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Abstract. To discretize the Lotka-Volterra prey-predator model, we adopted a dynamically consistent nonstan-

dard finite difference scheme. The existence of fixed points and their topological categorization are examined.

It is proved using bifurcation theory that the system experiences Neimark-Sacker bifurcation. Moreover, the hy-

brid control method is used to control the Neimark-Sacker bifurcation. Additionally, numerical simulations are

performed to show the system’s complexity and consistency with analytical results.
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1. INTRODUCTION

Predator-prey models offer a wide variety of ecological and biological applications. Numer-

ous studies on the dynamics of prey-predator models have been conducted. Although many

essential elements of the nonlinear dynamics of prey-predator models are linked to continuous

dynamical systems, the properties of discrete dynamical systems are still largely unknown. In
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contrast to a continuous system, a discrete dynamical structure has a solitary dynamical nature.

A discrete dynamical system may be used to define various crucial and practical challenges in

everyday life. The discretization of a continuous system may be done in several different ways.

Then one can discuss the numerical solution to think about the analytical features of a solu-

tion that is difficult to compute. As a result, rigorous critical inspections of discrete dynamical

systems have made significant contributions to domains like engineering, physics, and biology

[1, 2].

The classical Lotka-Volterra prey-predator model, which assumes that the functional re-

sponse of prey is linear, is governed by the nonlinear differential system given by [3]:

(1.1)


dN(τ)

dτ
= N(τ)(α−βN(τ)− γP(τ)),

dP(τ)
dτ

= P(τ)(γδN(τ)−D),

where N(τ) and P(τ) are the population densities of prey and predator, respectively, at time

τ , α represents the maximum per capita growth rate for prey species, β denotes the strength of

the intra-specific competition of the prey population, γ represents the strength of intraspecific

competition between prey and its predator, δ is the conversion rate of prey into the predator,

and D represents per capita death rate of predator species. The following transformations can

be used to produce the non-dimensional form of (1.1):

x(t) =
αδN(τ)

D
, y(t) =

γP(τ)
D

, t = Dτ.

In addition, by incorporating the new parameters, we are able to get the non-dimensional

version of (1.1) that is as follows:

(1.2)


dx
dt = x(t)(a−bx(t)− y(t)),

dy
dt = y(t)(cx(t)−1),

where a,b and c are positive constants.
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Discrete models are preferred over continuous models for a variety of reasons. Discretization

is required to construct discrete models that approach the exact analytical solutions to continu-

ous models. In addition, digital computers are needed for model simulations, which necessitate

the usage of discrete models. In [3], Elsadany and Matouk investigated the following fractional-

order discretized analog of (1.2).

(1.3)


xn+1 = xn +

sα

αΓ(α)(xn(a−bxn− yn)),

yn+1 = yn +
sα

αΓ(α)(yn(−1+ cxn)),

where 0 < α ≤ 1. They addressed local equilibrium dynamics, and Neimark-Sacker bifurca-

tion was proved only by numerical simulations.

In [4], Liu and Xiao studied the following discrete counterpart of (1.2) by using the Euler

method to obtain a discrete predator-prey model.

(1.4)


xn+1 = xn +δ (rxn(1− xn)−bxnyn),

yn+1 = yn +δ (−d +bxn)yn,

where r,b,d and δ are positive. They investigated the local stability and bifurcation of the

fixed points.

In [5], the authors studied the following discrete counterpart of (1.2) by using the piecewise

constant argument to obtain a discrete predator-prey model.

(1.5)


xn+1 = xnExp(a−bxn− yn),

yn+1 = ynExp(cxn−1),

They investigated stability analysis of equilibria, flip bifurcation, and Neimark-Sacker bifur-

cation analytically and numerically. Moreover, chaos control methods are employed to control

the chaotic behaviors of the model.

Discrete and continuous models are dynamically consistent if they possess similar dynamical

behavior, for example, boundedness and permanence of solution, local stability of fixed points,
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bifurcation, and chaos. We employ a non-standard finite difference scheme of Mickens-type

[6, 7, 8, 9, 10] to discretize the model (1.2). This scheme is dynamically consistent.


xn+1−xn

h = axn−bxnxn+1− xnyn,

yn+1−yn
h = cxnyn− yn,

(1.6)

where xn and yn are approximations of x(tn) and y(tn), respectively, and h is the time step

size. The system (1.6) can be written as:


xn+1 =

(1+h(a−yn))xn
1+bhxn

,

yn+1 = (1+h(cxn−1))yn,

(1.7)

The following is how the paper is organized: The existence and topological classification of

fixed points of the model (1.7) are examined in section 2. We explore local bifurcation analysis

at unique positive fixed point of the model (1.7) in section 3 applying the center manifold

theory and bifurcation theory. To support our theoretical results, we provide several numerical

examples in section 5. The section 6 has some concluding remarks.

2. EXISTENCE AND STABILITY OF FIXED POINTS

In this section, we investigated the conditions for the existence and stability of fixed points in

the system (1.7). The solutions of the following system are the fixed points (x̄, ȳ) of the system

(1.7):


x̄ = (1+h(a−ȳ))x̄

1+bhx̄ ,

ȳ = (1+h(cx̄−1))ȳ,

We can check out that the system (1.7) has three fixed points by doing some simple algebraic

calculations.

E0(0,0), E1(
a
b
,0), E2(

1
c
,
ac−b

c
).
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The point E2 is the unique fixed point of system (1.7) if ac > b.

The eigenvalues of the variational matrix computed at the fixed points of the model (1.7)

determine the local stability of the model’s fixed points. The variational matrix of the model

(1.7) at a point (x̄, ȳ) is defined as follows:

(2.1) J(x̄, ȳ) =

1+ah−hȳ
(1+bhx̄)2 − hx̄

1+bhx̄

chȳ 1+h(−1+ cx̄).


The following results are used to classify the fixed points of the system (1.7).

Lemma 2.1. [11] Let P(s) = s2 +As+B be the characteristic polynomial of the variational

matrix determined at a fixed point (x̄, ȳ) and s1,s2 are two roots of the equation P(s) = 0, then

(x̄, ȳ) is

(i) sink and therefore locally asymptotically stable if |s1,2|< 1,

(ii) source and therefore unstable if |s1,2|> 1,

(iii) saddle if |s1|< 1 and |s2|> 1 (or |s1|> 1 and |s2|< 1),

(iv) non-hyperbolic point if either |s1|= 1 or |s2|= 1.

Lemma 2.2. [11] Let P(s) = s2 +As+B. Assume that P(1) > 0. If s1,s2 are two roots of

P(s) = 0, then

(i) |s1,2|< 1 iff P(−1)> 0 and B < 1,

(ii) |s1|< 1 and |s2|> 1 (or |s1|> 1 and |s2|< 1) iff P(−1)< 0,

(iii) |s1|> 1 and |s2|> 1 iff P(−1)> 0 and B > 1,
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(iv) s1 =−1 and |s2| 6= 1 iff P(−1) = 0 and A 6= 0,2,

(v) s1 and s2 are complex and |s1,2|= 1 iff A2−4B < 0 and B = 1.

Lemma 2.3. The fixed point E0(0,0) is saddle point if 0 < h < 2, source if h > 2, and non-

hyperbolic if h = 2.

Proof. The variational matrix evaluated at fixed point E0(0,0) is

J(E0) =

1+ah 0

0 1−h

 .
The eigenvalues of J(E0) are s1 = 1+ ah and s2 = 1− h. Clearly s1 > 1 because a > 0 and

h > 0.

�

Lemma 2.4. The fixed point E1(
a
b ,0) is:

(i) sink and therefore locally asymptotically stable if b > ac and h < 2b
b−ac ,

(ii) saddle point if

(a) b < ac

(b) b > ac, h > 2b
b−ac

(iii) non-hyperbolic point if

(a) b = ac

(b) b > ac, h = 2b
b−ac

Proof. The variational matrix evaluated at fixed point E1(
a
b ,0) is

J(E1) =

 1
1+ah − ah

b+abh

0 1+(−1+ ac
b )h

 .
The eigenvalues of J(E1) are s1 = 1

1+ah and s2 = 1+(−1+ ac
b )h. Clearly s1 > 1 because

a > 0 and h > 0.

�
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The variational matrix evaluated at E2(
1
c ,

ac−b
c ) is

(2.2) J(E2) =

 c
c+bh − h

c+bh

−bh+ach 1

 .
The characteristic polynomial of J(E2) is

P(s) = s2 +As+B,

where

A =−2c+bh
c+bh

, B =
c−bh2 +ach2

c+bh

By simple computations, we obtain

P(0) =
c−bh2 +ach2

c+bh
,

P(1) =
(ac−b)h2

c+bh
,

P(−1) =
−bh(−2+h)+ c(4+ah2)

c+bh
.

It is clear that P(1) > 0 because ac > b. Moreover, by simple computations one can show

that P(−1)> 0 for ac > b.

P(−1) =
−bh(−2+h)+ c(4+ah2)

c+bh

=
2bh−bh2 +4c+ach2

c+bh

=
2bh+4c+(ac−b)h2

c+bh

We get the local dynamics of the fixed point E2 by using the lemma (2.2).

Proposition 2.5. Assume that ac > b. The fixed point E2(
1
c ,

ac−b
c ) of the system (1.7) is

(i) sink and therefore locally asymptotically stable if
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b
c
< a <

b+bh
ch

,

(ii) source and therefore unstable if

a >
b+bh

ch
,

(iv) non-hyperbolic point if

a =
b+bh

ch
.

If ac > b and a = b+bh
ch , it is evident that the eigenvalues s1,2 of J(E2) are complex satisfying

the property |s1,2| = 1. Therefore, the system (1.7) undergoes Neimark-Sacker bifurcation at

fixed point E2 if the parameters differ in a small neighbourhood of Σ.

Σ =

{
a,b,c,h ∈ R+

∣∣∣∣ac > b, a =
b+bh

ch

}
.

3. NEIMARK-SACKER BIFURCATION AT E2(
1
c ,

ac−b
c )

This section focuses on the Neimark-Sacker bifurcation at the system’s (1.7) unique positive

fixed point. We refer interested readers to [12, 13] for an in-depth analysis of bifurcation theory.

Bifurcation analysis has been studied extensively in recent years by several researchers [14, 15,

16, 17, 18].

Consider the domain

Σ1 =

{
a1,b,c,h ∈ R+

∣∣∣∣a1c > b, a1 =
b+bh

ch

}
.

Assuming that (a1,b,c,h) ∈ Σ1, and δ be small perturbation in a1, we consider the following

perturbation of the system (1.7)

(3.1)


xn+1 =

(1+h(a+δ−yn))xn
1+bhxn

,

yn+1 = (1+h(cxn−1))yn,
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We define un = xn − 1
c , vn = yn − (a+δ )c−b

c , to translate the unique positive fixed point

E2(
1
c ,

(a+δ )c−b
c ) of (3.1) to (0,0). The translation map reduces the system (3.1) to

(3.2)

un+1

vn+1

=

 c
c+bh − h

c+bh

b+ chδ 1


un

vn

+
F(un,vn)

chunvn

 ,
where

F(an,bn) =−
c2h

(c+bh)2 unvn−
bc2h

(c+bh)2 u2
n +

bc3h2

(c+bh)3 u2
nvn +

b2c3h2

(c+bh)3 u3
n +O((|un|+ |vn|)4)

The characteristic equation for the linear part of the system (3.2) at (0,0) is

(3.3) s2− p(δ )s+q(δ ) = 0,

with

p(δ ) =
2c+bh
c+bh

, q(δ ) =
c+bh+ ch2δ

c+bh
.

The solutions of the equation (3.3) are complex satisfying the property |s1,2| = 1, which are

given by

s1,2 =
p(δ )± i

√
4q(δ )− p2(δ )

2
.

By computations we obtain |s1|= |s2|=
√

q(δ ), and

(
d|s1|
dδ

)
δ=0

=

(
d|s2|
dδ

)
δ=0

=
ch2

2(c+bh)
> 0.

Moreover, it is required that sk
1,s

k
2 6= 1 for k ∈ {1,2,3,4} at δ = 0 which is analogous to

p(0) 6= ±2,0,1. Since b,c,h ∈ R+, therefore p(0) > 0. Moreover, we can write p(0) = 1+
c

c+bh > 1. Setting p(0) = 2 implies that bh = 0 which is not possible. Therefore p(0) 6=±2,0,1.

The following transformation is used to obtain the canonical form of the linear part of (3.2)

at δ = 0.
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(3.4)

un

vn

=

− h
c+bh 0

bh
2(c+bh) −

√
bh(4c+3bh)
2(c+bh)


en

fn

 .
Under the transformation (3.4), the system (3.2) becomes

(3.5)

en+1

fn+1

=

µ −ν

ν µ


en

fn

+
F(en, fn)

G(en, fn)

 ,
where

µ =
2c+bh

2(c+bh)
, ν =

√
bh(4c+3bh)
2(c+bh)

,

F(en, fn) = A1e2
n +A2e3

n +A3en fn +A4e2
n fn +O((|en|+ | fn|)4),

G(en, fn) = B1e2
n +B2e3

n +B3en fn +B4e2
n fn,

where

A1 =
bc2h2

2(c+bh)3 , A2 =
b2c3h4

2(c+bh)5 , A3 =
c2
√

bh3(4c+3bh)
2(c+bh)3 , A4 =

c3
√

b3h7(4c+3bh)
2(c+bh)5 ,

B1 =
bch3(2c2 +2b2h2 +b(c+4ch))

2(c+bh)3
√

bh(4c+3bh)
, B2 =

b3c3h5

2(c+bh)5
√

bh(4c+3bh)
,

B3 =−
ch2(2c2 +2b2h2 +bc(−1+4h))

2(c+bh)3 , B4 =
b2c3h4

2(c+bh)5 .

The following quantity L determines the direction in which the closed invariant curve arises

in a system with Neimark-Sacker bifurcation.

L =

([
−Re

(
(1−2s1)s2

2
1− s1

η20η11

)
− 1

2
|η11|2−|η02|2 +Re(s2η21)

])
δ=0

,

where
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η20 =
1
8
[
Fenen−Ffn fn +2Gen fn + i(Genen−G fn fn−2Fen fn)

]
,

η11 =
1
4
[
Fenen +Ffn fn + i(Genen +G fn fn)

]
,

η02 =
1
8
[
Fenen−Ffn fn−2Gen fn + i(Genen−G fn fn +2Fen fn)

]
,

η21 =
1

16
[
Fenenen +Fen fn fn +Genen fn +G fn fn fn + i(Genenen +Gen fn fn−Fenen fn−Ffn fn fn)

]
.

From the above calculations, we obtain the following theorem for the existence and direction

of Neimark-Sacker bifurcation.

Theorem 3.1. Suppose that a,b,c,h∈R+ and ac > b. If L 6= 0, then the system (1.7) undergoes

Neimark-Sacker bifurcation at the fixed point E2(
1
c ,

ac−b
c ) when the parameter a varies within

a neighbourhood of a1 =
b+bh

ch . Additionally, an attracting invariant closed curve will bifurcate

from the fixed point if the value of L is less than zero, and a repelling invariant closed curve will

bifurcate from the fixed point if the value of L is greater than zero.

4. HYBRID CONTROL METHOD TO CONTROL BIFURCATION AND CHAOS

Controlling chaos in discrete systems has recently become a popular research area. It is ideal

to optimize the system in terms of some success criteria in dynamical systems while avoiding

chaos. In discrete models, chaos control may be done using several ways, including the state

feedback control method (OGY method) [19, 20], the pole-placement technique [21], and the

hybrid control method [22]. This section just covers the hybrid control approach. This technique

was designed to manage the period-doubling bifurcation, but it can also control the Neimark-

Sacker bifurcation.

We consider the following controlled system associated to (1.7).


xn+1 =

α(1+h(a−yn))xn
1+bhxn

+(1−α)xn,

yn+1 = α(1+h(cxn−1))yn +(1−α)yn,

(4.1)

where 0 < α < 1. The controlled system (4.1) and the original system (1.7) both have same

fixed points. The variational matrix of (4.1) evaluated at E2 is
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J(E2) =

 c+bh−αbh
c+bh − αh

c+bh

αh(−b+ac) 1

 .
We obtain the characteristic polynomial for J(E2) as:

P(s) = s2 +
(−2c+bh(−2+α))

c+bh
s+

c+ach2α2−bh(−1+α +hα2)

c+bh
.

Keeping in view the Jury condition, system (4.1) is controllable if b
c < a < b+αbh

αch .

5. NUMERICAL SIMULATIONS

In this section, we present some numerical examples to support our theoretical findings of

the model’s multiple qualitative properties, which are discussed in the previous sections.

5.1. Neimark-Sacker bifurcation of the system (1.7) at E2 by using a as bifurcation pa-

rameter: We use the following values for the parameters and initial condition: b = 4.1, c =

2.5, h = 1.5,x0 = 0.35, y0 = 1.1. The point E2(0.4,1.09333) represents the positive fixed point

of the system (1.7) when it is applied to these parametric values. The eigenvalues of J(E2) for

a = 2.73333 are s1 = 0.644509− 0.764597i,s2 = 0.644509+ 0.764597i, which indicates that

the system (1.7) is undergoing Neimark-Sacker bifurcation at E2(0.4,1.09333) as the bifurca-

tion parameter a crosses a = a1 = 2.73333. Bifurcation diagrams for the prey and the predator

, respectively, are shown in the figures (1a, 1b), which are for the range a ∈ [2.6,3]. For these

parametric values the fixed point E2 is locally asymptotically stable iff 0 < a < 2.73333. Phase

portraits of the model (1.7) are shown in the figures (1c-1f) for various values of the parameter

a. According to these figures, the fixed point E2(0.4,1.09333) is locally asymptotically stable

for 0 < a < 2.73333, but it becomes unstable at a = 2.73333, which is the point at which the

model (1.7) experiences Neimark-Sacker bifurcation. At the point where a = 2.73333, an in-

variant closed curve emerges, and as a rises, the radius of this curve grows. In addition, when

these numbers are used, the value of L is −0.0344048.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 1. Bifurcation diagrams of (1.7) for b = 4.1, c = 2.5, h = 1.5,x0 =

0.35, y0 = 1.1,a ∈ [2.6,3], and phase portraits for some values of a.
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(A) (B)

FIGURE 2. Bifurcation diagrams of (1.7) for b = 4.1, c = 2.5, h = 1.5, α =

0.9, x0 = 0.35, y0 = 1.1 and a ∈ [2.75,3.15].

5.2. Hybrid Control Method: We take the parameter values and initial condition as b =

4.1, c = 2.5, h = 1.5, α = 0.9, x0 = 0.35, y0 = 1.1. For these values, the system (4.1) expe-

riences Neimark-Sacker bifurcation as bifurcation parameter a passes through the critical value

a = 2.85481. Figures (2a, 2b) depict bifurcation diagrams for both prey and predator popu-

lations for a ∈ [2.75,3.15]. Bifurcation diagrams show that the fixed point E2(
1
c ,

ac−b
c ) of the

system (1.7) is stable for smaller values of a and unstable for larger values of a. Moreover, com-

paring the bifurcation diagrams ((1a),(1b)) and ((2a),(2b)) it is concluded that the bifurcation is

delayed from a = 2.73333 to a = 2.85481 by using the hybrid control method.

5.3. Neimark-Sacker bifurcation of the system (1.7) at E2 by using h as bifurcation pa-

rameter: We take the parameter values and initial condition as a = 2.75, b = 4.1, c = 2.5,x0 =

0.35, y0 = 1.1. For these values, the system (1.7) experiences Neimark-Sacker bifurcation as

bifurcation parameter h passes through the critical value h = 1.47748. Figures (3a, 3b) depict

bifurcation diagrams for both prey and predator populations for h ∈ [1.3,1.8]. Bifurcation dia-

grams show that the fixed point E2(
1
c ,

ac−b
c ) of the system (1.7) is stable for smaller values of h

and unstable for larger values of h.
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(A) (B)

FIGURE 3. Bifurcation diagrams of (1.7) for a = 2.75, b = 4.1, c = 2.5,x0 =

0.35, y0 = 1.1 and h ∈ [1.3,1.8].

5.4. Neimark-Sacker bifurcation of the system (1.7) at E2 by using b as bifurcation pa-

rameter: We take the parameter values and initial condition as a= 2.75, c= 2.5, h= 1.5, x0 =

0.35, y0 = 1.1. For these values, the system (1.7) experiences Neimark-Sacker bifurcation as

bifurcation parameter b passes through the critical value b = 4.125. Figures (4a, 4b) depict

bifurcation diagrams for both prey and predator populations for b ∈ [3.75,4.25]. Bifurcation

diagrams show that the fixed point E2(
1
c ,

ac−b
c ) of the system (1.7) is stable for larger values of

b and unstable for smaller values of b.

5.5. Neimark-Sacker bifurcation of the system (1.7) at E2 by using c as bifurcation pa-

rameter: We take the parameter values and initial condition as a= 2.75, b= 4.1, h= 1.5, x0 =

0.35, y0 = 1.1. For these values, the system (1.7) experiences Neimark-Sacker bifurcation as

bifurcation parameter c passes through the critical value c = 2.48485. Figures (5a, 5b) depict

bifurcation diagrams for both prey and predator populations for c ∈ [2.35,2.75]. Bifurcation

diagrams show that the fixed point E2(
1
c ,

ac−b
c ) of the system (1.7) is stable for smaller values

of c and unstable for larger values of c.
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(A) (B)

FIGURE 4. Bifurcation diagrams of (1.7) for a = 2.75, c = 2.5, h = 1.5,x0 =

0.35, y0 = 1.1 and b ∈ [3.75,4.25].

(A) (B)

FIGURE 5. Bifurcation diagrams of system (1.7) for a = 2.75, b = 4.1, h =

1.5,x0 = 0.35, y0 = 1.1 and c ∈ [2.35,2.75].
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6. CONCLUSION

This study used a dynamically consistent nonstandard finite difference scheme to discretize

the classical Lotka-Volterra prey-predator model with a linear functional response. The exis-

tence and topological classification of fixed points of the discrete model (1.7) are discussed.

It is proved that the system experiences Neimark-Sacker bifurcation at the unique positive

fixed point E2(
1
c ,

ac−b
c ) when the bifurcation parameter a varies in a small neighbourhood of

a1 =
b+bh

ch . The hybrid control method is used to control the Neimark-Sacker bifurcation. It is

observed that the discrete counterparts of (1.2) obtained by using the Euler method [4] and the

piecewise constant argument method [5] experience period-doubling bifurcation and Neimark-

Sacker bifurcation. The discrete counterpart of (1.2) obtained by using a nonstandard finite

difference scheme experiences only Neimark-Sacker bifurcation. Moreover, in numerical sim-

ulations it is observed that for small values of parameters a,c and h the fixed point E2(
1
c ,

ac−b
c )

of the system (1.7) is stable, and E2 is unstable for large values of parameters a,c and h. The

fixed point E2 is unstable for small values of b and it is stable for large values of b.
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