧−𝑧∗

𝑧
)

𝑑𝑧 

𝑑𝑡
. 

Straightforward calculation yields that 

 

𝑑V4

𝑑𝑡
= − [1 −

𝑦∗

Λ2Λ2
∗ −

𝑧∗

Λ3Λ3
∗] (𝑥 − 𝑥∗)2 − 𝑤6(𝑦 − 𝑦∗)2 − 𝑤10(𝑧 − 𝑧∗)2                        

− [
𝑤0𝑤1

Λ1Λ1
∗ +

Λ2
∗+𝑤2𝑤4

Λ2Λ2
∗ ] (𝑥 − 𝑥∗)(𝑦 − 𝑦∗) − [

𝑤0

Λ1Λ1
∗ +

Λ3
∗+𝑤3𝑤7

Λ3Λ3
∗ ] (𝑥 − 𝑥∗)(𝑧 − 𝑧∗)

+𝑤8(𝑦 − 𝑦∗)(𝑧 − 𝑧∗),

 

where:  

Λ1 = (1 + 𝑤0𝑤1𝑦 + 𝑤0𝑧), Λ1
∗ = (1 + 𝑤0𝑤1𝑦

∗ + 𝑤0𝑧
∗), Λ2

∗ = (𝑤2 + 𝑥∗),  

Λ2 = (𝑤2 + 𝑥), Λ2
∗ = (𝑤2 + 𝑥∗), Λ3 = (𝑤3 + 𝑥), Λ3

∗ = (𝑤3 + 𝑥∗). 

Using conditions (29b), (29c), and (29d) it is obtained that: 

  

𝑑V4

𝑑𝑡
≤ −

1

2
[√𝑙11(𝑥 − 𝑥∗) + √𝑙22(𝑦 − 𝑦∗)]

2
−

1

2
[√𝑙11(𝑥 − 𝑥∗) + √𝑙33(𝑧 − 𝑧∗)]

2

−
1

2
[√𝑙22(𝑦 − 𝑦∗) − √𝑙33(𝑧 − 𝑧∗)]

2
,

 

where: 

 𝑙11 = 1 −
𝑦∗

Λ2Λ2
∗ −

𝑧∗

Λ3Λ3
∗, 𝑙22 = 𝑤6, 𝑙33 = 𝑤10, 𝑙12 =

𝑤0𝑤1

Λ1Λ1
∗ +

Λ2
∗+𝑤2𝑤4

Λ2Λ2
∗ ,  

 𝑙13 =
𝑤0

Λ1Λ1
∗ +

Λ3
∗+𝑤3𝑤7

Λ3Λ3
∗ , 𝑙23 = 𝑤8. 

Hence, condition (29a) gives that  
𝑑V4

𝑑𝑡
< 0. Hence, 𝑃𝑥𝑦𝑧 is globally asymptotically stable.   
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6. THE LOCAL BIFURCATION ANALYSIS 

 An application of Sotomayor's theorem [21] is employed in this section to analyze the 

occurrence of local bifurcation around the system's plausible stable equilibrium locations (2). 

Because the presence of a non-hyperbolic equilibrium point is a required but not sufficient 

condition for bifurcation, a parameter that causes the Jacobian matrix to have a zero real part 

eigenvalue will be used as a candidate bifurcation parameter, as proven in the theorems below. 

System (2) should be rewritten as 
ⅆX

ⅆt
= 𝐹(𝑋), where 𝑋 = (𝑥, 𝑦, 𝑧)𝑇, and 𝐹(𝑥) = (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)

𝑇. 

The second directional derivative of the general Jacobian matrix can thus be represented as follows 

for the general vector 𝑉 = (𝑣1, 𝑣2, 𝑣3)
𝑇: 

  𝐷2𝐹(𝑉, 𝑉) = [𝑐𝑖1]3×1                                   (30) 

where: 

 

𝑐11 = [−2 +
2𝑤2𝑦

(𝑤2+𝑥)3
+

2𝑤3𝑧

(𝑤3+𝑥)3
] 𝑣1

2 − 2 [
𝑤0𝑤1

(1+𝑤0𝑤1𝑦+𝑤0𝑧)2
+

𝑤2

(𝑤2+𝑥)2
] 𝑣1𝑣2

−2 [
𝑤0

(1+𝑤0𝑤1𝑦+𝑤0𝑧)2
+

𝑤3

(𝑤3+𝑥)2
] 𝑣1𝑣3 + 2 [

𝑤0
2𝑤1

2𝑥

(1+𝑤0𝑤1𝑦+𝑤0𝑧)3
] 𝑣2

2

+4 [
𝑤0

2𝑤1𝑥

(1+𝑤0𝑤1𝑦+𝑤0𝑧)3
] 𝑣2𝑣3 + 2 [

𝑤0
2𝑥

(1+𝑤0𝑤1𝑦+𝑤0𝑧)3
] 𝑣3

2.

 

𝑐21 = −2 [
𝑤2𝑤4𝑦

(𝑤2 + 𝑥)3
] 𝑣1

2 + 2 [
𝑤2𝑤4

(𝑤2 + 𝑥)2
] 𝑣1𝑣2 − 2𝑤6𝑣2

2. 

𝑐31 = −2 [
𝑤3𝑤7𝑧

(𝑤3+𝑥)3
] 𝑣1

2 + 2 [
𝑤3𝑤7

(𝑤3+𝑥)2
] 𝑣1𝑣3 + 2𝑤8𝑣2𝑣3 − 2𝑤10𝑣3

2. 

Theorem (8): If condition (11a) holds, the system (2) will exhibit a Transcritical bifurcation around 

the predation-free equilibrium point 𝑃𝑥 = (1,0,0) when the parameter 𝑤9 is equal to  
𝑤7

𝑤3+1
=

�̃�9. 

Proof. The Jacobian matrix of the system (2) at 𝑃𝑥 with 𝑤9 = �̃�9 can be written in the form:  

𝑀(𝑃𝑥, �̃�9) = (

−1 −
1

𝑤2+1
− 𝑤0𝑤1 −

1

𝑤3+1
− 𝑤0

0
𝑤4

𝑤2+1
− 𝑤5 0

0 0 0

). 

Hence, the eigenvalues of 𝑀(𝑃𝑥, �̃�9) , are given by 𝜆11 = −1 , 𝜆12 =
𝑤4

𝑤2+1
− 𝑤5 < 0  under 

condition (11a), and �̃�13 = 0.  
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Let �̃� = (𝑣11, 𝑣12, 𝑣13)
𝑇  be the eigenvector of 𝑀(𝑃𝑥, �̃�9) associated with �̃�13 = 0, then it is 

obtained that �̃� = (𝜏1𝑣13, 0, 𝑣13)
𝑇, where 𝑣13 ≠ 0, 𝑣13 ∈ ℝ, and 𝜏1 = −

1

𝑤3+1
− 𝑤0. 

Let Ψ̃ = (𝛹11, 𝛹12, 𝛹13)
𝑇, be the eigenvector of 𝑀(𝑃𝑥, �̃�9)

𝑇 associated with �̃�13 = 0, then it is 

obtained that   Ψ̃ = (0,0, 𝛹13),  where 𝛹13 ≠ 0, 𝛹13 ∈ ℝ.  

Since 
𝜕𝐹

𝜕𝑤9
= 𝐹𝑤9

= (0,0, −𝑧)𝑇 , that leads 𝐹𝑤9
(𝑃𝑥, �̃�9) = (0,0,0)𝑇.  

Therefore, Ψ̃𝑇[𝐹𝑤9
(𝑃𝑥 , �̃�9)] = 0. Also, direct computation shows that: 

𝐷𝐹𝑤9
(𝑃𝑥, �̃�9) = (

0 0 0
0 0 0
0 0 −1

) ⟹  𝐷𝐹𝑤9
(𝑃𝑥, �̃�9) �̃� = (0,0, −𝑣13)

𝑇, 

Then Ψ̃𝑇[𝐷𝐹𝑤9
(𝑃𝑥, �̃�9) �̃�] = −𝛹13𝑣13 ≠ 0. 

Now, from equation (30) it is observed that 

𝐷2[𝐹(𝑃𝑥, �̃�9)( �̃�, �̃�)] = (

−2𝜏1
2𝑣13

2 − 2 [𝑤0 +
𝑤3

(𝑤3+1)2
] 𝜏1𝑣13

2 + 2𝑤0
2𝑣13

2

0

2
𝑤3𝑤7

(𝑤3+1)2
𝜏1𝑣13

2 + 2𝑤10𝑣13
2

). 

Hence: 

Ψ̃𝑇[𝐹(𝑃𝑥, �̃�9)( �̃�, �̃�)] = 2
𝑤3𝑤7

(𝑤3+1)2
𝜏1𝑣13

2 𝛹13 + 2𝑤10𝑣13
2  𝛹13 ≠ 0, 

 which means a Transcritical bifurcation occurs in the sense of Sotomayor theorem and the proof 

is done.   

Theorem (9): If condition (14b) holds, the system (2) will exhibit a Transcritical bifurcation 

around the scavenger-free equilibrium point 𝑃𝑥𝑦 = (�̂�, �̂�, 0) when the parameter 𝑤9 is equal to 

�̂�9 =
𝑤7�̂�

(𝑤3+�̂�)
+ 𝑤8�̂� . 

Proof. The Jacobian matrix of the system (2) at 𝑃𝑥𝑦 with 𝑤9 = �̂�9 can be written in the form:   

𝑀(𝑃𝑥𝑦, �̂�9) =

[
 
 
 −�̂� +

�̂��̂�

(𝑤2+�̂�)2
−(

𝑤0𝑤1�̂�

(1+𝑤0𝑤1�̂�)2
+

�̂�

𝑤2+�̂�
) −(

𝑤0�̂�

(1+𝑤0𝑤1�̂�)2
+

�̂�

𝑤3+�̂�
)

𝑤2𝑤4�̂�

(𝑤2+�̂�)2
−𝑤6�̂� 0

0 0 0 ]
 
 
 

= (𝑏𝑖𝑗). 
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Under the condition (14b), 𝑀(𝑃𝑥𝑦, �̃�9) has two negative real parts eigenvalues, whereas �̂�23 =

0 gives the third eigenvalue. 

Let �̂� = (𝑣21, 𝑣22, 𝑣23)
𝑇  be the eigenvector of 𝑀(𝑃𝑥𝑦, �̂�9) associated with �̂�23 = 0, then it is 

obtained that �̂� = (𝜏2𝑣23, 𝜏3𝑣23, 𝑣23)
𝑇, where 𝑣23 ≠ 0, 𝑣23 ∈ ℝ, and 𝜏2 = −

𝑏13𝑏22

𝑏11𝑏22−𝑏12𝑏21
< 0, 

𝜏3 =
𝑏13𝑏21

𝑏11𝑏22−𝑏12𝑏21
< 0. 

Let Ψ̂ = (𝛹21, 𝛹22, 𝛹23)
𝑇, be the eigenvector of (𝑃𝑥𝑦, �̂�9)

𝑇
 associated with �̂�23 = 0, then it is 

obtained that  Ψ̂ = (0,0, 𝛹23),  where 𝛹23 ≠ 0, 𝛹23 ∈ ℝ.  

Since  
𝜕𝐹

𝜕𝑤9
= 𝐹𝑤9

= (0,0, −𝑧)𝑇 , that leads 𝐹𝑤9
(𝑃𝑥𝑦, �̂�9) = (0,0,0)𝑇.  

Therefore, Ψ̂𝑇[𝐹𝑤9
(𝑃𝑥𝑦 , �̂�9)] = 0. Also, direct computation shows that: 

𝐷𝐹𝑤9
(𝑃𝑥𝑦, �̂�9) = (

0 0 0
0 0 0
0 0 −1

) ⟹  𝐷𝐹𝑤9
(𝑃𝑥𝑦, �̂�9) �̂� = (0,0, −𝑣23)

𝑇, 

Then Ψ̂𝑇[𝐷𝐹𝑤9
(𝑃𝑥𝑦, �̂�9) �̂�] = −𝛹23𝑣23 ≠ 0. 

Now, from equation (30) it is observed that 

 𝐷2𝐹(𝑃𝑥𝑦, �̂�9)( �̂�, �̂�) = (�̂�𝑖1)3×1 

where: 

�̂�11 = [−2 +
2𝑤2�̂�

(𝑤2 + �̂�)3
] (𝜏2𝑣23)

2 − 2 [
𝑤0𝑤1

(1 + 𝑤0𝑤1�̂�)2
+

𝑤2

(𝑤2 + �̂�)2
] 𝜏2𝜏3(𝑣23)

2

−2 [
𝑤0

(1 + 𝑤0𝑤1�̂�)2
+

𝑤3

(𝑤3 + �̂�)2
] 𝜏2(𝑣23)

2 + 2 [
𝑤0

2𝑤1
2�̂�

(1 + 𝑤0𝑤1�̂�)2
] (𝜏3𝑣23)

2

+4 [
𝑤0

2𝑤1�̂�

(1 + 𝑤0𝑤1�̂�)3
] 𝜏3(𝑣23)

2 + 2 [
𝑤0

2�̂�

(1 + 𝑤0𝑤1�̂�)3
] (𝑣23)

2.

 

�̂�21 = −2 [
𝑤2𝑤4�̂�

(𝑤2 + �̂�)3
] (𝜏2𝑣23)

2 + 2 [
𝑤2𝑤4

(𝑤2 + �̂�)2
] 𝜏2𝜏3(𝑣23)

2 − 2𝑤6(𝜏3𝑣23)
2. 

�̂�31 = 2 [
𝑤3𝑤7

(𝑤3+�̂�)2
] 𝜏2(𝑣23)

2 + 2𝑤8𝜏3(𝑣23)
2 − 2𝑤10(𝑣23)

2. 

Therefore, it is obtained that: 
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Ψ̂𝑇[𝐷2𝐹(𝑃𝑥𝑦, �̂�9)( �̂�, �̂�)] = 𝛹23(𝑣23)
2 [2 [

𝑤3𝑤7

(𝑤3+�̂�)2
] + 2𝑤8𝜏3 − 2𝑤10]. 

This gives that ΨT𝐷2𝐹(𝑃2, �̂�9)(𝑉, 𝑉) ≠ 0, due to the fact that 𝜏2 < 0, and 𝜏3 < 0. 

Hence a Transcritical bifurcation occurs near 𝑃𝑥𝑦 when 𝑤9 = �̂�9. 

Theorem (10): If condition (17b) holds, the system (2) will exhibit a Transcritical bifurcation 

around the predator-free equilibrium point 𝑃𝑥𝑧 = (�̅�, 0, 𝑧̅)  when the parameter 𝑤5 is equal to 

�̅�5 =
𝑤4�̅�

(𝑤2+�̅�)
 . 

Proof. The Jacobian matrix of the system (2) at 𝑃𝑥𝑧 with 𝑤5 = �̅�5 can be written in the form: 

 𝑀(𝑃𝑥𝑧, �̅�5 ) =

[
 
 
 −�̅� +

�̅� 𝑧̅̅ ̅̅

(𝑤3+�̅�)2
−(

𝑤0𝑤1�̅�

(1+𝑤0�̅�)2
+

�̅�

𝑤2+�̅�
) −(

𝑤0�̅�

(1+𝑤0�̅�)2
+

�̅�

𝑤3+�̅�
)

0 0 0
𝑤3𝑤7�̅�

(𝑤3+�̅�)2
𝑤8𝑧̅ −𝑤10𝑧̅ ]

 
 
 

= (𝑐𝑖𝑗).           

Clearly, under the condition (17b), 𝑀(𝑃𝑥𝑧, �̅�5 ) has two negative real parts eigenvalues, whereas 

�̅�32 = 0 gives the third eigenvalue. 

Let �̅� = (𝑣31, 𝑣32, 𝑣33)
𝑇  be the eigenvector of 𝑀(𝑃𝑥𝑧 , �̅�5 ) associated with �̅�32 = 0, then it is 

obtained that �̅� = (𝜏4𝑣32, 𝑣32, 𝜏5𝑣32)
𝑇, where 𝑣32 ≠ 0, 𝑣32 ∈ ℝ, and 𝜏4 = −

𝑐13𝑐32−𝑐12𝑐33

𝑐11𝑐33−𝑐13𝑐31
< 0, 

𝜏5 =
𝑐12𝑐31−𝑐11𝑐32

𝑐11𝑐33−𝑐13𝑐31
. 

Let Ψ̅ = (𝛹31, 𝛹32, 𝛹33)
𝑇, be the eigenvector of 𝑀(𝑃𝑥𝑧 , �̅�5 )

𝑇 associated with �̅�32 = 0, then it 

is obtained that  Ψ̅ = (0,𝛹32, 0),  where 𝛹32 ≠ 0, 𝛹32 ∈ ℝ.  

Now since,  
𝜕𝐹

𝜕𝑤5
= 𝐹𝑤5

= (0,−𝑦, 0)𝑇, then 𝐹𝑤5
(𝑃𝑥𝑧 , �̅�5) = (0,0,0)𝑇. Accordingly, it is obtained 

that Ψ̅𝑇[𝐹𝑤5
(𝑃𝑥𝑧 , �̅�5)] = 0. Furthermore, since 

𝐷𝐹𝑤5
(𝑃𝑥𝑧 , �̅�5) = (

0 0 0
0 −1 0
0 0 0

) ⟹  𝐷𝐹𝑤5
(𝑃𝑥𝑧 , �̅�5)�̅� = (0,−𝑣32, 0)𝑇. 

Therefore, Ψ̅T[𝐷𝐹𝑤5
(𝑃𝑥𝑧 , �̅�5)�̅�] = −𝛹32𝑣32 ≠ 0. 

Finally, from equation (30) it is observed that 

 𝐷2𝐹(𝑃𝑥𝑧 , �̅�5)](�̅�, �̅�) = (𝑐�̅�1)3×1 

where 
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𝑐1̅1 = 2 [− +
𝑤3�̅�

(𝑤3+�̅�)3
] (𝜏4𝑣32)

2 − 2 [
𝑤0𝑤1

(1+𝑤0�̅�)2
+

𝑤2

(𝑤2+�̅�)2
] 𝜏4(𝑣32)

2

−2 [
𝑤0

(1+𝑤0�̅�)2
+

𝑤3

(𝑤3+�̅�)2
] 𝜏4𝜏5(𝑣32)

2 + 2 [
𝑤0

2𝑤1
2�̅�

(1+𝑤0�̅�)3
] (𝑣32)

2

+4 [
𝑤0

2𝑤1�̅�

(1+𝑤0�̅�)3
] 𝜏5(𝑣32)

2 + 2 [
𝑤0

2�̅�

(1+𝑤0�̅�)3
] (𝜏5𝑣32)

2.

 

𝑐2̅1 = 2 [
𝑤2𝑤4

(𝑤2 + �̅�)2
] 𝜏4(𝑣32)

2 − 2𝑤6(𝑣32)
2. 

𝑐3̅1 = −2 [
𝑤3𝑤7�̅�

(𝑤3+�̅�)3
] (𝜏4𝑣32)

2 + 2 [
𝑤3𝑤7

(𝑤3+�̅�)2
] 𝜏4𝜏5(𝑣32)

2 + 2𝑤8𝜏5(𝑣32)
2 − 2𝑤10(𝜏5𝑣32)

2. 

Hence, it results in that 

Ψ̅T[𝐷2𝐹(𝑃𝑥𝑧 , �̅�5)(�̅�, �̅�)] = 2𝛹32(𝑣32)
2 [[

𝑤2𝑤4

(𝑤2+�̅�)2
] 𝜏4 − 𝑤6]. 

This gives that Ψ̅T[𝐷2𝐹(𝑃𝑥𝑧 , �̅�5)(�̅�, �̅�)] ≠ 0 due to the fact that 𝜏4 < 0. 

Hence a Transcritical bifurcation occurs near  𝑃𝑥𝑧  when 𝑤5 = �̅�5. 

Theorem (11): The system (2) undergoes a saddle-node bifurcation near the coexistence 

equilibrium point 𝑃𝑥𝑦𝑧  when the parameter 𝑤7  passes from the positive value 𝑤7
∗  provided 

that the following condition is satisfied. 

1 <
𝑦∗

(𝑤2+𝑥∗)2
+

𝑧∗

(𝑤3+𝑥∗)2
,                               (31a) 

𝑐11
∗𝜏8 + 𝑐21

∗𝜏9 + 𝑐31
∗ ≠ 0,                           (31b) 

where 𝑤7 
∗ =

(𝑤3+𝑥∗)2

𝑤3𝑧∗ [
𝑎11𝑎22𝑎33+𝑎13𝑎21𝑎32−𝑎12𝑎21𝑎33

𝑎13𝑎22
], and all other symbols are given in the proof. 

Proof: Consider the Jacobian matrix of system (2) at 𝑤7 = 𝑤7
∗: 

𝑀(𝑃𝑥𝑦𝑧 , 𝑤7
∗) = [𝑎𝑖𝑗]3∗3

,                              

where the Jacobian elements are given in equation (19) with 𝑎31 =
𝑤3𝑤7

∗𝑧∗

(𝑤3+𝑥∗)2
 . Then, by using 

condition (31a), direct computation shows that the determinant of the 𝑀(𝑃𝑥𝑦𝑧 , 𝑤7
∗) is equaled to 

zero. Therefore,  𝑀(𝑃𝑥𝑦𝑧 , 𝑤7
∗) has a zero eigenvalue 𝜆∗ = 0 that makes 𝑃𝑥𝑦𝑧 a nonhyperbolic 

point.  

Let 𝑉∗ = (𝑣41, 𝑣42, 𝑣43)
𝑇 be the eigenvector of 𝑀(𝑃𝑥𝑦𝑧 , 𝑤7

∗)  corresponding to 𝜆∗ = 0. Then 
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it is obtained that 𝑉∗ = (𝜏6𝑣43, 𝜏7𝑣43, 𝑣43)
𝑇 , where 𝑣43 ≠ 0 , 𝑣43 ∈ ℝ  and 𝜏6 =

−
𝑎13𝑎22

𝑎11𝑎22−𝑎12𝑎21
< 0, 𝜏7 =

𝑎13𝑎21

𝑎11𝑎22−𝑎12𝑎21
< 0. 

Let 𝛹∗ = (𝛹41, 𝛹42, 𝛹43)
𝑇 , be the eigenvector of [𝑀(𝑃𝑥𝑦𝑧 , 𝑤7

∗)]
𝑇
  corresponding to 𝜆∗ = 0 . 

Then it is obtained that, 𝛹∗ = (𝜏8𝛹43, 𝜏9𝛹43, 𝛹43)
𝑇 ,  where 𝛹43 ≠ 0 , 𝛹43 ∈ ℝ , and 𝜏8 =

𝑎21𝑎32−𝑎22𝑎31

𝑎11𝑎22−𝑎12𝑎21
> 0, 𝜏9 =

𝑎12𝑎31−𝑎11𝑎32

𝑎11𝑎22−𝑎12𝑎21
< 0. 

Since, 
𝜕𝐹

𝜕𝑤7
= 𝐹𝑤7

= (0,0,
𝑥𝑧

𝑤3+𝑥
)
𝑇

, then 𝐹𝑤5
(𝑃𝑥𝑦𝑧 , 𝑤7

∗) = (0,0,
𝑥∗𝑧∗

𝑤3+𝑥∗)
𝑇

. 

Therefore, 𝛹∗𝑇[𝐹𝑤7
(𝑃𝑥𝑦𝑧 , 𝑤7

∗)] =
𝑥∗𝑧∗

𝑤3+𝑥∗
𝛹43 ≠ 0 . Hence the first requirements of the saddle-

node bifurcation in the sense of Sotomayor is satisfied. Now, according to equation (30) it is 

obtained that: 

𝐷2𝐹(𝑃𝑥𝑦𝑧 , 𝑤7
∗)(𝑉∗, 𝑉∗) = (𝑐𝑖1

∗)3×1, 

Where: 

𝑐11
∗ = 2 [−1 +

𝑤2𝑦∗

(𝑤2+𝑥∗)3
+

𝑤3𝑧∗

(𝑤3+𝑥∗)3
] (𝜏6𝑣43)

2                                                                             

−2 [
𝑤0𝑤1

(1+𝑤0𝑤1𝑦∗+𝑤0𝑧∗)2
+

𝑤2

(𝑤2+𝑥∗)2
] 𝜏6𝜏7(𝑣43)

2

−2 [
𝑤0

(1+𝑤0𝑤1𝑦∗+𝑤0𝑧∗)2
+

𝑤3

(𝑤3+𝑥∗)2
] 𝜏6(𝑣43)

2 + 2 [
𝑤0

2𝑤1
2𝑥∗

(1+𝑤0𝑤1𝑦∗+𝑤0𝑧∗)3
] (𝜏7𝑣43)

2

+4 [
𝑤0

2𝑤1𝑥∗

(1+𝑤0𝑤1𝑦∗+𝑤0𝑧∗)3
] 𝜏7(𝑣43)

2 + 2 [
𝑤0

2𝑥∗

(1+𝑤0𝑤1𝑦∗+𝑤0𝑧∗)3
] (𝑣43)

2.

. 

𝑐21
∗ = −2 [

𝑤2𝑤4𝑦
∗

(𝑤2 + 𝑥∗)3
] (𝜏6𝑣43)

2 + 2 [
𝑤2𝑤4

(𝑤2 + 𝑥∗)2
] 𝜏6𝜏7(𝑣43)

2 − 2𝑤6(𝜏7𝑣43)
2. 

𝑐31
∗ = −2 [

𝑤3𝑤7𝑧∗

(𝑤3+𝑥∗)3
] (𝜏6𝑣43)

2 + 2 [
𝑤3𝑤7

(𝑤3+𝑥∗)2
] 𝜏6(𝑣43)

2 + 2𝑤8𝜏7(𝑣43)
2 − 2𝑤10(𝑣43)

2. 

Therefore, using condition (31b) the following is obtained.  

 𝛹∗𝑇[𝐷2𝐹(𝑃𝑥𝑦𝑧 , 𝑤7
∗)(𝑉∗, 𝑉∗)] = [𝑐11

∗𝜏8 + 𝑐21
∗𝜏9 + 𝑐31

∗]𝛹43 ≠ 0. 

Hence, system (2) undergoes a saddle-node bifurcation near the  𝑃𝑥𝑦𝑧 when 𝑤7 = 𝑤7
∗. 

7. HOPF- BIFURCATION ANALYSIS 

In section, the possibility of occurrence of Hopf bifurcation is investigated as shown in the 
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following theorem.  

Theorem (12): If the condition (18a) holds, then the system (2) has a Hop-bifurcation around 𝑃𝑥𝑦𝑧 

when 𝑤4 = 𝑤4
∗ if and only if the following conditions hold 

[𝐴(w4
∗)𝐵(w4

∗)]′ < 𝐶′(w4
∗),                            (32) 

where 𝐴, 𝐵 and 𝐶 are the characteristic polynomial coefficients that given in equation (20), with 

𝑤4
∗ =

𝐵1
∗2

𝑤2𝑦∗ [
𝑎11𝑎22(𝑎11+𝑎22)+(𝑎11+𝑎33)[𝑎11𝑎33−𝑎13𝑎31]+(𝑎22𝑎33)[𝑎11+𝑎22+𝑎33]+𝑎11𝑎22𝑎33

𝑎13𝑎32+(𝑎11+𝑎22)𝑎12
].  

Proof. It is simple to determine from the Jacobian matrix 𝑀(𝑃𝑥𝑦𝑧)   and their characteristic 

equation, which are given by equations (18) and (19), respectively, that 𝐴𝐵 = 𝐶 when 𝑤4 = 𝑤4
∗.   

Hence, the characteristic equation becomes  

  (𝜆 2 + 𝐵)(𝜆 + 𝐴) = 0.                                   (33) 

Consequently, we obtain that λ1 = −𝐴 and λ2,3 = ±𝑖√𝐵 = ±𝑖δ2(𝑤4). Clearly, we have 𝐴 > 0 

and 𝐵 > 0 due to condition (18a). Therefore, the Jacobian matrix have three eigenvalues: 

One negative real eigenvalue and two pure imaginary complex conjugate when 𝑤4 = 𝑤4
∗. As a 

result, the first criteria for having a Hopf bifurcation is met. 

Moreover, where 𝑤4  belongs to neighborhood of 𝑤4
∗ , the complex conjugate eigenvalues 

become 𝜆2,3 = 𝛿1(𝑤4) ± 𝑖𝛿2(𝑤4).  

Now, substituting 𝛿1(𝑤4) ± 𝑖𝛿2(𝑤4) in characteristic equation (19) and then take the derivative 

of the resulting equation with respect to 𝑤4. After that comparing the two sides with equating their 

real and imaginary parts, we obtain that  

 
𝐻1(𝑤4)𝛿1

′(𝑤4) − 𝐻2(𝑤4)𝛿2
′(𝑤4) = −𝐻3(𝑤4),

𝐻2(𝑤4)𝛿1
′(𝑤4) + 𝐻1(𝑤4)𝛿2

′(𝑤4) = −𝐻4(𝑤4),
                        (34) 

where:  

𝐻1(𝑤4) = 3[𝛿1(𝑤4)]
2 + 2𝐴(𝑤4)𝛿1(𝑤4) − 3[𝛿2(𝑤4)]

2 + 𝐵(𝑤4). 

𝐻2(𝑤4) = 6𝛿1(𝑤4)𝛿2(𝑤4) + 2𝐴(𝑤4)𝛿2(𝑤4). 

𝐻3(𝑤4) = 𝐴′(𝑤4)[𝛿1(𝑤4)]
2 − 𝐴′(𝑤4)[𝛿2(𝑤4)]

2 + 𝐵′(𝑤4)𝛿1(𝑤4) + 𝐶′(𝑤4). 

𝐻4(𝑤4) = 2𝐴′(𝑤4)𝛿1(𝑤4)𝛿2(𝑤4) + 𝐵′(𝑤4)𝛿2(𝑤4). 
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Solving that linear system (34) for 𝛿1
′(𝑤4) gives  

 𝛿1
′(𝑤4) = −

𝐻1(𝑤4)𝐻3(𝑤4)+𝐻2(𝑤4)𝐻4(𝑤4)

[𝐻2(𝑤4)]2+(𝑤4)[𝐻2(𝑤4)]2
. 

Hence the proof is done only if and only if  

𝛿1
′(𝑤4) ≠ 0 or equivalently 𝐻1(𝑤4)𝐻3(𝑤4) + 𝐻2(𝑤4)𝐻4(𝑤4) ≠ 0. 

Now, since δ1(w4
∗) = 0 and 𝛿2(𝑤4

∗) = √𝐵(𝑤4
∗). Hence, it is obtained that  

𝐻1(𝑤4
∗) = −2𝐵(𝑤4

∗). 

𝐻2(𝑤4
∗) = −2𝐴(𝑤4

∗)√𝐵(𝑤4
∗). 

𝐻3(𝑤4
∗) = −𝐴′(𝑤4

∗)[𝐵(𝑤4
∗)] + 𝐶′(𝑤4). 

𝐻4(𝑤4
∗) = 𝐵′(𝑤4

∗)√𝐵(𝑤4
∗). 

Consequently, it is obtained that:  

𝐻1(𝑤4
∗)𝐻3(𝑤4

∗) + 𝐻2(𝑤4
∗)𝐻4(𝑤4

∗)                                                                           

= 2𝐴′(𝑤4
∗)𝐵2(𝑤4

∗) − 2𝐵(𝑤4
∗)𝐶′(𝑤4

∗) + 2𝐴(𝑤4
∗)𝐵′(𝑤4

∗)𝐵(𝑤4
∗)

= −2𝐵(𝑤4
∗)[𝐶′(𝑤4

∗) − (𝐴′(𝑤4
∗)𝐵(𝑤4

∗) + 𝐴(𝑤4
∗)𝐵′(𝑤4

∗).     

 

Clearly, condition (32) ensures that 𝐻1(𝑤4
∗)𝐻3(𝑤4

∗) + 𝐻2(𝑤4
∗)𝐻4(𝑤4

∗) ≠ 0. 

Hence the system has a Hopf bifurcation because 𝛿1
′(𝑤4) > 0 under the condition (32), which 

complete the proof.   

8.  NUMERICAL SIMULATION 

 The global dynamics of the system (2) are quantitatively investigated in this section. The goals 

of the study are to verify our analytical findings and better understand the consequences of 

changing the system's parameters on the system's dynamics (2). As a result, system (2) can be 

numerically solved for various sets of parameters and initial conditions. 

Different sets of parameter values can be adopted for the following biologically possible set of 

hypothetical parameter values, and system (2) has a globally asymptotically stable coexistence 

equilibrium point, as illustrated in figure (1) below. 

 
𝑤0 = 0.25,𝑤1 = 1,𝑤2 = 0.25,𝑤3 = 0.25,𝑤4 = 0.15,𝑤5 = 0.1

𝑤6 = 0.1, 𝑤7 = 0.15,𝑤8 = 0.1, 𝑤9 = 0.1, 𝑤10 = 0.1
                (35) 



25 

DYNAMICS OF A PREY-PREDATOR-SCAVENGER MODEL 

 

Fig.1: The trajectories of system (2) for the data (35) starting from different initial points. (a) 3D 

phase portrait for a globally asymptotically coexistence equilibrium point (0.65, 0.08, 0.17). (b) 

Time series for the attractor in (a).  

 

Obviously, figure (1) ensures the obtained theoretical finding regarding the existence of globally 

asymptotically stable coexistence equilibrium points under certain conditions. Now, by modifying 

one parameter at a time, the effect of changing the parameter values on the dynamics of the system 

(2) is explored, and the resulting trajectory is shown. 

It has been shown that as the fear rate 𝑤0 rises, the overall number of individuals in a species 

declines, and the predators face extinction see figure (2). Similar effect has been detected regarding 

varying of 𝑤1. 

It is observed that for the ranges 𝑤2 ∈ (0,0.06), 𝑤2 ∈ (0.06,0.11), 𝑤2 ∈ (0.11,0.4), and 𝑤2 ∈

(0.4,1) the trajectory of the system (2) approaches to periodic in the 𝑥𝑦 −plane, periodic in the 

𝑖𝑛𝑡. ℝ+
3  , globally asymptotically stable coexistence equilibrium point, and predator-free 

equilibrium point, see figure (3) for selected values. 

Further investigation for the effect of fear rate 𝑤0 on the periodic dynamics of the system (2) has 

been done, and then the obtained results are drawn in figure (4). 



26 

MOHAMMED ABDELLATIF AHMED, DAHLIA KHALED BAHLOOL 

 

 

Fig.2: The trajectories of system (2) for the data (35) as a function of time: (a) Approach to 

coexistence equilibrium point (0.68, 0.1, 0.19) , when 𝑤0 = 0  (b) Approaches to coexistence 

equilibrium point (0.51, 0.01, 0.02), when 𝑤0 = 25. (c) Approaches to point (0.5, 0.006, 0.01), 

when 𝑤0 = 50. (d) Approaches to point (0.5, 0.004, 0.006), when 𝑤0 = 100. 

Although the scavenger population shrinks as 𝑤0 rises, the periodic dynamics show a decline and 

transfer to a stable point. 

The effect of varying in the parameter 𝑤3 is investigated and presented in figure (5) at typical 

values. It is observed that, or 𝑤3 ≥ 0.65 the scavenger faces extinction, and the solution attracting 

to 𝑃𝑥𝑦, for 𝑤3 ≤ 0.09 the predator faces extinction, and the solution attracting to 𝑃𝑥𝑧. While, for 

𝑤3 ≤ 0.07, 𝑃𝑥𝑧 becomes unstable and the solution goes to periodic dynamic in the 𝑥𝑧 −plane. 

Otherwise, the system (2) has a globally asymptotically stable coexistence point. 
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Fig. 3: The trajectory of the system (2) for data (35): (a) Approaches to a predator-free equilibrium 

point (0.82,0,0.15), when 𝑤2 = 0.5. (b) Time series for the trajectories in (a). (c) Approaches to 

a 3D periodic dynamics, when 𝑤2 = 0.1. (d) Time series for the trajectory in (c). (e) Approaches 

to a 2D periodic attractor in the 𝑥𝑦 −plane, when 𝑤2 = 0.05. (f) Time series for the trajectory in 

(e).  
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Fig. 4: The trajectories of system (2) for the data (35) with 𝑤2 = 0.1, and different values of 𝑤0 

as a function of time: (a) 3D periodic attractor, when 𝑤0 = 0.25 (b) 3D periodic attractor with 

small period size when 𝑤0 = 0.5. (c) 3D periodic attractor with a very small period, when 𝑤0 =

1.5. (d) Asymptotic stable coexistence equilibrium point, when 𝑤0 = 2.6. 
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Fig. 5: The trajectory of the system (2) for data (35): (a) Approaches to a scavenger-free 

equilibrium point (0.82,0.15,0), when 𝑤3 = 0.65. (c) Approaches to a predator-free equilibrium 

point (0.47,0,0.26), when 𝑤3 = 0.09. (e) Approaches to a 2D periodic attractor in the 𝑥𝑧 −plane, 

when 𝑤3 = 0.07. (b), (d), and (f) Represent the time series for the trajectories in (a), (c), and (e) 

respectively.  
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In figure (6), the influence of varying the parameter 𝑤4 is shown at selected values. It is noted 

that for 0.21 ≤ 𝑤4 < 0.28 the system (2) has a periodic dynamics in 𝑖𝑛𝑡. ℝ+
3 , for 0.29 ≤ 𝑤4 the 

scavenger disappears and the system (2) approaches periodic dynamics in the 𝑥𝑦 −plane. While 

for 𝑤4 < 0.13 the predator species disappears and the system approaches asymptotically to 𝑃𝑥𝑧. 

The system (2) has a globally asymptotic coexistence point otherwise. 

 

 

Fig. 6: The trajectories of system (2) for the data (35) with different values of 𝑤4 as a function of 

time: (a) 3D periodic attractor, when 𝑤4 = 0.23 (b) 2D periodic attractor in 𝑥𝑦 −plane when 

𝑤4 = 0.3. (c) Asymptotic stable coexistence equilibrium point (0.38,0.21,0.12) when 𝑤4 = 0.2. 

(d) Asymptotic stable predator-free point (0.82,0,0.15) when 𝑤4 = 0.12. 

 



31 

DYNAMICS OF A PREY-PREDATOR-SCAVENGER MODEL 

The influence of changing 𝑤5 is considered in figure (7) at selected values. It is noted that 𝑤5 ≥

0.12 the system (2) approaches 𝑃𝑥𝑧, however for 𝑤5 < 0.07 there is a 3D periodic dynamics, and 

for 𝑤5 < 0.04 there is 2D periodic dynamics in 𝑥𝑦 −plane. Finally, it has a globally coexistence 

point otherwise. 

 

 

Fig. 7: The trajectories of system (2) for the data (35) with different values of 𝑤5 as a function of 

time: (a) Asymptotic stable predator-free point (0.82,0,0.15) when 𝑤5 = 0.13. (b) Asymptotic 

stable coexistence equilibrium point (0.55,0.13,0.16)  when 𝑤5 = 0.09 . (c) 3D periodic 

attractor, when 𝑤5 = 0.05. (d) 2D periodic attractor in 𝑥𝑦 −plane when 𝑤5 = 0.03. 
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It is observed that increasing 𝑤6 (𝑤10) leads to decreasing in predators (scavengers), see figure 

(8a) below. Moreover, it transfers the 3D periodic dynamics to 𝑃𝑥𝑦𝑧, as seen in figure (8b)-(8c).  

 

 

Fig. 8: The trajectories of system (2) for the data (35) as a function of time: (a) The predator 

population decreases as 𝑤6 = 0.1,1.1,2.1,3.1,4.1,5.1, ultimately approaching to stable predator-

free point. (b) 3D periodic attractor, when 𝑤2 = 0.1 , and 𝑤6 = 0.09 . (c) Asymptotic stable 

coexistence equilibrium point (0.43,0.17,0.12) when 𝑤2 = 0.1, and 𝑤6 = 0.13. 

The influence of changes in 𝑤7 is discussed in figure (9) at selected values. It is noted that for 

𝑤7 ≥ 0.23  there is a 2D periodic dynamics in 𝑥𝑧 − plane, however, for 0.2 ≤ 𝑤7 < 0.23  the 

solution approaches 𝑃𝑥𝑧 . While, for 𝑤7 ≤ 0.11  the solution approaches 𝑃𝑥𝑦 . Otherwise, the 

solution approaches 𝑃𝑥𝑦𝑧.  
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Further, it is noted that varying in 𝑤8 has a quantitative effect on the population size of predator 

species.  

 

 

Fig. 9: The trajectories of system (2) for the data (35) as a function of time: (a) 2D periodic attractor 

in 𝑥𝑧 −plane when 𝑤7 = 0.25. (b) Approaches predator-free point (0.38,0,0.34) when 𝑤7 =

0.2. (c) Asymptotic stable coexistence equilibrium point (0.43,0.17,0.12) when 𝑤7 = 0.17. (d) 

Approaches scavenger-free point (0.82,0.15,0) when 𝑤7 = 0.1. 
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Finally, figure (10) explain the influence of changing 𝑤9 at selected values. It is noted that 𝑤9 >

0.13 the system approaches 𝑃𝑥𝑦, While, for 𝑤9 ≤ 0.06 it approaches 𝑃𝑥𝑧, and for 𝑤9 ≤ 0.04 the 

system has a periodic in 𝑥𝑧 −plane. Otherwise, the system approaches 𝑃𝑥𝑦𝑧. 

 

 

Fig. 10: The trajectories of system (2) for the data (35) with different values of 𝑤9 as a function 

of time: (a) Asymptotic stable scavenger-free point (0.82,0.15,0)  when 𝑤9 = 0.15 . (b) 

Asymptotic stable coexistence equilibrium point (0.6,0.06,0.22)  when 𝑤9 = 0.09 . (c) 

Asymptotic stable predator-free point (0.41,0,0.33) when 𝑤9 = 0.06. (d) 2D periodic attractor 

in 𝑥𝑧 −plane when 𝑤9 = 0.04. 
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9. CONCLUSIONS AND DISCUSSION 

A food web system with a prey-predator-scavenger is mathematically formulated in this study, 

with food being transmitted according to the Holling type II functional response. Fear plays a role, 

as does proportional quadratic harvesting. All of the solution's properties are studied. There are 

only five nonnegative equilibrium points in the system. The topics of stability, persistence, local 

bifurcations, and Hopf-bifurcation are all thoroughly explored. The numerical simulation was used 

to examine global dynamics and determine the impact of changing parameters, particularly fear 

and harvesting, on the system's behavior. Using the set of hypothetical data, the following 

observations were made. 

1. Although the system has many bifurcation points resulting from varying in their parameters, 

the system (2) has a globally asymptotically stable coexistence equilibrium point different 

ranges of parameters.  

2. The presence of fear has a stabilizing effect on the system's dynamics. However, if the fear 

level is higher than a certain threshold, predator and scavenger populations may become 

extinct. 

3. Increasing the half-saturation constant of the predator species leads to extinction in 

predator. However lowering their value below a certain threshold leads to destabilizing the 

system and Hopf-bifurcation occurs in the interior of first octant, and then the solution 

approaches to periodic dynamics in the 𝑥𝑦 −plane due to extinction in scavenger.  

4. Increasing the half-saturation constant of the scavenger species leads to extinction in 

scavenger. However lowering their value below a certain threshold leads to extinction in 

predator species, and then the solution approaches to predator-free point first and then to 

periodic dynamics in the 𝑥𝑧 −plane.  

5. The system (2) undergoes a Hopf bifurcation in the first octant as the conversion rate of 

prey biomass to the predator population increases and passes a threshold value. Further 

increasing this parameter leads to extinction in scavenger and periodic dynamics in the 
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𝑥𝑦 −plane take place. Lowering this parameter, otherwise, makes the solution approaches 

a predator-free equilibrium point. 

6. Increasing the death rate of predator species above a threshold value leads to extinction in 

predators and the system approaches a predator-free equilibrium point. On the other hand, 

lowering their value below a threshold value destabilizes the system and a Hopf bifurcation 

take place in the first octant. Lowering the value of this parameter further causes extinction 

in scavengers and the solution approaches to periodic in the 𝑥𝑦 −plane. 

7. Increasing the harvest rate of predator (scavenger) causes decreasing in the predator 

(scavenger) population and vice versa. It is also observed that these parameters have a 

stabilizing role in the system behavior. 

8. Rising the value of conversion rate of prey biomass to the scavenger above a threshold 

value leads to extinction in predators and the solution approaches predator-free equilibrium 

point first and then to periodic in the 𝑥𝑧 −plane. On the other hand, lowering this value 

below a threshold value leads to extinction in scavenger and the solution approaches to 

scavenger-free point. 
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