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Abstract: Deterministic mathematical model of the nonlinear first-order differential equation is proposed considering 

both direct and indirect contact transmission to capture some of the control measures such as treatment in limiting the 

infection. Six compartments are considered in the model that is; susceptible humans, exposed humans, infected 

humans with H. pylori, treated humans, infected humans with stomach cancer and the bacteria concentration from the 

environment. The qualitative behavior of the model was performed including, the existence of nonnegative invariant 

solution, boundness region, equilibria (both disease-free as well as endemic) and stabilities of two-equilibrium point. 

Moreover, control reproduction number and bifurcation analysis were also studied. Based on the analysis of sensitivity, 

the method of partial rank correlation coefficient (PRCC) and Latin hypercube sampling (LHS) was studied to find 

out which parameters are useful for the model. Furthermore, sensitivity analysis of some parameters was also studied 

based on the control reproduction number. The simulation results show that increasing the Helicobacter pylori 

infections treatment rate, has a vital role in the reduction of infections and stomach cancer in the community. Therefore, 

we concluded that effective treatment rate and low contact rate are most significant to eradicate stomach cancer from 
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the community. 
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1. INTRODUCTION 

Helicobacter pylori (H. pylori) is a microaerophilic, gram-negative and spiral shaped  bacterium 

which was first discovered in 1982 [1]. It is the most serious human bacterial, which colonizes the 

host gastric of more than half of  human population globally, especially in adulthood [2,3]. H. 

pylori infection has been discussed as the primary risk factor associated with stomach cancer and 

it significantly increases chances of developing peptic ulcers and cancer diseases in the stomach 

[3].  

Gastric cancer mainly begins with lesions which develop into inflammation, gastric gastritis, 

gastric atrophy and then followed by gastric cancer. Gastric cancer commonly is ranked to be the 

5th cancer globally after lung, breast , colorectal and prostate cancer [4] and 3rd most leading cancer 

death globally [5], after lung and colorectal cancer with estimated death cases of about 783,000 [6] 

and commonly in developing countries than developed countries [7]. In Africa, gastric cancer is 

ranked as 12th most prevalent stomach cancer with estimated death rate as 3.8 to 100,000 and 

estimated incidence rate as 4 to 100,000. The incidence and death rate are higher in Africa than in 

developed countries like United State [8]. According to GLOBACAN 2020 gastric cancer is 

ranked to be 5th causes of death in Kenya for about 1,501 death cases and about 1,781 new cases 

of gastric cancer.  

Helicobacter Pylori is commonly transmitted directly from infected to a susceptible person 

through oral-to-oral route or faecal to oral route which includes kissing, vomiting, oral sex, 

breastfeeding. Also, the human pathogen can be transmitted by environmental factors such as using 

contaminated water and contaminated food [6]. The common risk factors involved with H. pylori 

includes overcrowding conditions, poor social economic status, inadequate sanitations, water-

borne and food transmission, migration to highly vulnerable regions and infection status of the 

family members. The most common symptoms associated with the H. pylori includes Abdominal 

pains, bloating and fullness, ingestion and nausea [9]. 

Infection with H. pylori is endemic mainly in countries which are developing and despite current 

progress in public health goals such as safe water, improved sanitation and proper medical care 



3 

HELICOBACTER PYLORI TREATMENT AND TRANSMISSION IMPLICATIONS 

coverage, remains a common public health problem. Understanding the important mechanism of 

transmission of disease is more vital for preventive and also intervention strategies against stomach 

cancer. In the previous studies, dynamics of H. pylori infections have been studied for example 

Cousins et al. [10] formulated a model on dynamics of campylobacter considering direct and 

indirect pathway which assumed the insect vector as a mechanical vector for disease transmission. 

Rupnow et al. [11] applied SEIR compartmental model on dynamics of infection by H. pylori in 

United State. The results stressed on the trends of infection in the future. No environment to human 

contact was considered in this study. Moreover, Siewe et al. [12] proposed SEIR model on the role 

of assymptomatic infection which emphasized on different stages of assymptomatic state of the 

disease. Therefore, this study aims to incorporate the role of treatment as a control strategy and 

also consider the implications of H. pylori in stomach cancer dynamics. This raises a vital question, 

does H. pylori affect the spread of stomach cancer? The qualitative behaviour, sensitivity analysis 

and the numerical simulations of the mathematical model are performed in this study. 

 

2. MODEL FORMULATION 

The model considers human-human and environment-human transmission. The total population 

of individuals is categorized into five classes which comprises of, Susceptible S(t): these are 

humans who are at high risk of getting the infection sometimes in the future, Exposed E(t): are 

individuals who have not developed symptoms of H. pylori infection but can transmit the infection, 

Infected I(t): are humans infected with H. pylori. Treated T(t): includes humans who have received 

treatment at a time 𝑡 > 0 after the infection with H. pylori. Infected C(t): these are individuals 

who have been infected with stomach cancer. The forces of infection of the model are; 

1 1 1 2 3( )E I T C    = + + + , where 1  is the ingestion rate of H. pylori through human-human 

interaction and ƞ1…ƞ3 < 1  accounts for infectiousness among individuals with H. pylori 

infection and  
2

2

1( ) H

K H

 


−
=

+
, where 2   H. pylori ingestion rate through environment-

human, K is the concentration of Helicobacter pylori in waters or food,   is the use of hygiene, 

safe water or sanitation and 
H

K H+
 is the probability of humans consuming contaminated water 

or foods with infection causing bacteria. The assumptions of the study are as follows, the strongest 
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risk factor associated with stomach cancer is  Helicobacter pylori infection [13].  The size of 

human population is constant. All the parameters are non-negative. All individuals are susceptible 

in the community, since Helicobacter pylori infection spread to all parts of the community. The 

birth and the death rate are not equal. There is no significance to the recovery from natural 

immunity. It is possible to determine the area. 

 

Table 1: Parameter description 

Parameter  Description 

   Individuals birth rate 

   Natural individual mortality rate 

 1  Human induced force of infection 

 2  Environment induced force of infection  

   Exposed individual infectious rate 

   Treatment rate of I (t) 

   Susceptible rate of individuals who have treated 

   Stomach cancer induced mortality rate  

   Rate at which infected I(t) individuals gets stomach cancer 

   Rate at which treated individuals gets stomach cancer 

   Natural death of H. pylori 

 1  Discharge of H. pylori from exposed class 

 2  Discharge of H. pylori from infected class 

 3  Discharge of H. pylori from treated class 

 4  Discharge of H. pylori from stomach cancer class 
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Figure 1: Flow diagram of the model 

 

2.1 Model equations 

1 2

dS
T ( )S

dt
    = + − + +                (1) 

1 2( ) ( )
dE

S E
dt

   = + − +                (2) 

( )
dI

E I
dt

   = − + +                 (3) 

( )
dT

I T
dt

   = − + +                 (4) 

( )
dC

I T C
dt

   = + − +                 (5) 

1 2 3 4

dH
E I T C H

dt
    = + + + −              (6) 

 

 
                

    

   

  

 
 

 1      

 

    

 

 1
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3. MODEL ANALYSIS 

3.1 Positivity 

Theorem 1. Let 6{ ( ), ( ), ( ), ( ), ( ), ( )}R S t E t I t T t C t H t R+=  : 

(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0S E I T C H      }; then the solutions of  , , , , ,S E I T C H

are nonnegative for 0t  . 

Proof. The prove of the theorem follows that, 

From the first differential equation (1): 

1 2

dS
T ( )S

dt
    = + − + +       

( )1 2

dS
S

dt
   − + +          (7) 

( )1 2
0

tdS
dr

S
   − + +             (8) 

Solving (8) using separation of variable, we get, 

( )1 2
0

t
cS( t ) e exp dr   − + +        (9) 

Applying initial condition, (9) becomes, 

( ) ( ) ( )1 2
0

0 0
t

S t S exp dr   − + +         (10) 

From equation (2), we have 

                          1 2( ) ( )
dE

S E
dt

   = + − +  

( )
dE

E
dt

  − +            (11) 

( )
dE

dt
E

  − +             (12) 

0 0E( t ) E( )exp ( )t  − +          (13) 

Similarly, it follows that from the third to sixth differential equations of the model, we take similar 

steps to get 
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( )( ) (0)exp 0I t I t   − + +          (14) 

( ) (0)exp ( ) 0T t T t   − + +          (15) 

            ( )( ) (0)exp 0C t C t  − +                  (16) 

                  0 0H( t ) H( )exp ( )t −                     (17) 

Thus, the theorem is proved. 

3.2. Boundness of the solution  

The model can be divided into two main parts; Human population RN and concentration of bacteria 

from the environment RH such that,  

  5( ), ( ), ( ), ( ), ( ) :NR S t E t I t T t C t S E I T C N+=  + + + + = and 

  1( )HR H t +=  respectively. 

We first consider the boundness of system (1) to (5) at time t, given as 

( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t T t C t= + + + +                  (18) 

By differentiating (18), gives 

   
dN dS dE dI dT dC

dt dt dt dt dt dt
= + + + +                    (19) 

Substituting system (1)-(5) into (19), we have    

dN
N C

dt
  = − −                             (20)                                                                

If there is no infectious human with Stomach cancer, it indicates that ( )0 = then (20) becomes 

( )
dN

N t
dt

  −                               (21) 

By using method of separation of variables of inequality, we have  

                        ( )
1

ln ( )N t t c 


−
−  +  

( ) tN t De   −−                      (22) 

Solving (22) and evaluating as t approaches to  , we have: 
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( )lim
t

N t


→
=                    (23) 

Implying that, 

( )0 N t



           (24) 

Therefore, the model is bounded in the domain 

( ) ( )5, , , , : 0NR S E I T C N t



+

 
=    
 

. 

We then consider the boundness solution for the bacteria concentration at time t 

From (6), we have 

                                 1 2 3 4

dH
E I T C H

dt
    = + + + −  

1 2 3 4

dH
H E I T C

dt
    + = + + +     (25) 

Let 1 2 3 4M E I T C   = + + +  which is the recruitment rate of the bacteria from infectious 

classes. We then obtain a differential inequality 

dH
H M

dt
+           26) 

By use of integration factor method, we obtained 

tM
H ce 



− +          (27) 

Where c is the constant. 

As t goes to  , we have: 

lim ( )
t

M
H t

→
=          (28) 

Which implies that,   

0 ( )
M

H t


           (29) 
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                  ( ) ( )1 : 0H

M
R H t H t


+

 
=    
 

 

Therefore, the model is bounded as; 

                 , , , , , 0 : ( ) , ( )
M

R S E I T C H N t H t


 

 
=    
 

 

Thus, the model makes biological sense and it is well posed. 

3.3 Disease free equilibrium point (DFE) 

DFE of the system (1) – (6) is obtained by setting 0E = , 0T = ,  0C =  and   0H =

Therefore, after solving. We obtained 

0 0 0 0 0 0 0( , , , , , ) ,0,0,0,0,0B S E I T C H




 
= =  

 
 

3.4. The control reproduction number (RC) 

To obtain control reproduction number, we used next generation method. Non-negative matrix F 

and non-singular matrix V represents new infections terms and transfer of infections terms 

respectively (At DFE). Thus, 

 

                          

1 2

1 2 3 4

( )

0

0

0

S

f

E I T C

 

   

+ 
 
 
 =
 
 
 + + + 

                 (30) 

 

( )

( )

( )

( )

E

E I

v I T

I T C

H

 

   

   

   



+ 
 
− + + +

 
 = − + + +
 
− − + + 
  

           (31) 

Where, 1k  = + , 2k   = + + , 3k   = + +  and  4k  = +  

At DFE point, Jacobian matrices of f and v was evaluated to find out Matrices F and V 

respectively. 
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F=

[
 
 
 
 
 𝑆
0𝛽1 𝑆0𝛽1𝜂1 𝑆0𝛽1𝜂2 𝑆0𝛽1𝜂3

𝑆0(1−𝜖)𝛽2

𝐾

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
𝛹1 𝛹2 𝛹3 𝛹4 0 ]

 
 
 
 
 

     (32) 

 

V=

[
 
 
 
 
𝑘1 0 0 0 0
−𝜌 𝑘2 0 0 0
0 −𝜔 𝑘3 0 0
0 −𝛾 −𝛼 𝑘4 0
0 0 0 0 𝜏]

 
 
 
 

 

 

Inverse of V is evaluated and given by 

 

1V − =

[
 
 
 
 
 
 
 
 

1

𝑘1
0 0 0 0

𝜌

𝑘1𝑘2

1

𝑘2
0 0 0

𝜌𝜔

𝑘1𝑘2𝑘3

𝜔

𝑘2𝑘3

1

𝑘3
0 0

𝛼𝜌𝜏𝜔+𝛾𝜌𝜏𝑘3

𝜏𝑘1𝑘2𝑘3𝑘4

𝛼𝜏𝜔𝑘1+𝛾𝜏𝑘1𝑘3

𝜏𝑘1𝑘2𝑘3𝑘4

𝛼

𝑘3𝑘4

1

𝑘4
0

0 0 0 0
1

𝜏 ]
 
 
 
 
 
 
 
 

     (33) 

 

The dominant eigenvalue represents the control reproduction number, which is given as; 

𝑅𝐶 =
1

2𝐾𝜏𝑘1𝑘2𝑘3𝑘4
(𝐾𝑆0𝜏𝛽1(𝑘4(𝑘3(𝑘2  𝜌𝜂1)  𝜌𝜔𝜂2)  𝜌(𝛼𝜔  𝛾𝑘3)𝜂3)  𝑌   (34) 

where, 

Y=

√𝐾𝑆0𝜏(𝐾𝑆𝑂𝜏𝛽1
2(𝑘4(𝑘3(𝑘2  𝜌𝜂1)  𝜌𝜔𝜂2)  𝜌(𝛼𝜔  𝛾𝑘3)𝜂3)

2 −  (−1  𝜖)𝑘1𝑘2𝑘3𝑘4𝛽2(𝑘4(𝑘3(𝑘2𝛹1  𝜌𝛹2)  𝜌𝜔𝛹3)  𝜌(𝛼𝜔  𝛾𝑘3)𝛹4) 

And the control reproduction number for reduced system (1) to (5) is given as; 

( )0

1 2 3 4 1 3 4 2 4 3 3 3*

1 2 3 4

C

S k k k k k k k
R

k k k k

        + + + +
=  

3.5 Local stability of disease-free equilibrium point  

Theorem 2. The DFE of the system (1) - (6) is locally asymptomatic stable if 𝑅𝐶 < 1. 

Proof. The Jacobian matrix at DFE is obtained and written as: 
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0( )J E =

[
 
 
 
 
 
 
 −𝜇 −𝑆0𝛽1 −𝑆0𝛽1𝜂1 𝜃 − 𝑆0𝛽1𝜂2 −𝑆0𝛽1𝜂3

𝑆0(1−𝜖)𝛽2

𝐾

0 𝑆0𝛽1−𝑘1 𝑆0𝛽1𝜂1 𝑆0𝛽1𝜂2 𝑆0𝛽1𝜂3
𝑆0(1−𝜖)𝛽2

𝐾

0 𝜌 −𝑘2 0 0 0
0 0 𝜔 −𝑘3 0 0
0 0 𝛾 𝛼 −𝑘4 0
0 ᴪ1 ᴪ2 ᴪ3 ᴪ4 −𝜏 ]

 
 
 
 
 
 
 

           (35) 

From Jacobian matrix above, the first eigenvalue is -µ. Therefore, matrix reduces to, 

                    

[
 
 
 
 
 𝑆
0𝛽1 − 𝑘1 𝑆0𝛽1𝜂1 𝑆0𝛽1𝜂2 𝑆0𝛽1𝜂3

𝑆0(1−𝜖)𝛽2

𝐾

𝜌 −𝑘2 0 0 0
0 𝜔 −𝑘3 0 0
0 𝛾 𝛼 −𝑘4 0
ᴪ1 ᴪ2 ᴪ ᴪ4 −𝜏 ]

 
 
 
 
 

     (36) 

The characteristic polynomial of the above matrix (36) is obtained as; 

 5 4 3 2

1 2 3 4 5 6 0a x a x a x a x a x a+ + + + + =                   (37) 

Where constant 1 2 3 4 5, , , ,a a a a a and 6a  are determined using Mathematica software as; 

1a = 1 > 0 

2a = 𝜏  𝑘1  𝑘2  𝑘3  𝑘4 − 𝑆
𝑂𝛽1 

3a = 𝜏𝑘1  𝜏𝑘2  𝑘1𝑘2  𝜏𝑘3  𝑘1𝑘3  𝑘2𝑘3  𝜏𝑘4  𝑘1𝑘4  𝑘2𝑘4  𝑘3𝑘4 − 𝑆
0𝜏𝛽1 −

𝑆0𝑘2𝛽1 − 𝑆
0𝑘3𝛽1 − 𝑆

0𝑘4𝛽1 − 𝑆
0𝜌𝛽1𝜂1 −

𝑆0𝛽2𝛹1

𝐾
 
𝑆0𝜖𝛽2𝛹1

𝐾
 

4a = 𝜏𝑘1𝑘2  𝜏𝑘1𝑘3  𝜏𝑘2𝑘3  𝑘1𝑘2𝑘3  𝜏𝑘1𝑘4  𝜏𝑘2𝑘4  𝑘1𝑘2𝑘4  𝜏𝑘3𝑘4  𝑘1𝑘3𝑘4  

𝑘2𝑘3𝑘4 − 𝑆
0𝜏𝑘2𝛽1 − 𝑆

0𝜏𝑘3𝛽1 − 𝑆
0𝑘2𝑘3𝛽1 − 𝑆

0𝜏𝑘4𝛽1 − 𝑆
0𝑘2𝑘4𝛽1 − 𝑆

0𝑘3𝑘4𝛽1 − 𝑆
0𝜌𝜏𝛽1𝜂1 −

𝑆0𝜌𝑘3𝛽1𝜂1 − 𝑆
0𝜌𝑘4𝛽1𝜂1 − 𝑆

0𝜌𝜔𝛽1𝜂2 − 𝑆
0𝛾𝜌𝛽1𝜂3 −

𝑆0𝑘2𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘2𝛽2𝛹1

𝐾
−
𝑆0𝑘3𝛽2𝛹1

𝐾
 

𝑆0𝜖𝑘3𝛽2𝛹1

𝐾
−
𝑆0𝑘4𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘4𝛽2𝛹1

𝐾
−
𝑆0𝜌𝛽2𝛹2

𝐾
 
𝑆0𝜖𝜌𝛽2𝛹2

𝐾
            (38) 

5a = 𝜏𝑘1𝑘2𝑘3  𝜏𝑘1𝑘2𝑘4  𝜏𝑘1𝑘3𝑘4  𝜏𝑘2𝑘3𝑘4  𝑘1𝑘2𝑘3𝑘4 − 𝑆
0𝜏𝑘2𝑘3𝛽1 − 𝑆

0𝜏𝑘2𝑘4𝛽1 −

𝑆0𝜏𝑘3𝑘4𝛽1 − 𝑆
0𝑘2𝑘3𝑘4𝛽1 − 𝑆

0𝜌𝜏𝑘3𝛽1𝜂1 − 𝑆
0𝜌𝜏𝑘4𝛽1𝜂1 − 𝑆

0𝜌𝑘3𝑘4𝛽1𝜂1 − 𝑆
0𝜌𝜏𝜔𝛽1𝜂2 −

𝑆0𝜌𝜔𝑘4𝛽1𝜂2 − 𝑆
0𝛾𝜌𝜏𝛽1𝜂3 − 𝑆

0𝛼𝜌𝜔𝛽1𝜂3 − 𝑆
0𝛾𝜌𝑘3𝛽1𝜂3 −

𝑆0𝑘2𝑘3𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘2𝑘3𝛽2𝛹1

𝐾
−
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𝑆0𝑘2𝑘4𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘2𝑘4𝛽2𝛹1

𝐾
−
𝑆0𝑘3𝑘4𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘3𝑘4𝛽2𝛹1

𝐾
−
𝑆0𝜌𝑘3𝛽2𝛹2

𝐾
 
𝑆0𝜖𝜌𝑘3𝛽2𝛹2

𝐾
−
𝑆0𝜌𝑘4𝛽2𝛹2

𝐾
 

𝑆0𝜖𝜌𝑘4𝛽2𝛹2

𝐾
−
𝑆0𝜌𝜔𝛽2𝛹3

𝐾
 
𝑆0𝜖𝜌𝜔𝛽2𝛹3

𝐾
−
𝑆0𝛾𝜌𝛽2𝛹4

𝐾
 
𝑆0𝛾𝜖𝜌𝛽2𝛹4

𝐾
 

6a = 𝜏𝑘1𝑘2𝑘3𝑘4 − 𝑆
0𝜏𝑘2𝑘3𝑘4𝛽1 − 𝑆

0𝜌𝜏𝑘3𝑘4𝛽1𝜂1 − 𝑆
0𝜌𝜏𝜔𝑘4𝛽1𝜂2 − 𝑆

0𝛼𝜌𝜏𝜔𝛽1𝜂3 −

𝑆0𝛾𝜌𝜏𝑘3𝛽1𝜂3 −
𝑆0𝑘2𝑘3𝑘4𝛽2𝛹1

𝐾
 
𝑆0𝜖𝑘2𝑘3𝑘4𝛽2𝛹1

𝐾
−
𝑆0𝜌𝑘3𝑘4𝛽2𝛹2

𝐾
 
𝑆0𝜖𝜌𝑘3𝑘4𝛽2𝛹2

𝐾
−
𝑆0𝜌𝜔𝑘4𝛽2𝛹3

𝐾
 

𝑆0𝜖𝜌𝜔𝑘4𝛽2𝛹3

𝐾
−
𝑆0𝛼𝜌𝜔𝛽2𝛹4

𝐾
 
𝑆0𝛼𝜖𝜌𝜔𝛽2𝛹4

𝐾
−
𝑆0𝛾𝜌𝑘3𝛽2𝛹4

𝐾
 
𝑆0𝛾𝜖𝜌𝑘3𝛽2𝛹4

𝐾
 

By Routh-Hurwitz criteria for stability, for 𝑅𝐶 < 1  the system (1) – (6) is locally 

asymptomatically stable at disease free equilibrium (𝐵0)  if and only if  𝑎2 > 0, 𝑎4 > 0, 𝑎6 >

0, 𝑏1 > 0, 𝑐1 > 0, 𝑑1 > 0 , 𝑒1 > 0 are satisfied and  otherwise unstable. 

where, 1 2 3
1

1

a a a
b

a

−
= ,   1 4 5

2

1

a a a
b

a

−
= , 3 6b a= ,  1 3 1 2

1

1

b a a b
c

b

−
= , 1 5 1 3

2

1

b a a b
c

b

−
= , 

1 2 1 2
1

1

c b b c
d

c

−
= , 2 3d b=  and 1 2 1 2

1

1

d c c d
e

d

−
=  

3.6 Global stability of disease-free equilibrium 

To obtain the global stability of DFE, Castillo-Chavez method was used. 

Theorem 3. Point �̂� = (𝑋∗, 0) = (
𝜋

 
, 0,0,0,0)  is globally asymptomatically stable if and only if 

*

CR < 1 and conditions (T1) and (T2) are satisfied in system (1) – (5). 

Proof. We can rewrite the reduced system as: 

( , )
dX

F X Z
dt

= ; ( , )
dZ

G X Z
dt

= . 

Here, ( )X S=  represents the class of uninfected population while 

( , , , )Z E I T C= represents the population which is infected. 

( ,0) 0G X = ,�̂� = (𝑋∗, 0) = (
𝜋

 
, 0,0,0,0)   denote the DFE of the system (1) – (5). 

In order to generate global asymptotically stability, (T1) and (T2) conditions must be satisfied. 

(T1) for 
*( ,0),

dX
F X X

dt
= is globally asymptotically stable. 
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(T2), ( , )G X Z AZ= − �̂�(𝑋, 𝑍) , �̂�(𝑋, 𝑍) ≥ 0  for 5( , )X Z +  

Where, ( , )ZA D G X Z=  is an M matrix. 

In this case, ( ,0)F X S = −  

0 0 0 0

1 1 1 1 2 1 3 1

2

3

4

0 0

0 0

0

S k S S S

k
A

k

k

      





 

 −
 

− =
 −
 

−  

      (39) 

 

0 0 0 0

1 1 1 1 2 1 3 1

2

3

4

( )S k E S I S T S C

E k I
AZ

I k T

I T k C

      





 

 − + + +
 

− =
 −
 

+ −  

    (40) 

 

1 1

2

3

4

( , )

S k E

E k I
G X Z

I k T

I T k C







 

− 
 

−
 =
 −
 

+ − 

          (41) 

But �̂�(𝑋, 𝑍) = 𝐴𝑍 − 𝐺(𝑋, 𝑍),  

 

�̂�(𝑋, 𝑍) =

[
 
 
 
 
�̂�1(𝑋, 𝑌)

�̂�2(𝑋, 𝑌)

�̂�3(𝑋, 𝑌)

�̂�4(𝑋, 𝑌)]
 
 
 
 

= 

0

1 1 2 3( )( )

0

0

0

E I T C S S    + + + −
 
 
 
 
 

   (42) 

Thus, if  �̂�(𝑋, 𝑍) ≥ 0 then DFE is globally asymptomatic stable and unstable otherwise. The 

susceptible is bounded as, 0S S .Therefore �̂�1(𝑋, 𝑌) ≥ 0 , �̂�2(𝑋, 𝑌) = 0 , �̂�3(𝑋, 𝑌) = 0 

and   �̂�4(𝑋, 𝑌) = 0. Thus DFE, is globally asymptomatically stable when *

CR < 1  

3.7 Existence of Endemic Equilibrium Point (EEP) 

* * * * * *( , , , , )B S E I T C= denote the EEP of system (1) – (5) and when the disease persists, it occurs 

in the community [14]. *B is evaluated by equating the system to zero. To get, 
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*
*

*

1

T
S

 

 

+
=

+
, 

* *
* 1

1

S
E

k


= , 

*
*

2

E
I

k


=  

*
*

3

I
T

k


= , 

* *
*

4

I T
C

k

 +
=  

Where, 1k  = + , 2k   = + + , 3k   = + +  and  4k  = +  

Lemma 1. For *

CR > 1 there exists a unique EEP *B  and otherwise does not exist. 

Proof. For the endemic disease
dE

dt
> 0, 

dI

dt
> 0, 

dT

dt
> 0 and 

dC

dt
> 0 that is 

dE

dt
= 1 ( )S E  − + > 0         (43) 

dI

dt
= ( )E I   − + +  > 0             (44) 

dT

dt
= ( )I T   − + +  > 0                             (45) 

dC

dt
= ( )I T C   + − +  > 0                         (46) 

From inequalities of (43) – (46), 

                E< 
( ) 0

1 1 2 3

1

E I T C S

k

   + + +
             (47) 

                   I < 
2

E

k


                                           (48) 

          T < 
2 3

E

k k


                                      (49) 

C<  
2 4 2 3 4

E E

k k k k k

 
+                                   (50) 

Where, 1k  = + , 2k   = + + , 3k   = + +  and  4k  = +  

Substituting (48), (49) and (50) to (47) we obtained,  

E< 
0

1
1 2 3

1 2 2 3 2 4 2 3 4

( )
S E E E E

E
k k k k k k k k k

    
  

 
+ + + + 

 
     (51) 

By cancelling the E on both sides, we obtained 
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( )0

1 2 3 4 1 3 4 2 4 3 3 3 *

1 2 3 4

1 C

S k k k k k k k
R

k k k k

        + + + +
 =    (52) 

                     
*

CR > 1  

Therefore, there is unique endemic equilibrium existence when *

CR  is greater than unity. 

 

3.8 Global stability of endemic equilibrium  

Theorem 4. Given 𝑅𝐶 > 1  then, EEP B* of the system (1) – (6) is globally asymptomatically 

stable. 

Proof. Lyapunov function L is defined as;  

* * * *
* * * * * * * *

* *
* * * *

S E I T
L S S S ln E E E ln I I I ln T T T ln

S E I T

C H
C C C ln H H H ln

C H

       
= − + + − + + − + + − + +       
       

   
− + + − +   

   

    

                        (53) 

The derivative of (53) is taken with respect to t, which gives 

* * * * * *dL S S dS E E dE I I dI T T dT C C dC H H dH

dt S dt E dt I dt T dt C dt H dt

           − − − − − −
= + + + + +           
           

  

         (54) 

By replacing  

  

 

into (54) and putting all positive and negative terms together we have, 

dL
Q W

dt
= −  

Where, 

( )
( )1 2

1 2

31 2 4
1 2 3 4

* ** * * * * *

* ** * * * * ** * * *

S ET S E I I T
Q T S E I I T

S E I T

T HE H I H C HI C T C
E I T C

C C H H H H

   
       

   
   

+
= + + + + + + + + + + + +

+ + + + + + + + +

 

dS dE dI dT dC dH
, , , , and

dt dt dt dt dt dt
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( )
( )

( )
 

( )
 

( )
 

( )
 

( )
 

( )

1 2

1 2

2

31 2 4
1 2 3 4 1 2

2 2 2 2 2

** * * * *
* * * * * *

*** * **
* * * *

* * * * *

SES TS EI IT IC
W T S E I I T

S S E I T C

S STHEH IH CHTC
E I T C

C H H H H S

E E I I T T C C H H

E I T C H

     
      

  
      


         

+
= + + + + + + + + + + + +

−
+ + + + + + + + + + + +

− − − − −
+ + + + + + + + + +

        

(55)      

If Q<W, then 0
dL

dt
 ; 

Note that,  0
dL

dt
=  if and only if 

* * * * * *S S ,E E ,I I ,T T ,C C ,H H= = = = = = Thus, the largest 

compact invariant set in 
6 0* * * * * * dL

{( S ,E ,I ,T ,C ,H ) : }
dt

+ =  is the singleton *B , where *B

is the EEP of the system (1) – (6). 

By LaSalle’s invariant principle, it shows that *B  is globally asymptomatically stable in 6

+
 if 

Q<W. 

3.9 Bifurcation analysis 

The possibility of bifurcation in human population was studied using center manifold theory. For 

simplicity the renaming of variables is made by letting; 

 1S x= , 2E x= , 3I x= , 4T x= , 5C x=  

Using vector notation: 

( )1 2 3 4 5, , , ,
T

x x x x x x= . The system (1) – (5) is written as, 

                             ( )
dx

F x
dt

=  

Where, ( )1, 2 3 4 5, , ,
T

F f f f f f=  it follows that; 

            ( )1
1 4 1 1

dx
f x x

dt
   = = + − +                              (56) 
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2

2 1 1 1 2

dx
f x k x

dt
= = −             (57) 

            
3

3 2 2 3

dx
f x k x

dt
= = −             (58) 

            
4

4 3 3 4

dx
f x k x

dt
= = −             (59) 

            
5

5 3 4 4 5

dx
f x x k x

dt
 = = + −            (60) 

With ( )1 1 2 1 3 2 4 3 5x x x x    = + + +  

Jacobian solved at DFE, 

0 0 0 0 0 0( , , , , ) ,0,0,0,0B S E I T C




 
= =  

 
. Gives 

0 0 0 0

1 1 1 1 2 1 3

0 0 0 0

1 1 1 1 1 2 1 3

0

2

3

4

0

( ) 0 0 0

0 0 0

0 0

S S S S

S k S S S

J B k

k

k

     

   





 

 − − − − −
 

− 
 = −
 

− 
 − 

     (61) 

Consider the case, where * 1CR = . Further, suppose that *

1 1 = is a bifurcation parameter. 

Solving for *

1 from * 1CR = we get, 

𝛽1
∗ =

𝑘1𝑘2𝑘3𝑘4

𝑆0(𝑘2𝑘3𝑘4+𝜌𝑘3𝑘4𝜂1+𝜌𝜔𝑘4𝜂2+𝛼𝜌𝜔𝜂3+𝛾𝜌𝑘3𝜂3)
       (62) 

By use of Mathematica software, Jacobian of the system ( )
dx

F x
dt

= of DFE with *

1 1 = has one 

of the eigenvalues as simple zero. Thus, the system dynamics near *

1 1 =  was analysed by 

theory of center manifold. 

Jacobian matrix near *

1 1 = , has a right eigenvector linked with zero eigenvalue written as 

( )1 2 3 4 5, , , ,
T

w w w w w w= from the system. 
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Solving the system of the equations we obtained 

( )0 0 0 0

1 2 1 1 3 1 2 4 1 3 5

1

( )S w S w S w S w
w

    



− + + − +
=  

2 2w w= > 0, 2
3

2

w
w

k


= > 0, 3

4

3

w
w

k


= > 0       (63) 

                3 4
5

4

w w
w

k

 +
= > 0 

The left eigenvector at *

1 1 = associated with zero eigenvalues is given by ( )1 2 3 4 5, , , ,
T

v v v v v v=

from the system. 

Solving the system of the equations we have; 

1 0v = , 2 2v v= > 0, 
0

1 1 2 4 5
3

2

S v v v
v

k

  + +
= > 0  

0

1 2 2 5
4

3

S v v
v

k

 +
= > 0, 

0

1 3 2
5

4

S v
v

k


= > 0             (64) 

From the system the computation of a and b can be shown as: 

 
2 2

2 2
1

1 2 2 1

f f

x x x x


 
= =

   
, 

2 2

2 2
1 1

1 3 3 1

f f

x x x x


 
= =

   
      (65) 

                       
2 2

2 2
1 2

1 4 4 1

f f

x x x x


 
= =

   
, 

2 2

2 2
1 3

1 5 5 1

f f

x x x x


 
= =

   
 

 2 1 2 1 1 3 1 1 1 4 1 2 1 5 1 32a v w w w w w w w w   = + + + < 0    (66) 

Also, computation of b can be shown that; 

  
2

2
2 1 3 2 4 3 5

1 1

f
x x x x

x
  




= + + +

 
,  

2

2
1

2 1

f
x

x 


=

 
,  

2

2
1 1

3 1

f
x

x





=

 
  

2

2
2 1

4 1

f
x

x





=

 
,  

2

2
3 1

5 1

f
x

x





=

 
     (67) 

 2 1 2 1 3 2 4 3 5 2 1 3 1 1 4 2 1 5 3 1( )b v w x x x x w x w x w x w x     = + + + + + + + > 0 (68) 

At * 1CR =  bifurcation of system (1) – (5) has a forward direction. 
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4. SENSITIVITY ANALYSIS OF THE PARAMETERS 

Sensitivity analysis was done by the technique identified in based on control reproduction 

number of some given parameters on reduced system (1) – (5), let say  given as: 

*
*

*
CR C

C

R
x

R







 =


          (69) 

Table 2: Table of sensitivity indices 

 

    Parameter  Sensitivity indices 

         1  1 

         1  0.524301 

         2  0.252245 

         3  0.206807 

           -0.311424 

           -0.211066 

           -0.20634 

           -0.146564 

           -0.104878 

            -0.0166177 

           -0.00310901 

 

The sensitivity indices on control reproduction number with positive parameters ( )1 1 2 3, , ,   

indicate a vital role in expansion of the infections in the community when their values are increased. 

This is because increase in their values increases the control reproduction number. While negative 

sensitivity indices of given parameters ( ), , , , , ,        have a significance in lowering the 

burden of infection in the community given that their values are increased as the rest remain fixed. 

This is due to reason that increase in their value will lead to decrease in the control reproduction 

number, resulting to decrease in the endemicity of the infections in the community.     
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5. PARTIAL RANK CORRELATION COEFFICIENT 

The PRCC is an efficient tool which is usually used in uncertainity analysis with aim of exploring 

the parameter space of the model entirely. The strength of inputs and output of the model can be 

measured using PRCC through LHS method. The main aim of LHS/PRCC analysis is to identify 

parameters which are more important in uncertainity contributions to rank them by their 

significance and prediction to this imprecision [15] . The PRCC always ranges from -1 to +1 and 

its absolute value describe how the relationship between x and y variable is strong. If the value is 

close to -1 or +1 then the linear relationship is stronger between x and y and if the value is far 

much from -1 or +1 then the weaker relationship between x and y. From Figure 2, the two values 

on the top [x, y] in each plot, represents the PRCC and p-value respectively. The parameters with 

large PRCC value and corresponding small p-value are more significant in the model. For easier 

analysis, the result obtained from figure 2, are summarized in table 3. Moreso, the PRCC values 

for all model parameters are represented in the diagram shown in figure 3. Therefore, the most 

significant parameters are given as follows; birth rate,  . Natural mortality rate of individuals, 

 . Environment to human force of infection, 2 . Infectious rate of exposed individuals,   and 

treatment rate,  . The five parameters 2, , , ,     in the model will be significant contributors 

to uncertainity. From table 3, we note that highly correlated parameters are 2, , ,    with 

corresponding values 0.99629, -0.88649, 0.87202 and -0.86981 respectively compared to  with 

PRCC value of 0.55332. We can conclude that parameters 2, , ,     are most influential in the 

model. 
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Figure 2. The PRCC plot for Objective Functional 
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Figure 3. The PRCC diagram for model parameters 

Table 3. Output from PRCC Analysis 

Parameter symbol 

               

Objective functional 

PRCC p-value 

         0.99629 3.1174e-106 

         -0.88649 1.4486e-34 

         1  
0.19064 0.057446 

       2  
0.87202 3.601e-32 

         -0.86981 7.8729e-32 

         0.55332 2.3678e-09 

         -0.18078 0.071864 

         -0.14032 0.16379 

         0.17298 0.085233 

          -0.29619 0.0027705 

         0.083994 0.40606 

       1  
-0.21466 0.031979 

       2  
0.02062 0.83864 

       3   
0.10669 0.29075 

       4  
-0.29817 0.0025863 
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6. NUMERICAL SIMULATIONS 

MATLABR2019a was used in numerical simulation to demonstrate the dynamical behaviour of 

non-linear ODE in the system (1) – (6). The simulations were carried out using initial conditions 

and parameters values in Table 4 which were derived from the literature review and graphically 

presented. 

Table 4: Parameter and values of the model 

Parameter Value Source 

      π 10 Assumed 

      µ 0.000019 [10] 

     1           
0.02 Assumed 

      2  
0.1075 Estimated 

       ρ 0.65 [10] 

       ω 0.0073 [16] 

       θ 0.002485 Estimated 

       δ 0.00839 [17] 

       γ 0.003 [11] 

       α 0.0066 [16] 

       τ 0.001 [18] 

      1  
0.0009 Assumed 

       2  
0.0008 Assumed 

       3  
0.0004 Assumed 

       4  
0.0001 Assumed 

6.1 Numerical simulation of the full model 

In Figure 4, displays the trend of the model as all parameter values of the model remains unchanged. 

The number of exposed populations decreases with time due to use of clean water, hygiene which 

leads to low infection rate. The infectious class I(t) increases exponentially and then decreases 

gradually until stationary point is attained. The number of treated humans increases slowly with 

time up to a certain point until the steady state is established and also, we can see that concentration 

of the bacteria increases very slowly with time up to a maximum point where equilibrium point is 

attained. 
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Figure 4. Numerical simulation of the full model         

 

Figure 5. Shows subplots for the six sub classes from 0 to 90 days 
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6.2 Effect of exposed class on the susceptible class 

From Figure 6, initially the number of exposed populations increases slowly with increase in the 

susceptible population due to low infection rate and then rapidly increases to the maximum point 

due to higher infection rate. 

6.3 Effect of infected class with H. pylori on the exposed class 

Initially in Figure 7, the population of infected individuals with H. pylori increases rapidly up to a 

certain point and then increases slowly before reaching a maximum value and finally decreases 

rapidly with decrease in exposed population. 

Figure 6. Exposed and Susceptible 

Classes 

 

Figure 7. Infected I(t) and Exposed 

Classes 

6.4 Effect of treatment rate on Helicobacter pylori infected population 

Figure 8, indicate the impact of treatment rate ( ) on the infected populations with H. pylori which 

was investigated using different values of   while all other parameters remained constant. The 

result shows that increase in the treatment rate can result to large number of infected individuals 

with H. pylori. From the graph also reveals that, increase in treatment rate results to decrease in H. 

pylori infectious population. Thus, we can conclude that high treatment rate contributes positively 

to the community by reducing the number of H. pylori infections. 

6.5 Effect of treatment rate on treated population 

The treatment rate was investigated in figure 9, on the number of treated populations by varying 

treatment rate from  =0 to  =0.115 and the other parameters were kept constant. We can see 

from the graph that; the number of treated humans increases if the treatment rate is increased. 

However, we can conclude that the population of the treated widens by increasing the treatment 

rate. 
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Figure 8. Variation of treatment rate on 

       infected humans with H. pylori  

Figure 9. Variation of treatment rate on 

       individuals who are treated 

6.5 Effect of contact rate (γ) on the Stomach cancer population. 

The contact rate γ was varied from γ =0 to γ =0.02 and all other parameters remain fixed. From 

Figure 10, we obtained that the contact rate increases as number of stomach cancer increases in 

the community, which indicate that if the infected individuals with H. pylori fails to get treatment 

this would increase the chances of acquiring stomach cancer. We can conclude that, when the 

contact rate (γ) increases the disease will persists in the community even if all other parameters 

remain constant. 

 

Figure 10. Variation of contact rate (γ) on infected individuals with stomach cancer 
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7. CONCLUSION 

In this study, the qualitative behaviour of the deterministic model was analyzed by obtaining the 

positivity and boundness of the solution, equilibrium points, control reproduction number was 

studied by next generation matrix method, local stability of DFE was obtained by Routh-Hurwitz 

criteria for stability and global stability was also obtained by use of Castillo-Chavez method, global 

stability of EEP was carried out by a Lyapunov function and bifurcation analysis were also 

analyzed. From the analysis we investigated that, the model is bounded and lies on the positive 

region; local stability of DFE is LAS if 𝑅𝐶 < 1 and global stability of EEP is asymptomatic stable 

when 𝑅𝐶 > 1. On the other hand, some of the analyses were carried out using reduced system that 

is system (1) – (5). From this, we observed that global stability of DFE is asymptotically stable 

given that *

CR < 1 and possibility of forward bifurcation was noted. 

Moreover, sensitivity analysis of system (1) – (5) was also performed based on control 

reproduction number. It was observed that, increasing the value of 1 1 2, ,   and 3  have a vital 

role in expanding the infection in the community while increasing parameters ( ), , , , , ,      

have a high impact in decreasing the burden of disease.  

To identify the highly sensitive parameter in the model, the sensitivity analysis was performed 

based on PRCC method and LHS. From the PRCC analysis, we can conclude that out of the fifteen 

parameters which were considered in the PRCC process, parameters 2, , ,     and   are 

highly sensitive in the model. Therefore, the five parameters will be a vital contributor to 

uncertainity in the model. Identifying these parameters as most sensitive can assist us to 

incorporate new treatment measures in this study area. 

Finally, we have performed the numerical simulation which outlines that the population of the 

treated individuals widens by increasing the treatment rate. Therefore, this paper shows the best 

alternative way of curbing the stomach cancer is by reducing the contact rate, effective hygiene 

and improving the treatment rate of Helicobacter pylori infection. 
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