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Abstract: The immune system has an important role in protecting the body from tumors. However, several clinical 

studies have shown that not all immune cells in the body work positively against tumors, such as regulatory T cells 

which are known to modulate the function of effector cells and inhibit their cytotoxic activity. The purpose of this 

paper is to analyze the mathematical model of tumor-immune system dynamics by considering the regulatory T cells 

role. Based on the model analysis results obtained eight equilibrium points, where two equilibrium points are unstable, 

namely the equilibrium point of normal, tumor, effector cells extinction and the equilibrium point of normal, tumor 

cells extinction, then four equilibrium points are conditionally asymptotically stable, namely the equilibrium point of 

normal and effector cells extinction, tumor and effector cells extinction, tumor cells extinction, and effector cells 

extinction, and two equilibrium points are thought to tend to be asymptotically stable when the existence conditions 

are satisfied, namely the equilibrium point of normal cells extinction and coexistence. The numerical simulation results 

show that regulatory T cells play an important role in inhibiting effector cells and promoting tumor cell growth. 

Furthermore, a numerical bifurcation analysis is performed which shows the presence of saddle-node bifurcation and 
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bistable behavior in the system. 
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1. INTRODUCTION 

The number of cancer sufferers worldwide is expected to increase significantly. The World 

Health Organization (WHO) in 2020 estimates that over the next 20 years the number of cancer 

cases will increase by 60%. The World Health Organization (WHO) also informed that there were 

18.1 million new cancer cases and 9.6 million deaths due to cancer in 2018 [1]. Cancer is a type 

of disease that has a very broad scope, involving uncontrolled cell division [2]. This uncontrolled 

cell division leads to the growth of tumor cells. Tumor cells can be benign or malignant. Benign 

tumor cells do not invade the surrounding tissue and do not spread through the blood vessels to 

other parts of the body. However malignant tumor cells can attack normal cells, spread to other 

parts of the body, and cause cancer. Tumor cells continue to proliferate until they can be detected 

in certain physiological spaces in the human body. Then, the immune system will be triggered into 

“Search and Destroy” mode [3]. Tumor cells will express antigens or substances that can be 

recognized by the immune system. These substances can stimulate the immune system to produce 

antibodies as a form of resistance against tumor cells [2]. 

The immune system has an important role in fighting tumor cells. It has two main 

components that interact with each other to defend the organism from pathogens, namely natural 

and adaptive components [4]. T lymphocytes is one of the adaptive component cells that plays an 

important role in fighting tumor cells. T lymphocytes will develop into special cells, including 

CD8+ T cells and CD4+ T cells. In general, CD4+ T cells can be classified into helper T cells and 

regulatory T cells. Helper T cells have a role in controlling adaptive immunity against pathogens 

and tumors by activating CD8+ T cells [4]. After activation by helper T cells, CD8+ T cells 

differentiate into cytotoxic T lymphocytes, which are commonly called effector cells. Regulatory 

T cells themselves also play an important role in suppressing excessive immune responses, but 
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regulatory T cells modulate the function of effector cells which makes effector cells unable to 

continue their cytotoxic activity and causes a weak immune response against tumor cells [5]. 

Many Research related to the interaction of the immune system and tumor cells has been 

carried out several times in several scientific fields; one of them is mathematics. By using 

mathematical model approach, Kuznetsov et al. [6] built a tumor growth model by analyzing the 

impact of effector cells on tumor cells. Kirschner and Panetta [7] introduced interleukin-2 (IL-2) 

to form a classical tumor immunotherapy model, then predicted several infusion effector cells and 

IL-2 could eradicate tumors. Wilson and Levy [8] developed a mathematical model containing 

regulatory T cells and studied the absence of treatment, vaccine treatment, anti-TGF-β treatment, 

and combination vaccine and anti-TGF-β treatment, as well as sensitivity analysis of several 

important parameters. Dong et al. [9] constructed a three-dimensional ordinary differential 

equation model focusing on the effect of helper T cells on the tumor immune system. Pang et al. 

[10] built a simple and realistic mathematical model of anti-tumor immune response involving the 

role of immature and mature lymphocytes. Makhlouf et al. [11] proposed a mathematical model 

of ordinary differential equations predicting the interactions of tumor cells, natural killer cells, 

CD4+ T cells, CD8+ T cells, circulating lymphocytes, and interleukin-2. Then Yang et al. [12] 

proposed a model of the interaction of the immune system and tumor cells considering regulatory 

T cells. 

Based on these descriptions, the authors are interested to develop mathematical model by 

Yang et al. [12]. We add normal cells compartment on the model that compete with tumor cells 

and considering the inactivation of effector cells by tumor cells, as well as altering the bilinear 

form of the immune system and tumor cells interactions become Michaelis-Menten kinetic form. 

The Michaelis-Menten kinetic form can describe chemical reactions and the mechanism of 

interaction between the immune system and tumor cells which are known to be very complex [13]. 

The work is put in order as follows. In section 2, we discuss model formulation and analysis of the 

model. In section 3, the stability of the model is analyzed. Section 4 demonstrates the numerical 

results to illustrate the dynamics of the model and the conclusion is summarized in section 5. 
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2. MODEL FORMULATION 

This section will discuss the mathematical model of the tumor-immune system by 

considering the regulatory T cells role. The basic model used refers to the paper written by Yang 

et al. [12]. The mathematical model is divided into five populations, namely the population of 

normal cells (𝑁), tumor cells (𝑇), effector cells (𝐸), helper T cells (𝐻), and regulatory T cells 

(𝑅). The assumptions used in this mathematical model are as follows: 

1. The population of normal cells and tumor cells show the rate of logistics proliferation (the 

process of cells multiplying naturally)  

2. The population of normal cells and tumor cells compete with each other for available resources. 

3. The growth rate of tumor cells is faster than normal cells. 

4. The inhibition rate of normal cells by tumor cells is faster than that of tumor cells by normal 

cells. 

Based on the assumptions, we construct the governing equations of the mathematical model 

of the tumor-immune system by considering the regulatory T cells role. Then lists of parameters 

unit used in model can be seen in the table 2.1. 

The normal cell population (𝑁) grows logistically at an intrinsic growth rate of 𝑟1 and 

grows until it is limited by the maximum capacity of cells in the biological environment of 1/𝑏1. 

The normal cell population decreased due to the rate of competition with tumor cells of 𝛽1, 

𝑑𝑁

𝑑𝑡
= 𝑟1𝑁(1 − 𝑏1𝑁) − 𝛽1𝑁𝑇. (1) 

The tumor cell population (𝑇) grows logistically at an intrinsic growth rate of 𝑟2 and 

grows until it was limited by the maximum capacity of cells in the biological environment of 1/𝑏2. 

Tumor cell population decreased due to the competition rate with normal cells of 𝛽2 , and 

eradication rate by effector cells of 𝛽3 , which was written in the form of Michaelis-Menten 

kinetics to show that the immune response was limited to tumor immunosuppressive activity due 

to the presence of pro-tumor factors [14], 

dT

dt
= 𝑟2𝑇(1 − 𝑏2𝑇) − 𝛽2𝑁𝑇 −

𝛽3𝐸𝑇

𝛼1 + 𝑇
. (2) 
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The Effector cell population (𝐸) increased due to the activation rate by helper T cells of 

𝑝. Effector cell population decreased due to the rate of inactivation by tumor cells of 𝛽4 and the 

rate of inhibition by regulatory T cells of 𝑞 and the natural death rate of 𝑑1, 

dE

dt
= 𝑝𝐸𝐻 − 𝛽4𝐸𝑇 −   𝑞𝑅𝐸 − 𝑑1𝐸. (3) 

The Helper T cell population (𝐻) increases due to a constant recruitment from bone 

marrow at rate 𝑠 and the presence of tumor cell antigens identified at rate 𝑘. It was written in 

Michaelis-Menten kinetics form to show the growth rate of helper T cells that depend on tumor 

cell abundance. Helper T cell population was decreased due to a natural death rate of 𝑑2, 

dH

dt
= 𝑠 +

𝑘𝑇𝐻

𝛼2 + 𝑇
 − 𝑑2𝐻. (4) 

The population of regulatory T cells (𝑅) increased due to the rate of activation by effector 

cells and helper T cells, 𝑎1 and 𝑎2, respectively. Regulatory T cells population decrease due to 

the natural death rate of 𝑑3, 

dR

dt
= 𝑎1𝐸 + 𝑎2𝐻 − 𝑑3𝑅. (5) 

Table 2.1 Definition of the parameters. 

Parameter Definition Unit 

𝑟1 Normal cell growth rate  𝑡𝑖𝑚𝑒−1 

𝑟2 Tumor cell growth rate 𝑡𝑖𝑚𝑒−1 

𝑏1 Normal cell carrying capacity 𝑐𝑒𝑙𝑙−1 

𝑏2 Tumor cell carrying capacity 𝑐𝑒𝑙𝑙−1 

𝛽1 Rate of competition between normal and tumor cells (𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒)−1 

𝛽2 Rate of competition between tumor and normal cells (𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒)−1 

𝛽3 Rate of tumor cell eradication by effector cells 𝑡𝑖𝑚𝑒−1 

𝛽4 Rate of effector cells inactivation by tumor cells (𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒)−1 

𝑝 Rate of effector cells activation by helper T cells (𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒)−1 

𝑞 Rate of effector cells inhibition by regulatory T cells (𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒)−1 

𝑎1 Rate of regulatory T cells activation by effector cells 𝑡𝑖𝑚𝑒−1 
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𝑎2 Rate of regulatory T cells activation by helper T cells 𝑡𝑖𝑚𝑒−1 

𝑠 The recruitment rate of helper T cells produced in the bone marrow 𝑐𝑒𝑙𝑙 ∙ 𝑡𝑖𝑚𝑒−1 

𝑘 Helper T cell stimulation rate due to the presence of tumor antigen 𝑡𝑖𝑚𝑒−1 

𝛼1, 𝛼2 Half saturation constant 𝑐𝑒𝑙𝑙 

𝑑1 The natural death rate of effector cells 𝑡𝑖𝑚𝑒−1 

𝑑2 The natural death rate of helper T cells 𝑡𝑖𝑚𝑒−1 

𝑑3 The natural death rate of regulatory T cells 𝑡𝑖𝑚𝑒−1 

 

3. MODEL ANALYSIS 

3.1 Equilibrium Point  

In this section, the equilibrium points and the existence conditions will be determined. 

a. The equilibrium point for the extinction of normal, tumor, and effector cells is obtained by 

𝑃0 = (𝑁0, 𝑇0, 𝐸0, 𝐻0, 𝑅0) = (0, 0, 0,
𝑠

𝑑2
,
𝑎2𝑠

𝑑2𝑑3
). 

b. The equilibrium point for the extinction of normal and tumor cells is obtained by 

𝑃1 = (𝑁1, 𝑇1, 𝐸1, 𝐻1, 𝑅1) = (0, 0,
𝑑3(𝑝𝑠−𝑑1𝑑2)−𝑞𝑎2𝑠

𝑞𝑎1𝑑2
,
𝑠

𝑑2
,
𝑝𝑠−𝑑1𝑑2

𝑞𝑑2
), 

which exists when 𝑝 >
𝑑1𝑑2

𝑠
 and 𝑞 <

𝑑3(𝑝𝑠−𝑑1𝑑2)

𝑎2𝑠
.  

c. The equilibrium point for the extinction of normal and effector cells is obtained by 

𝑃2 = (𝑁2, 𝑇2, 𝐸2, 𝐻2, 𝑅2) = (0,
1

𝑏2
, 0,

𝑠(𝛼2𝑏2+1)

𝑑2(𝛼2𝑏2+1)−𝑘
,
𝑎2𝐻2

𝑑3
), 

which exists when 𝑘 < 𝑑2(𝛼2𝑏2 + 1). 

d. The equilibrium point for the extinction of tumor and effector cells is obtained by 

𝑃3 = (𝑁3, 𝑇3, 𝐸3, 𝐻3, 𝑅3) = (
1

𝑏1
, 0, 0,

𝑠

𝑑2
,
𝑎2𝑠

𝑑2𝑑3
). 

e. The equilibrium point for the extinction of tumor cells is obtained by 

𝑃4 = (𝑁4, 𝑇4, 𝐸4, 𝐻4, 𝑅4) = (
1

𝑏1
, 0,

𝑑3(𝑝𝑠−𝑑1𝑑2)−𝑞𝑎2𝑠

𝑞𝑎1𝑑2
,
𝑠

𝑑2
,
𝑝𝑠−𝑑1𝑑2

𝑞𝑑2
), 
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which exists when 𝑝 >
𝑑1𝑑2

𝑠
 and 𝑞 <

𝑑3(𝑝𝑠−𝑑1𝑑2)

𝑎2𝑠
.  

f. The equilibrium point for the extinction of effector cells is obtained by 

 𝑃5 = (𝑁5, 𝑇5, 𝐸5, 𝐻5, 𝑅5) 

𝑃5 = (
𝑟2(𝑟1𝑏2−𝛽1)

𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2
,
𝑟1(𝑟2𝑏1−𝛽2)

𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2
, 0,

𝑠(𝛼2(𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2)+𝑟1(𝑟2𝑏1−𝛽2))

𝑑2𝛼2(𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2)+(𝑑2−𝑘)(𝑟1(𝑟2𝑏1−𝛽2)) 
,
𝑎2𝐻5

𝑑3
), 

which exists when 𝛽1 < 𝑟1𝑏2, 𝛽2 < 𝑟2𝑏1, 𝛽1𝛽2 < 𝑟1𝑏1𝑟2𝑏2, 𝑘 < 𝑑2. 

g. The equilibrium point for the extinction of normal cells is obtained by  

𝑃6 = (𝑁6, 𝑇6, 𝐸6, 𝐻6, 𝑅6) 

where 𝑁6 = 0  

𝐸6  =  
𝑟2(1−𝑏2𝑇6)(𝛼1+𝑇6)

𝛽3
  

𝐻6 = 
𝑠(𝛼2+𝑇6)

 𝑑2(𝛼2+𝑇6)− 𝑘𝑇6
  

𝑅6 =
𝑎1𝑟2(1−𝑏2𝑇6)(𝛼1+𝑇6)(𝑑2(𝛼2+𝑇6)− 𝑘𝑇6)+𝑠𝑎2𝛽3(𝛼2+𝑇6)

𝑑3𝛽3(𝑑2(𝛼2+𝑇6)− 𝑘𝑇6)
  

and 𝑇6 is the solution of the characteristic equation 

𝐴1𝑇6
3 + 𝐴2𝑇6

2 + 𝐴3𝑇6 + 𝐴4 = 0  (6) 

where, 

𝐴1 = 𝑟2𝑏2𝑞𝑎1𝑑2 − 𝑟2𝑏2𝑞𝑎1𝑘, 

     𝐴2 = 𝛽3𝛽4𝑑3𝑘 − 𝛽3𝛽4𝑑3𝑑2 + 𝑟2𝑏2𝑞𝑎1𝑑2𝛼2 − 𝑟2𝑞𝑎1𝑑2 + 𝑟2𝑏2𝛼1𝑞𝑎1𝑑2 + 𝑟2𝑞𝑎1𝑘 − 𝑟2𝑏2𝛼1𝑞𝑎1𝑘, 

     𝐴3 = 𝑝𝑠𝑑3𝛽3 − 𝑟2𝑞𝑎1𝑑2𝛼2 + 𝑟2𝑏2𝛼1𝑞𝑎1𝑑2𝛼2 − 𝑟2𝛼1𝑞𝑎1𝑑2 + 𝑟2𝛼1𝑞𝑎1𝑘 − 𝛽3𝛽4𝑑3𝑑2𝛼2 −

                    𝑑1𝑑3𝑑2𝛽3 + 𝑑1𝑑3𝛽3𝑘 − 𝑞𝑎2𝑠𝛽3, 𝐴4 = 𝑝𝑠𝑑3𝛼2𝛽3 − 𝑑1𝑑3𝑑2𝛼2𝛽3 − 𝑞𝑎2𝑠𝛼2𝛽3 − 𝑟2𝑞𝑎1𝑑2𝛼2. 

The equilibrium point 𝑃6 will exist if  

𝑇6 < 𝜇1 ≈ min {(
1

𝑏2
,
𝑑2𝛼2

𝑘−𝑑2
)} , 𝑘 > 𝑑2 and 𝑞 <

𝑑3𝛽3(𝑝𝑠−𝑑1𝑑2)

𝑟2𝑎1𝑑2+𝑎2𝑠𝛽3
.  

h. The equilibrium point of coexistence, namely 𝑃∗ = (𝑁∗, 𝑇∗, 𝐸∗, 𝐻∗, 𝑅∗) 

where 𝑁∗ =
𝑟1−𝛽1𝑇

∗

𝑟1𝑏1
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𝐸∗  =  
(𝑟1(𝑟2𝑏1(1−𝑏2𝑇

∗)−𝛽2)+𝛽1𝛽2𝑇
∗)(𝛼1+𝑇

∗)

𝑟1𝑏1𝛽3
  

𝐻∗ = 
𝑠(𝛼2+𝑇

∗)

 𝑑2(𝛼2+𝑇
∗)− 𝑘𝑇∗

  

𝑅∗ =
𝑎1(𝑑2(𝛼2+𝑇

∗)− 𝑘𝑇∗)((𝑟1(𝑟2𝑏1(1−𝑏2𝑇
∗)−𝛽2)+𝛽1𝛽2𝑇

∗)(𝛼1+𝑇
∗))+𝑎2𝑠(𝛼2+𝑇

∗)𝑟1𝑏1𝛽3

𝑟1𝑏1𝛽3𝑑3(𝑑2(𝛼2+𝑇
∗)− 𝑘𝑇∗)

  

where 𝑇∗ is the solution of the characteristic equation 

𝐴5𝑇
∗3 + 𝐴6𝑇

∗2 + 𝐴7𝑇
∗ + 𝐴8 = 0 (7) 

where, 

𝐴5 = −𝑟1𝑟2𝑞𝑎1𝑏1𝑏2𝑑2 + 𝑞𝑎1𝑑2𝛽1𝛽2 + 𝑟1𝑟2𝑞𝑎1𝑏1𝑏2𝑘 − 𝑞𝑎1𝛽1𝛽2𝑘, 

𝐴6 = −𝑟1𝑟2𝑞𝑎1𝑏1𝑏2𝑑2𝛼2 + 𝑞𝑎1𝑑2𝛼2𝛽1𝛽2 + 𝑟1𝑟2𝑞𝑎1𝑏1𝑑2 − 𝑟1𝑟2𝑞𝑎1𝑑2𝑏1𝑏2𝛼1 − 𝑟1𝑞𝑎1𝑑2𝛽2 +

𝑞𝑎1𝑑2𝛼1𝛽1𝛽2 − 𝑟1𝑟2𝑞𝑎1𝑏1𝑘 + 𝑟1𝑟2𝑞𝑎1𝑏1𝑏2𝛼1𝑘 + 𝑟1𝑞𝑎1𝛽2𝑘 − 𝑞𝑎1𝛼1𝛽1𝛽2𝑘 + 𝑟1𝑏1𝑑2𝑑3𝛽3𝛽4 −

𝑟1𝑏1𝑑3𝛽3𝛽4𝑘,   

𝐴7 = 𝑟1𝑟2𝑞𝑎1𝑏1𝑑2𝛼2 − 𝑟1𝑟2𝑞𝑎1𝑏1𝑏2𝑑2𝛼1𝛼2  − 𝑟1𝑞𝑎1𝑑2𝛼2𝛽2 + 𝑞𝑎1𝑑2𝛼1𝛼2𝛽1𝛽2𝑇 + 𝑟1𝑟2𝑞𝑎1𝑏1𝑑2𝛼1 −

𝑟1𝑞𝑎1𝑑2𝛼1𝛽2 − 𝑟1𝑟2𝑞𝑎1𝑏1𝛼1𝑘 + 𝑟1𝑞𝑎1𝛼1𝛽2𝑘 − 𝑝𝑠𝑟1𝑏1𝑑3𝛽3 + 𝑞𝑠𝑟1𝑎2𝑏1𝛽3 + 𝑟1𝑏1𝑑2𝑑3𝛼2𝛽3𝛽4 +

𝑟1𝑏1𝑑1𝑑2𝑑3𝛽3 − 𝑟1𝑏1𝑑1𝑑3𝛽3𝑘,   

𝐴8 = 𝑟1𝑟2𝑞𝑎1𝑏1𝑑2𝛼1𝛼2 − 𝑟1𝑞𝑎1𝑑2𝛼1𝛼2𝛽2 + 𝑞𝑠𝑟1𝑎2𝑏1𝛼2𝛽3 − 𝑝𝑠𝑟1𝑏1𝑑3𝛼2𝛽3 + 𝑟1𝑏1𝑑1𝑑2𝑑3𝛼2𝛽3. 

The equilibrium point 𝑃∗ will exist if  

𝑇∗ < 𝜇2 ≈ min {(
𝑟1

𝛽1
,
1

𝑏2
,
𝑑2𝛼2

𝑘−𝑑2
)} , 𝑟2𝑏1(1 − 𝑏2𝑇

∗) > 𝛽2, 𝑘 > 𝑑2 and 𝑞 <
𝑏1𝑑3𝛽3(𝑝𝑠−𝑑1𝑑2)

𝑎1𝑑2𝛼1(𝑟2𝑏1−𝛽2)+𝑠𝑎2𝑏1𝛽3
. 

 

3.2 Stability Analysis 

This section will analyze the stability of each equilibrium point that has been obtained 

previously. A mathematical model of the tumor-immune system by considering the regulatory T 

cells role is a nonlinear differential equation, so it is necessary to linearize it using the Jacobian 

matrix. The following Jacobian matrix is obtained: 

𝐽(𝑃) =  

(

 
 
 
 

𝐴9 −𝛽1𝑁 0 0 0

−𝛽2𝑇 𝐴10 −
𝛽3𝑇

𝛼1+𝑇
0 0

0 −𝛽4𝐸 𝐴11 𝑝𝐸 −𝑞𝐸

0 𝐴12 0
𝑘𝑇

𝛼2+𝑇
− 𝑑2 0

0 0 𝑎1 𝑎2 −𝑑3)

 
 
 
 

  (8) 
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where 

𝐴9 = 𝑟1 − 2𝑟1𝑏1𝑁 − 𝛽1𝑇 

𝐴10 = 𝑟2 − 2𝑟2𝑏2𝑇 − 𝛽2𝑁 −
𝛽3𝐸

𝛼1+𝑇
+

𝛽3𝐸𝑇

(𝛼1+𝑇)
2  

𝐴11 = 𝑝𝐻 − 𝛽4𝑇 − 𝑞𝑅 − 𝑑1 

𝐴12 =
𝑘𝐻

𝛼2+𝑇
−

𝑘𝑇𝐻

(𝛼2+𝑇)
2  

Based on the Jacobian matrix 𝐽(𝑃), the characteristic equation can be formed: 

det(𝜆𝐼 − 𝐽(𝑃)) =  

(

 
 
 
 

𝜆 − 𝐴9 −𝛽1𝑁 0 0 0

−𝛽2𝑇 𝜆 − 𝐴10 −
𝛽3𝑇

𝛼1+𝑇
0 0

0 −𝛽4𝐸 𝜆 − 𝐴11 𝑝𝐸 −𝑞𝐸

0 𝐴12 0 𝜆 −
𝑘𝑇

𝛼2+𝑇
+ 𝑑2 0

0 0 𝑎1 𝑎2 𝜆 + 𝑑3)

 
 
 
 

  (9) 

a. Stability of equilibrium point for the extinction of normal, tumor, and effector cells 

By substituting 𝑃0 in characteristic equation (9) are obtained: 

(𝜆 − 𝑟1)(𝜆 + 𝑑3)(𝜆 + 𝑑2)(𝜆 − 𝑟2) (𝜆 −
𝑝𝑠

𝑑2
−
𝑞𝑎2𝑠

𝑑2𝑑3
− 𝑑1) = 0  (10) 

From equation (10) it can be seen that there are two positive eigenvalues. Thus, it can be 

concluded that the equilibrium point  𝑃0 is unstable. 

b. Stability of equilibrium point for the extinction of normal and tumor cells 

By substituting 𝑃1 in characteristic equation (9) are obtained: 

(𝜆 − 𝑟1)(𝜆 − 𝐴13)(𝜆 + 𝑑2)[𝜆
2 + 𝑑3𝜆 − 𝑎1𝐴16] = 0 (11) 

From equation (11) it can be seen that there is one positive eigenvalue. Thus, it can be 

concluded that the equilibrium point 𝑃1 is unstable. 

c. Stability of equilibrium point for the extinction of normal and effector cells 

By substituting 𝑃2 in characteristic equation (9) are obtained: 

(𝜆 + 𝑑3) (𝜆 −
𝑘

𝛼2𝑏2+1
+ 𝑑2) (𝜆 + 𝑟2)(𝜆 − 𝐵1)(𝜆 − 𝐵2) = 0   (12) 

From equation (12) the eigenvalues are obtained 
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𝜆1 = −𝑑3, 𝜆2 =
𝑘

𝛼2𝑏2+1
− 𝑑2, 𝜆3 = −𝑟2, 𝜆4 = 𝐵1 = 𝑟1 −

𝛽1

𝑏2
  

𝜆5 = 𝐵2 =
𝑝𝑠𝑏2𝑑3(𝛼2𝑏2+1)−𝑏2𝑞𝑎2𝑠(𝛼2𝑏2+1)−𝛽4𝑑3(𝑑2𝛼2𝑏2+𝑑2−𝑘)−𝑑1𝑏2𝑑3(𝑑2𝛼2𝑏2+𝑑2−𝑘)

𝑏2𝑑3(𝑑2𝛼2𝑏2+𝑑2−𝑘)
  

Because 𝜆1 and 𝜆3 are negative. So, it is necessary to specify the conditions for  𝜆2, 𝜆4, and 

𝜆5 to be negative. Thus, the equilibrium point of 𝑃2 will be asymptotically stable if  

i. 𝑘 < 𝑘1, where 𝑘1 = 𝑑2(𝛼2𝑏2 + 1) 

ii. 𝛽1 > 𝑟1𝑏2 

iii. 𝑝 < 𝑝1, where 𝑝1 =
(𝛽4𝑑3+𝑑1𝑑3𝑏2)(𝑑2(𝛼2𝑏2+1)−𝑘)+𝑞𝑎2𝑠𝑏2(𝛼2𝑏2+1)

𝑠𝑏2𝑑3(𝛼2𝑏2+1)
 

d. Stability of equilibrium point for the extinction of tumor and effector cells 

By substituting 𝑃3 in characteristic equation (9) are obtained: 

(𝜆 + 𝑟1)(𝜆 + 𝑑2)(𝜆 + 𝑑3) (𝜆 − 𝑟2 +
𝛽2

𝑏1
) (𝜆 −

𝑝𝑠

𝑑2
+
𝑞𝑎2𝑠

𝑑2𝑑3
+ 𝑑1) = 0   (13) 

From equation (13) the eigenvalues are obtained 

𝜆1 = −𝑟1, 𝜆2 = −𝑑2, 𝜆3 = −𝑑3, 𝜆4 = 𝑟2 −
𝛽2

𝑏1
 and 𝜆5 =

𝑝𝑠

𝑑2
−
𝑞𝑎2𝑠

𝑑2𝑑3
− 𝑑1. 

Because 𝜆1, 𝜆2, and 𝜆3 are negative. So, it is necessary to specify the conditions for  𝜆4 and 

𝜆5 to be negative. Thus, the equilibrium point of 𝑃3 will be asymptotically stable if  

i. 𝛽2 > 𝑟2𝑏1 

ii. 𝑞 > 𝑞1, where 𝑞1 =
𝑑3(𝑝𝑠−𝑑1𝑑2)

𝑎2𝑠
 

e. Stability of equilibrium point for the extinction of tumor cells 

By substituting 𝑃4 in characteristic equation (9) are obtained: 

(𝜆 + 𝑟1)(𝜆 − 𝐵4)(𝜆 + 𝑑2)[𝜆
2 + 𝑑3𝜆 − 𝐵7𝑎1] = 0   (14) 

From equation (14) the eigenvalues are obtained 

𝜆1 = −𝑟1, 𝜆2 = 𝐵1 =
𝑟2𝑏1𝛼1𝑞𝑎1𝑑2−𝛽2𝛼1𝑞𝑎1𝑑2−𝛽3𝑝𝑠𝑑3𝑏1+𝛽3𝑑2𝑑3𝑏1+𝛽3𝑞𝑎2𝑠𝑏1

𝑏1𝛼1𝑞𝑎1𝑑2
, 𝜆3 = −𝑑2 

and the roots of the following equation 

𝜆2 + 𝑐3𝜆 + 𝑐4 = 0 (15) 

where,  
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𝑐3 = 𝑑3, 𝑐4 = −𝐵7𝑎1 

Because 𝜆1 and 𝜆3 are negative. So, it is necessary to specify the conditions for 𝜆2 to be 

negative. Then, because the eigenvalues in equation (15) are difficult to determine analytically, 

we use the Routh Hurwitz criteria. Based on the Routh Hurwitz criteria, the equation (15) has 

roots that the real part is negative, and consequently 𝑐3, 𝑐4 > 0. Thus, the equilibrium point of 

𝑃4 will be asymptotically stable if 

i. 𝑞 < 𝑞3, where 𝑞3 =
𝑏1𝛽3𝑑3(𝑝𝑠−𝑑1𝑑2)

𝑎1𝛼1𝑑2(𝑟2𝑏1−𝛽2)+𝑏1𝑎2𝑠𝛽3
 

ii. 𝑞 < 𝑞1, where 𝑞1 =
𝑑3(𝑝𝑠−𝑑1𝑑2)

𝑎2𝑠
 

f. Stability of equilibrium point for the extinction of effector cells 

By substituting 𝑃5 in characteristic equation (9) are obtained: 

(𝜆 + 𝑑3)(𝜆 − 𝐹8)(𝜆 − 𝐹6)[𝜆
2 + (−𝐹1 − 𝐹4)𝜆 + 𝐹1𝐹4 − 𝐹2𝐹3] = 0    (16) 

From equation (16) the eigenvalues are obtained 

𝜆1 = −𝑑3, 𝜆2 = 𝐹8 =
𝑘(𝑟1𝑟2𝑏1−𝛽2𝑟1)

𝛼2(𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2)+𝑟1𝑟2𝑏1−𝛽2𝑟1
− 𝑑2  

𝜆3 = 𝐹6 =
𝑝𝑠𝐷1

𝐷2
− 𝛽4 (

𝑟1𝑟2𝑏1−𝛽2𝑟1

𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2
) −

𝑞𝑠𝑎2𝐷1

𝑑3𝐷2
− 𝑑1  

and the roots of the following equation 

𝜆2 + 𝑐5𝜆 + 𝑐6 = 0 (17) 

where,  

𝑐5 = −𝐹1 − 𝐹4, 𝑐6 = 𝐹1𝐹4 − 𝐹2𝐹3 

Because 𝜆1  is negative. So, it is necessary to specify the conditions for  𝜆2  and 𝜆3  to be 

negative. In similar way, because the eigenvalues in equation (17) are difficult to determine 

analytically, we use the Routh Hurwitz criteria. Based on the Routh Hurwitz criteria, the 

equation (17) has roots that the real part is negative, and consequently 𝑐5, 𝑐6 > 0. Thus, the 

equilibrium point of 𝑃5 will be asymptotically stable if 

i. 𝑘 < 𝑑2(𝛼2𝑏2
∗ + 1), dengan 𝑏2

∗ =
𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2

𝑟1(𝑟2𝑏1−𝛽2)
 

ii. 𝑝 <  𝑝2, dengan 𝑝2 =
𝛽4𝑟1(𝑟2𝑏1−𝛽2)+𝑞𝑠𝑎2𝐷1+𝑑1𝑑3𝐷2(𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2)

𝑠𝑑3𝐷1(𝑟1𝑏1𝑟2𝑏2−𝛽1𝛽2)
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iii. 
𝑏1𝑏2(𝑟1+𝑟2)

𝑏1𝛽1+𝑏2𝛽2
> 1 

iv. 𝛽2 < 𝛽2
∗, dengan 𝛽2

∗ =
𝑟1𝑟2𝑟2𝑏1𝑏1𝑏2(𝑟1𝑏2−𝛽1)

𝛽1𝛽2(𝑟1𝑏2−𝛽1)+𝑟2𝑏1(𝑟1𝑟1𝑏2𝑏2+𝛽1𝛽1)
 

g. Stability of equilibrium point for the extinction of normal cells 

By substituting 𝑃6 in characteristic equation (9) are obtained: 

(𝜆 − 𝐹9)(𝜆
4 + 𝑐7𝜆

3 + 𝑐8𝜆
2 + 𝑐9𝜆 + 𝑐10) = 0 (18) 

From equation (18) the eigenvalues are obtained 

𝜆1 = 𝐹9 = 𝑟1 − 𝛽1𝑇6  

and the roots of the following equation 

(𝜆4 + 𝑐7𝜆
3 + 𝑐8𝜆

2 + 𝑐9𝜆 + 𝑐10) = 0 (19) 

where,  

𝑐7 = −𝐹12 − 𝐹10 −
𝑘𝑇6

𝛼2+𝑇6
+ 𝑑2 + 𝑑3,   

𝑐8 = 𝐹10𝐹12 + 𝑑2(𝐹12 + 𝐹10) +
𝛽3𝐹11𝑇6
𝛼1 + 𝑇6

− 𝑑3 ((𝐹12 + 𝐹10) +
𝑘𝑇6

𝛼2 + 𝑇6
+ 𝑑2) − 𝑎1𝐹14,  

𝑐9 = 
(𝐹12 + 𝐹10)𝑘𝑇6 − 𝐹10𝐹12𝑘𝑇6

𝛼2 + 𝑇6
− 𝑑2𝐹10𝐹12 −

𝑘𝐹11𝛽3𝑇6
2

(𝛼2 + 𝑇6) (𝛼1 + 𝑇6)
−
𝑑2𝐹11𝛽3𝑇6
𝛼1 + 𝑇6

−
𝛽3𝐹13𝐹15𝑇6
𝛼1 + 𝑇6

+ 𝑑3 (𝐹10𝐹12 + 𝑑2(𝐹12 + 𝐹10) +
𝛽3𝐹11𝑇6
𝛼1 + 𝑇6

) + 𝐹14 (
𝑎1𝑘𝑇6
𝛼2 + 𝑇6

+ 𝑎1𝑑2 + 𝑎1𝐹10),  

𝑐10 = 𝑑3 (
(𝐹12 + 𝐹10)𝑘𝑇6 − 𝐹10𝐹12𝑘𝑇6

𝛼2 + 𝑇6
− 𝑑2𝐹10𝐹12 −

𝑘𝐹11𝛽3𝑇6
2

(𝛼2 + 𝑇6) (𝛼1 + 𝑇6)
−
𝑑2𝐹11𝛽3𝑇6
𝛼1 + 𝑇6

−
𝛽3𝐹13𝐹15𝑇6
𝛼1 + 𝑇6

) + (−
𝑎1𝑘𝐹10𝐹14𝑇6
𝛼2 + 𝑇6

− 𝑎1𝑑2𝐹10𝐹14 + 
𝑎2𝛽3𝐹14𝐹15𝑇6
𝛼1 + 𝑇6

) 

Because the eigenvalues in equation (19) are difficult to determine, both analytically and under 

the Routh Hurwitz criteria. Therefore, the equilibrium point of 𝑃6 will be analyzed through 

numerical simulation. 

This simulation is done by giving three different initial values for 

𝑁(0), 𝑇(0), 𝐸(0), 𝐻(0), 𝑅(0), and parameter values that satisfy the existence conditions. The 

following is a table of parameter values and initial values used 
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Table 3.1 Parameter values for 𝑃3, 𝑃4, 𝑃6, 𝑃
∗ 

Parameters Value Source 

𝑟1 1 [13] 

𝑟2 1.636 [9] 

𝑏1 0.1 Assumption 

𝑏2 
1 (for 𝑃3, 𝑃4) [13] 

0.1 (for 𝑃6, 𝑃
∗) Assumption 

𝛽1 

1 (for 𝑃3) [13] 

0.5 (for 𝑃6) Assumption 

0.1  (for 𝑃∗) Assumption 

𝛽2 
0.5 (for 𝑃3) [13] 

0.01 (for 𝑃4, 𝑃6, 𝑃
∗) Assumption 

𝛽3 0.1 Assumption 

𝛽4 0.01 Assumption 

𝑝 
0.18 (for 𝑃3) Assumption 

0.48 (for 𝑃4, 𝑃6, 𝑃
∗) [9] 

𝑞 
0.15 (for 𝑃4) 

Assumption 
0.4 (for 𝑃3, 𝑃6, 𝑃

∗) 

𝑠 0.38 [9] 

𝑘 0.06 Assumption 

𝑎1 0.15 [12] 

𝑎2 0.2 [12] 

𝛼1 1 Assumption 

𝛼2 102 Assumption 

𝑑1 0.3743 [9] 

𝑑2 0.055 [5] 

𝑑3 0.55 Assumption 
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Table 3.2 Initial value of phase plane 

Initial 

Value 
𝑵(𝟎) 𝑻(𝟎) 𝑬(𝟎) 𝑯(𝟎) 𝑹(𝟎) Color 

1 10 3 5 4 2 Red 

2 12 2.5 3.4 3.7 3 Green 

3 15 3.3 5.5 3.9 1.8 Blue 

 

This simulation is only carried out at times 𝑡 = 0 to 𝑡 = 200. The results of the phase plane 

simulation for normal cell extinction are shown in Figure 3.1. In Figure 3.1, it can be seen that 

the graphs of effector cells (𝐸) − regulatory T cells (𝑅) population tends to converge to one 

point (𝐸;  𝑅) = (19; 7.937), as well as the graphs of tumor cells (𝑇) − helper T cells (𝐻) 

population tend to converge to one point (𝑇;  𝐻) = (8.809; 7.579), which means that the 

overall dynamics of each population in the model going closer to the equilibrium point of 

normal cells extinction 𝑃6, where  𝑃6 = (0; 8.8717; 19.0019; 7.5789; 7.9386). In addition, 

the existence condition of the equilibrium point 𝑃6 is also fulfilled. Thus, it is concluded that 

the equilibrium point of normal cell extinction is thought to tend to be asymptotically stable. 

h. Stability of equilibrium point of coexistence 

By substituting 𝑃∗ in characteristic equation (9) are obtained: 

𝜆5 + 𝑐12𝜆
4 + 𝑐13𝜆

3 + 𝑐14𝜆
2 + 𝑐15𝜆 + 𝑐16 = 0 = 0 (20) 

Similar to the equilibrium point 𝑃6, it is difficult to determine the roots of the characteristic 

equation (20) analytically, so this coexistence equilibrium point will be analyzed through 

numerical simulation. The parameter values used refer to the parameter values in Table 3.1 

and the initial values used refer to Table 3.2. 

This simulation is only carried out at times 𝑡 = 0 to 𝑡 = 200. The results of the phase plane 

simulation for coexistence conditions are shown in Figure 3.2. It can be seen that the graphs 

of effector cells (𝐸) − regulatory T cells (𝑅) populations, tumor cell (𝑇) − helper T cells 

(𝐻) populations, and normal cell (𝑁) − tumor cells (𝑇) populations tend to converge to one 
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point, namely (𝐸;  𝑅) = (18.99; 7.932), (𝑇;  𝐻) = (8.729; 7.57) and (𝑁;  𝑇) =

(1.27; 8.729), which means the overall dynamics of each population in the model going closer 

to the equilibrium point of coexistence 𝑃∗ , with the value 𝑃∗ =

(1.2707; 8.7287; 18.9904; 7.5723; 7.9328) . In addition, the existence condition of the 

equilibrium point 𝑃∗  is also fulfilled. Thus, it can be concluded that the coexistence 

equilibrium point is thought to tend to be asymptotically stable. 

 

  

(a) (b) 

Figure 3.1 Graph of phase plane for the extinction of normal cells (a) 𝐸 − 𝑅 (b) 𝑇 − 𝐻 

 

   

(a) (b) (c) 

Figure 3.2 Graph of phase plane in coexistence conditions (a) 𝐸 − 𝑅 (b) 𝑇 − 𝐻 (c) 𝑁 − 𝑇 
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The summary of the existence and stability conditions for each equilibrium point that has been 

obtained can be seen in Table 3.3 

Table 3.3 The existence and stability conditions for each equilibrium point 

Equilibrium  Existence Conditions Stability Conditions 

𝑃0 Always exists Unstable 

𝑃1 𝑝 >
𝑑1𝑑2
𝑠

 

𝑞 < 𝑞1 

Unstable  

𝑃2 𝑘 < 𝑘1 𝑘 < 𝑘1 

𝛽1 > 𝑟1𝑏2 

𝑝 < 𝑝1 
𝑃3 Always exists 𝛽2 > 𝑟2𝑏1 

𝑞 > 𝑞1 
𝑃4 𝑝 >

𝑑1𝑑2
𝑠

 

𝑞 < 𝑞1   

𝑞 < 𝑞3 

𝑞 < 𝑞1 
𝑃5 𝛽1 < 𝑟1𝑏2 

𝛽2 < 𝑟2𝑏1 

𝛽1𝛽2 < 𝑟1𝑏1𝑟2𝑏2 

𝑘 < 𝑑2 

𝑘 < 𝑑2(𝛼2𝑏2
∗ + 1) 

𝑝 <  𝑝2 

𝑏1𝑏2(𝑟1 + 𝑟2)

𝑏1𝛽1 + 𝑏2𝛽2
> 1 

𝛽2 < 𝛽2
∗ 

𝑃6 𝑇6 < 𝜇1 ≈ min {(
1

𝑏2
,
𝑑2𝛼2
𝑘 − 𝑑2

)} 

𝑘 > 𝑑2 and 𝑞 < 𝑞2 

asymptotically  

stable 
𝑃∗ 𝑇∗ < 𝜇2 ≈ min {(

𝑟1
𝛽1
,
1

𝑏2
,
𝑑2𝛼2
𝑘 − 𝑑2

)} 

𝑟2𝑏1(1 − 𝑏2𝑇
∗) > 𝛽2 

𝑘 > 𝑑2 and 𝑞 < 𝑞3 

asymptotically  

stable 
 

4. NUMERICAL SIMULATION 

Numerical simulations will be carried out according to the conclusions of the analysis 

obtained in the previous section and examine the effect of the inhibitory role of effector cells by 

regulatory T cells on tumor cell growth. In addition, numerical bifurcation analysis and 

interpretation of each numerical simulation were also provided. The initial value used is 𝑁(0) =

8, 𝑇(0) = 5, 𝐸(0) = 3,𝐻(0) = 4, 𝑅(0) = 2 and it is carried out at time 𝑡 = 0 to 𝑡 = 200. The 

parameter values used refer to Table 3.1 and Table 4.1.  

a. Numerical simulation of normal and effector cells extinction conditions 

Based on Figure 4.1 (a), it can be seen that the tumor cell population increased from 𝑡 = 5, 

then constant until 𝑡 = 200. Both normal and effector cell populations decreased from 𝑡 = 2,  

then became extinct until 𝑡 = 200. Biologically, this condition is referred to as tumor cell invasion. 

Tumor cells have managed to escape from effector cells and penetrate normal surrounding tissues, 

then proliferate until the cell's capacity is limited. Furthermore, the population of helper T cells 
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will continue increase due to a constant source from bone marrow. Consequently, regulatory T 

cells population also increasing, because helper T cells promote the activation of regulatory T cells. 

Neither helper T cells nor regulatory T cells can attack tumor cells, therefore helper T cells and 

regulatory T cells populations will persist even after the invasion of tumor cells occurs. 

Table 4.1 Parameter values for 𝑃2 𝑎𝑛𝑑 𝑃5 

Parameters Value Source 

𝑟1 1 [13] 

𝑟2 1.636 [9] 

𝑏1 0.1 Assumption 

𝑏2 0.1 Assumption 

𝛽1 
1 (for 𝑃2) [13] 

0.05 (for 𝑃5) Assumption 

𝛽2 0.01 Assumption 

𝛽3 0.56 [13] 

𝛽4 0.5 Assumption 

𝑝 0.48 [9] 

𝑞 0.48 [1] 

𝑠 0.38 [9] 

𝑘 0.035 Assumption 

𝑎1 0.15 [12] 

𝑎2 0.2 [12] 

𝛼1 105 [11] 

𝛼2 2.02 ×  107 [11] 

𝑑1 0.3743 [9] 

𝑑2 0.055 [9] 

𝑑3 0.25 [12] 

b. Numerical simulation of tumor and effector cells extinction conditions 

Based on Figure 4.1 (b), it can be seen that the population of normal cells, helper T cells, and 
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regulatory T cells increased and remained constant until 𝑡 = 200. From a biological point of view, 

this condition indicates that the body's immune system is working quite effectively against tumor 

cells, even before tumor cells proliferate. However, effector cells decreased from 𝑡 = 15 , and 

finally they became extinct. The extinction of effector cells occurs due to competition against 

tumor cells and also an increase regulatory T cells. 

c. Numerical simulation of tumor cells extinction conditions 

Based on Figure 4.1 (c), it can be seen that the effector and regulatory T cells populations 

increased from 𝑡 = 3 , then fluctuated up to 𝑡 = 22  and increased for certain period before 

reached constant value until 𝑡 = 200. Furthermore, normal and helper T cells populations were 

increase from 𝑡 = 3, then constant until 𝑡 = 200. From a biological point of view, this condition 

indicates a healthy condition, where the immune system works effectively against tumor cells and 

maintains normal cells. 

d. Numerical simulation of effector cells extinction conditions 

Based on Figure 4.1 (d), it can be seen that the tumor cell population increased from 𝑡 = 4, 

then constant until 𝑡 = 200 , while the normal cell population decreased from 𝑡 = 5 , then 

constant until 𝑡 = 200 . The effector cell population decreased and eventually became extinct. 

Biologically, this condition means that tumor cells are free from immune system control and 

expected to develop into malignant tumors, that metastasize. This condition has not yet reached 

tumor invasion because the normal cell population is still present in the body. Furthermore, the 

population of helper T cells will continue increase due to a constant source from bone marrow. 

Consequently, regulatory T cells population also increasing, because helper T cells promote the 

activation of regulatory T cells. 

e. Numerical simulation of normal cells extinction conditions 

Based on Figure 4.1 (e), it can be seen that tumor cells, effector cells, and regulatory T cells 

populations increased from 𝑡 = 3, then fluctuated and ended constant until 𝑡 = 200. The normal 

cell population decreased from 𝑡 = 2, then got extinction. This indicates that tumor cell invasion 

occurs. Although effector cells are still effective against tumor cells, effector cells cannot maintain 

the existence of normal cells in the body. Therefore, many researchers consider the treatment of 

tumor disease can eradicate tumor cells and also maintain the existence of normal cells. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.1 Numerical simulation graph of conditions: (a) normal and effector cells 

extinction (b) tumor and effector cells extinction (c) tumor cells extinction 

(d) effector cells extinction (e) normal cells extinction (f) coexistence 
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f. Numerical simulation of coexistence conditions 

Based on Figure 4.1 (f), it can be seen that the effector cells and helper T cells populations 

increased from 𝑡 = 3, then fluctuated and eventually grew steadily until 𝑡 = 200. Consequently, 

the regulatory T cells are also increased. The tumor cells population increased from 𝑡 = 6, then 

slightly decreased and ended constant until 𝑡 = 200 . Although the population of normal cells 

decreased, it is not going extinct. The immune system inhibits the tumor spread effectively. 

Clinically, this condition shows that the patient can still survive even though there are tumor cells 

in the body. 

 

4.1 The inhibitory role of effector cells by regulatory T cells on Tumor cell growth 

Based on Figure 4.2, it is clear that the rate of inhibition of effector cells by regulatory T cells 

(𝑞) greatly affects the growth of tumor cells. The density of tumor cell populations with different 

q value is written in the following table: 

 

Figure 4.2 t-T graph with different q values 

 

Table 4.2 Density of tumor cell 

population with different q values 

𝑞 value Tumor Cell Population Density 

0.4 8.7241 

0.32 8.1326 

0.24 6.8751 

0.18 3.47 × 10−8 
 

 

The high rate of inhibition of effector cells by regulatory T cells results high tumor cell growth. 

Conversely, the low rate of inhibition of effector cells by regulatory T cells results low tumor cells 

growth. The effector cells can perform their cytotoxic activity or fight tumor cells optimally. 
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4.2 Numerical Bifurcation Analysis 

Numerical bifurcation analysis was carried out to determine the effect of a parameter on the 

system stability. As the focus of this study, namely the tumor-immune system dynamics with 

considering the inhibitory role of regulatory T cells, the bifurcation diagram is plotted with a 

continuous value of 𝑞, which is the rate of effector cells inhibition by regulatory T cells. In this 

simulation, the parameter values used refer to Table 3.1 and the values of 𝑞  are 𝑞1 =

1.1710, 𝑞 2 = 0.4218, 𝑞3 = 0.4390. 

Figure 4.3 shows the changes in the system stability due to various 𝑞 parameter values. In 

Figure 4.3 (a), for 0 < 𝑞 < 𝑞4  where 𝑞4 = 0.19  is a saddle-node bifurcation point, the 

equilibrium point 𝑃3 exists and is unstable, 𝑃4 exists and is stable, while the other equilibrium 

points do not exist. The solution of the system tends to 𝑃4, which means the immune system works 

very effectively against tumor cells and maintains normal cells. For 𝑞4 < 𝑞 < 𝑞3, the system has 

bistable behavior, because at that interval there is stability at two points, namely equilibrium points 

𝑃4 and 𝑃6, which implies that the immune system works quite effectively against tumor cells, but 

cannot maintain normal cells in the body. For 𝑞3 < 𝑞 < 𝑞1 , both 𝑃3 and 𝑃4  exist and are 

unstable, while 𝑃6 exists and is stable. The solution of the system tends to 𝑃6, which means the 

immune system’s performance against tumor cells begins to decline and causes the extinction of 

normal cells. For 𝑞 > 𝑞1, both 𝑃4 and 𝑃6 exist and are unstable, while 𝑃3 exists and is stable. 

The solution of the system tends to 𝑃3; It shows the inhibition by regulatory T cells causes effector 

cells tends to extinct and the tumor cell population increased. 

Furthermore, in Figure 4.3 (b) for 0 < 𝑞 < 𝑞5 , where 𝑞5 = 0.2  is the saddle-node 

bifurcation point, the equilibrium point 𝑃3 exists and is unstable, 𝑃4 exists and is stable, while 

the other equilibrium points do not exist. The solution of the system tends to 𝑃4, which means the 

immune system works very effectively against tumor cells and maintains normal cells. For 𝑞5 <

𝑞 < 𝑞3, the system has bistable behavior, because at that interval there is stability at two points, 

namely the equilibrium points 𝑃4 and 𝑃∗, which implies that the immune system's performance 

against tumor cells is quite effective even though the population of tumor cells is not completely 
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extinct in the patient's body. For 𝑞3 < 𝑞 < 𝑞1 , 𝑃3  and 𝑃4  exist and are unstable, while 𝑃∗ 

exists and is stable. The solution of the system tends to 𝑃∗, which means that the patient is still 

alive with the presence of tumor cells in the body. For 𝑞 > 𝑞1, both 𝑃4 and 𝑃∗ exist and are 

unstable, while 𝑃3  exists and is stable. The solution of the system tends to 𝑃3  and shows 

evidence that the inhibition by regulatory T cells causes effector cells tends to extinct and the 

tumor cell population increased. 

 

 

 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

 

(b) 

Figure 4.3 Bistable and Saddle-Node Bifurcation Diagram of 𝑇 concerning 𝑞 with a value of 

(a) 𝛽1 = 0.5. (b) 𝛽1 = 0.1 

 

Based on above explanation, the 𝑞 parameter has a significant effect on the inhibition of 

the immune system and tumor cell growth, as well as changes in the system stability. It is important 

to carry out this analysis before deciding on a suitable tumor treatment strategy so that the immune 

system can work optimally to reduce the inhibition by regulatory T cells. Then, tumor cells are 

completely eradicated from the patient's body. 

 

5. CONCLUSION 

Based on the results of the discussion that has been described in the previous section, the 

following conclusions are obtained: 
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1. The mathematical model of tumor-immune system dynamics by considering the regulatory T 

cells role has eight equilibrium points, namely: 

a. Two equilibrium points are unstable, namely the equilibrium point of normal, tumor, 

effector cells extinction (𝑃0) and the equilibrium point of normal cells, tumor cells 

extinction (𝑃1). 

b. Four equilibrium points are conditional asymptotically stable, namely the equilibrium 

point of normal and effector cells extinction (𝑃2), tumor and effector cells extinction 

(𝑃3), tumor cells extinction (𝑃4), and effector cells extinction (𝑃5), 

c. Two equilibrium points are supposed to be asymptotically stable when the conditions for 

their existence are satisfied, namely the equilibrium point of normal cell extinction (𝑃6) 

and coexist condition (𝑃∗). 

2. The numerical simulation results of a mathematical model of tumor-immune system by 

considering the regulatory T cells role show that the inhibition of effector cells by regulatory 

T cells causes tumor cells growth increased, and vice versa. In addition, a numerical 

bifurcation analysis was also carried out which showed the presence of saddle-node 

bifurcation and bistable behavior in the system. The regulatory T cells play an important role 

in the dynamics of the tumor-immune system, especially in inhibiting the performance of 

effector cells and promoting tumor cell growth. 
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