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Abstract. In this paper, we develop a mathematical model for the transmission dynamics of Cotton leaf curl virus

(CLCuV) disease in cotton. The models took into account both cotton and vector populations. Cotton populations

are classified as susceptible (A) and infected (B). The vector population was further classified as susceptible (X)

and infected (Y). We demonstrated that all model solutions are positive and bounded with initial circumstances

from a specific meaningful set. The presence of unique CLCuV free and endemic equilibrium points is explored,

and the basic reproduction number is calculated using the next generation matrix approach. The conditions for

these equilibrium points’ local and global asymptotic stability are then established. When the basic reproduction

number is less than one, the system has a locally and globally asymptotically stable CLCuV free equilibrium point,

and when the basic reproduction number is more than one, the system has a locally and globally asymptotically

stable endemic equilibrium point. The simulation result agrees with the analytical results.
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1. INTRODUCTION

Cotton was first mentioned in Amharic word ’tet,’ about 350 A.D., during the reign of King

Aizana of Axum [1]. Ethiopians have farmed and utilized cotton since ancient times. Cot-

ton (Gossypium spp.) is the world’s most important fiber, oil, and protein producing crop [2].

Cotton, a one-of-a-kind fiber crop plant with a thousand faces, is known for its versatility, per-

formance, appearance, natural comfort, and, above all, its numerous applications, which include

astronaut in-flight space suits, towels, tarpaulins, tents, sheets, and all forms of clothing Vanitha

et al. [3]. It is known as ”white gold,” is one of the most important cash crops in developing

countries and exported to various nations as a raw material for indigenous textile and oil in-

dustries Sain et al. [4]. Cotton’s significance is underscored by the fact that it is not only the

world’s most important fiber crop, but also the world’s second-largest oilseed crop Zhang et al.

[5].

Cotton is the most widely grown food and fiber crop in the world. Ethiopia is a cotton-producing

and exporting country in Sub-Saharan Africa. It has a long history of cotton production, with

an estimated area suitable for cultivation of roughly 2.6 million hectares. Ethiopian cotton is

mostly exported to Africa, Asia, and Europe, with Asia accounting for 67% of total exports.

Ethiopian cotton is now priced by the Textile Industry Development Institute Zeleke et al. [6].

The leaf is the most susceptible to diseases, which can cause plant damage and death. The ma-

jority of infections only damage the cotton plant’s leaf parts Kumar et al. [7]. Cotton Leaf Curl

Virus (CLCuV) illness is a major impediment to cotton production. It is caused by a genus of

viruses known as Begomovirus, which is spread by whiteflies and poses a serious threat to the

cotton crop Farooq et al. [8]. It can be seen in Africa, Pakistan, and northwestern India Sattar

et al. [9]. Cotton symptoms appear 2-3 weeks after B. tabaci inoculation (discovered experi-

mentally) and are marked by deep downward cupping of the youngest leaves [10]. Roguing,

or the removal of infected plants, particularly ratoon cotton from the previous season’s crop,

is advised, but it appears to have little influence on the disease’s spread. Cotton cultivars with

resistance to herbicides and pesticides have recently been introduced.

Mathematicians and biologists have developed multiple ecoepidemiological models in recent

decades to explore the spread of various infectious diseases [11, 12, 13, 14] and etc. Fouda et
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al. [15] created a mathematical model of bleached cotton plain single jersey knitted fabrics that

may be used to anticipate fabric attributes and define fabric geometrical relationships before

manufacturing. A practical verification is performed at various cotton yarn counts and twist

factors. Furthermore, the fabric measuring method measures the real yarn diameter and esti-

mates the fabric thickness as a result. According to the findings, the thickness of a simple single

jersey is related to three times the yarn diameter.

Levins et al. [16] describe the differential equations of prey-predator, crop-pest, and migratory

effect interactions in their model. The relationship between a mathematical model and ecolog-

ical stability was demonstrated using biological properties. The models were used to provide

answers to environmental questions.

Hern’andez-Bautista et al. [17] proposed a mathematical model of cotton dyeing in cones on

three scales: micro, meso, and macro. The parameters of the adsorption isotherms and indepen-

dent variables of the Curcuma longa cotton dyeing process were determined using bibliographic

data. To simulate cotton dyeing, mass and momentum conservation equations were applied.

Banks et al. [18] developed a mathematical model and statistical models for making the opti-

mal judgments, such as ANOVA-based model comparison tests and residual plot analysis. They

also investigate the statistical assumptions that are typically made arbitrarily throughout the pa-

rameter estimate process, as well as the repercussions of making incorrect assumptions.

Mamatov et al. [19] presented a single parabolic-type boundary value issue for estimating the

temperature field of raw cotton and air components in drum dryers . With the experimental data,

a comparison analysis is conducted. The suggested model and numerical technique are shown

to accurately explain the raw cotton drying process. Dome et al. [20] devised a mathematical

model for estimating input demand in relation to cotton production costs. They also claim that

cotton farmers are extremely susceptible to fluctuations in input prices, which influence whether

they produce profitable or loss-making production when compared to total costs per hectare.

[21] provided six non-linear growth models for India Cotton area, production, and productiv-

ity statistics from 1980 to 2013: Monomolecular, Logistic, Gompertz, Richards, Quadratic,

and Reciprocal growth. The selected model was chosen because it had the highest R2, Lower

Residual Sum of Square, and Mean Square Error among the six models under consideration.
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Aboukarima et al. [22] develop a multiple regression model to predict the leaf area of a cotton

crop for use in agricultural studies. The created model may be a practical and quick alternative,

particularly in locations where contemporary equipment or other instruments for measuring leaf

area are unavailable.

Su et al. [23] explore the leaf area index (LAI) models and interactions between LAI, dry mat-

ter, and yield for cotton cultivated under three soil conditioners in Korla, Xinjiang, China, with

the goal of improving water use efficiency and finding optimal soil conditioner application rates.

Khan et al. [24] investigate the association between cotton leaf curl virus (CLCuV) incidence,

environmental variables, and silverleaf whitefly population in Pakistan’s agricultural system.

The mathematical relationship discovered can anticipate disease incidence in future months,

which can aid agriculturists in disease control in Pakistan’s agricultural areas.

Ahmad et al. [25] developed a mathematical model of cotton leaf curl virus infection in Pak-

istan, as well as its link to weather variables. They employ mathematics to connect the severity

of the cotton leaf curl virus (CLCuV) to environmental factors including temperature, rainfall,

and humidity, as well as the population of whiteflies in Pakistan’s agricultural sector. Humidity

and rainfall were discovered to be associated with the condition.

Cotton leaf curl virus, fiber quality, and yield components in germplasm imported from the

United States were investigated by Saeed et al. [26]. 79 cotton genotypes were evaluated using

statistical processes such as correlation analysis, clustering, and principal components. Cotton

leaf curl virus demonstrated a substantial negative association with plant height, monopodial

and sympodial branches, and a significant positive relationship with fiber fineness, but no rela-

tionship with other characteristics.

Motivated by the works of [23, 25, 26] we provide a new ecoepidemiological model that uses

a ordinary differential equations to examine and analyze the dynamics of cotton leaf curl virus

(CLCuV) in cotton plant populations. Furthermore, our current model is unique in that it divides

the cotton leaf curl virus (CLCuV) model into two populations; cotton and vectors. Cotton and

vector populations both have susceptible and infected individuals. We believe that the findings

of our study will be valuable in identifying appropriate methods for preventing or eliminating
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disease transmission. This research is organized as follows. In section two, a new mathemati-

cal model for the transmission dynamics of cotton leaf curl virus (CLCuV) is developed. Part

three examines the presence and stability of cotton leaf curl virus (CLCuV) equilibria, as well

as the positivity and boundedness of solutions. Part four is about numerical simulation. Finally,

conclusions are given in part five.

2. MODEL FORMULATION

We divided the cotton leaf curl virus (CLCuV) model into cotton and vector populations in

this part. There are susceptible and infected subgroups in these populations. A represents sus-

ceptible cotton, and B represents diseased cotton. Similarly, X represents a vulnerable vector

and Y represents an infected vector. The model took into account the recruitment rate of sus-

ceptible vectors b2 and their movement to infected vectors Y with θ2 rate after consuming ill

plants or cotton. The susceptible cotton A also replanted at rate b1, and the illnesses spread to

cotton when infected vectors Y eat susceptible cotton A at rate θ1. Cotton that has been infected

will never heal and will provide a very poor yield of cotton. The model also assumes that µ is

the natural death rate for cotton population, and δ is natural death rate for vector population. In

the model, ω is induced death rate due to disease. Moreover, the description of all parameters

are given in table 1.

FIGURE 1. Flow chart of the model.
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TABLE 1. Parameters of the model

Parameter Description

b1 Replanting rate of cotton.

b2 Recruitment rate of vector.

θ1 Infection rate of cotton.

θ2 Infection rate of vector.

µ Natural death rate of cotton.

δ Natural death rate of vector.

ω Induced death rate of cotton due to disease.

We can derive the following from the model’s assumptions and flow chart in figure 1.

dA
dt

= b1−θ1AY −µA,

dB
dt

= θ1AY − (µ +ω)B,

dX
dt

= b2−θ2BX−δX ,(1)

dY
dt

= θ2BX−δY,

with

A(0) = A0 ≥ 0,B(0) = B0 ≥ 0,

X(0) = X0 ≥ 0,Y (0) = Y0 ≥ 0.(2)

3. MODEL ANALYSIS

3.1. Positivity of Solution. In this subsection, our model equation (1) to be ecoepidemiolog-

ically meaningful and well posed, it is necessary to prove that all state variables of system with

positive initial data will remain positive for all times t ≥ 0. The following theorem is used to

demonstrate the positivity of the system of equation (1).

Theorem 1: Let Ω = (A,B,X ,Y ) ∈ R4 : A(0)> 0,B(0)> 0,X(0)>,Y (0)> 0. Then the solu-

tion set {A(t),B(t),X(t),Y (t)} of system of equation (1) is positive for all t ≥ 0.



COTTON LEAF CURL VIRUS (CLCUV) TRANSMISSION DYNAMICS 7

Proof: From the first equation of system equation (1), we have that:

(3)
dA
dt

= b1− (θ1Y +µ)A≥−(θ1Y +µ)A

Using separation variables and by integrating equation (3)∫ dA
A
≥−

∫
(θ1Y +µ)dt,

lnA(t)≥−
∫
(θ1Y +µ)dt + c1,

A(t)≥ e−
∫
(θ1Y+µ)dt+c1,

A(t)≥ A(0)e−
∫
(θ1Y+µ)dt ≥ 0.(4)

From the second equation of system equation (1), we have that:

(5)
dB
dt

= θ1AY − (µ +ω)B≥−(µ +ω)B

Using separation variables and by integrating equation (5)∫ dB
B
≥−

∫
(µ +ω)dt,

lnB(t)≥−(µ +ω)t + c2,

B(t)≥ e−(µ+ω)t+c2,

B(t)≥ B(0)e−(µ+ω)t ≥ 0.(6)

Furthermore, using similar procedure on the above, we have

X(t)≥ X(0)e−
∫
(θ2B+δ )dt ≥ 0,(7)

Y (t)≥ Y (0)e−δ t ≥ 0.(8)

Hence, all the solution sets are positive for t ≥ 0, that is the model is meaningful and well posed.

3.2. Invariant Region. We determine a region in which the solution of system of equation (1)

is bounded. Now, differentiating the total Cotton population Nc = A+B with respect to time,

we have

dNc

dt
= b1−ωB−µNc.(9)
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In the abscence of the death rate of cotton due to infection ω = 0, equation (9) becomes

(10)
dNc

dt
≤ b1−µNc

By re-arrranging and multiplying by integrating factor e
∫

µdt = eµt , we have

(11)
dNc

dt
eµt +µNceµt ≤ b1eµt .

That is

(12)
d
dt

(
Nceµt)≤ b1eµt .

By integrating and solving equation (12), we obtain

(13) Nc(t)≤
b1

µ
+ e−µt

(
Nc(0)−

b1

µ

)
.

Taking the limit as t→ ∞ to the equation (13), we obtain

(14) Ωc =

{
(A,B) ∈ R2

+ : Nc ≤
b1

µ

}
And differentiating the cotton leaf curl virus population Nv = X +Y , we have

dNv

dt
= b2−δNv.(15)

Using similar procedure on the above

(16) Nv(t)≤
b2

δ
+ e−δ t

(
Nv(0)−

b2

δ

)
.

Taking the limit as t→ ∞ to the equation (16), we obtain

(17) Ωv =

{
(X ,Y ) ∈ R2

+ : Nv ≤
b2

δ

}
As a result, the feasible solution set for the CLCuV model given by:

(18) Ω = Ωc×Ωv =

{
(A,B,X ,Y ) ∈ R4

+ : Nc ≤
b1

µ
: Nv ≤

b2

δ

}
is positively invariant, inside which the model is considered to be ecoepidemiologically mean-

ingful and mathematically well posed.
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3.3. Disease Free Equilibrium Point of the Model. The model’s disease-free equilibrium

points, E0, are stationary solutions in which there is no infection. It is obtained by equating

equation (1) to zero and using B = 0 and Y = 0. Then, disease free equilibrium point, E0 of our

model equation (1)is given by:

(19) E0 = (A0,B0,X0,Y 0) =

(
b1

µ
,0,

b2

δ
,0
)
.

The basic reproduction number R0: The basic reproduction number R0 is the estimated num-

ber of secondary infections from a single newly infected individual delivered directly into a

susceptible group, according to Kinene et al. [27]. It can be found by rewriting the system of

equation (1) starting with newly infective classes and using the next generation matrix method:

dB
dt

= θ1AY − (µ +ω)B,

dY
dt

= θ2BX−δY.(20)

Then, we consider

(21) f =

 θ1AY

θ2BX

 ,v =

 (µ +ω)B

δY


Now, the jacobian matrix of f and v with respect to B and Y at disease free equilibrium point,

E0 =
(

b1
µ
,0, b2

δ
,0
)

is:

F=

 0 θ1b1
µ

θ2b2
δ

0

 ,

(22) V=

 (µ +ω) 0

0 δ


Then, by the principle of next generation matrix, basic reproduction number R0 is the dominant

eigen value of the FV−1 or spectral radius of FV−1 where

FV−1 =

 0 θ1b1
µ

θ2b2
δ

0

 1
(µ+ω) 0

0 1
δ


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(23) =

 0 θ1b1
µδ

θ2b2
δ (µ+ω) 0


The charactersic equations of equation (23) becomes;

(24) λ
2− b1b2θ1θ2

µδ 2(µ +ω)
= 0.

That is

(25) λ =±

√
b1b2θ1θ2

µδ 2(µ +ω)
.

Since, basic reproductioin number R0 is the maximum eigen values of FV−1 or the spectral

radius of FV−1. As a result,

(26) R0 =

√
b1b2θ1θ2

µδ 2(µ +ω)
.

The two generation are required to transmission of CLCuV to take place in the cottton field,

that is from an infectious cotton plant to susceptible vector and then from an infectious vector

to susceptible cotton [28]. That is why the square root found in R0. It implies that

R0 =

√
b1b2θ1θ2

µδ 2(µ +ω)
=

√
b1θ1

µ(µ +ω)

b2θ2

δ 2

=

√
b1θ1

µ(µ +ω)

√
b2θ2

δ 2 = R0c×R0v.(27)

where R0c =
√

b1θ1
µ(µ+ω) is the cotton plants contribution when they infect the vector and

R0v =
√

b2θ2
δ 2 is the contribution of the vector population when it infects cotton plants.

3.4. Local Stability of the Disease Free Equilibrium Point. The linearization system of

equation (1) at E0 can be used to find the local stability of the model at disease-free equilibrium

point, E0.

Theorem 2: Disease free equilibrium point, E0 of system of equation (1) is locally asymptoti-

cally stable, if R0 < 1.
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Proof. The Jacobian matrix of system of equation (1) is

(28) J =


−(θ1Y +µ) 0 0 −θ1A

θ1Y −(µ +ω) 0 θ1A

0 −θ2X −(θ2B+δ ) 0

0 θ2X θ2B −δ


Evaluating the Jacobian matrix of system of equation (28) at disease free equilibrium point

E0 =
(

b1
µ
,0, b2

δ
,0
)

is

(29) J(E0) =


−µ 0 0 −θ1b1

µ

0 −(µ +ω) 0 θ1b1
µ

0 −θ2b2
δ

−δ 0

0 θ2b2
δ

0 −δ


The characteristic equation of Jacobian matrix of equation (29) at disease free equilibrium point,

E0 is |J(E0)−λ I4|= 0. That is

(30)

∣∣∣∣∣∣∣∣∣∣∣∣

−µ−λ 0 0 −θ1b1
µ

0 −(µ +ω)−λ 0 θ1b1
µ

0 −θ2b2
δ

−δ −λ 0

0 θ2b2
δ

0 −δ −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Evaluating equation (30) simplifying it, we get

(31) (−µ−λ )(−δ −λ )(λ 2 +d1λ +d2) = 0.

where

d1 = µ +ω +δ ,

d2 = (µ +ω)δ − b1b2θ1θ2

µδ
= (µ +ω)δ

[
1− b1b2θ1θ2

µδ 2(µ +ω)

]
= (µ +ω)δ (1−R2

0).(32)
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Clearly,from equation (31),we observe that

λ1 =−µ < 0,

λ2 =−δ < 0,(33)

and from the last expression of equation (31) , that is

(34) λ
2 +d1λ +d2 = 0

by using the Routh-Hurwitz criteria, equation (34) has strictly negative real root if d1 > 0 and

d2 > 0. Clearly, we observe that d1 = µ +ω +δ > 0 and

(35) d2 = (µ +ω)δ (1−R2
0)> 0

if (1−R2
0) > 0. That is R2

0 < 1 implies that R0 < 1. As a result, our model equation (1) at

E0 offers all eigenvalues with a negative real part, and so it is locally asymptotically stable if

R0 < 1 .

3.5. Global Stability of the Disease Free Equilibrium Point. To establish the global stabil-

ity of the disease free equilibrium point E0, we use the method proposed by Castillo-Chavez et

al. [29]. Based on Castillo-Chavez et al. [29], we have written the system of equation (1) in the

following form:

dM
dt

= J(M,L),

dL
dt

= P(M,L),(36)

P(M,0) = 0,

where M = (A,X) ∈ R2 represent the number of uninfected classes, while, L = (B,Y ) ∈ R2 rep-

resent the number of infected classes and E0 = (M∗,0) represents the disease-free equilibrium

of this system. The disease-free equilibrium E0 is globally asymptotically stable equilibrium

for the model if the following conditions are fulfilled:

(1) dM
dt = J(M,0),M∗ is globally asymptotically stable.

(2) dL
dt = DLP(M∗,0)L− P̂(M,L), P̂(M,L)≥ 0 ∀(M,L) ∈Ω.
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where DLP(M∗,0) is an M-matrix and P(M,L) taken in (B,Y ) and evaluated at (M∗,0) =(
b1
µ
, b2

δ
,0,0

)
. If system of equation(24) satisfes the above conditions, then the following theo-

rem holds.

Theorem 3: The disease free equilibrium point, E0 = (M∗,0) of system of equation (36) is

globally asymptotically stable if R0 ≤ 1 and conditions (1) and (2) are holds.

Proof: From our model of equation (1), we can obtain J(M,L) and P(M,L):

J(M,L) =

 b1−θ1AY −µA

b2−θ2BX−δX



P(M,L) =

 θ1AY − (µ +ω)B

θ2BX−δY


Now, we consider the reduced system dM

dt = J(M,0) from condition (1)

dA
dt

= b1−µA,(37)

dX
dt

= b2−δX .(38)

M∗ =
(

b1
µ
, b2

δ

)
is a globally asymptotically stable equilibrium point for the reduced system

dM
dt = J(M,0). This can be verifed from the solution of the equation (37) ; we get A(t) =

b1
µ
+
(

A(0)− b1
µ

)
e−µt which approaches b1

µ
as t→∞ and from equation (38), we obtain X(t) =

b2
δ
+(X(0)− b2

δ
)e−δ t which approaches b2

δ
as t→ ∞, We note that this asymptomatic dynamics

is independent of the initial conditions in Ω; therefore the convergence of the solutions of the

reduced system (37) and (38) is global in Ω. Now we compute

(39) DLP(M∗,0) =

 −(µ +ω) b1θ1
µ

b2θ2
δ

−δ


Then, P(M,L) can be written as

(40) P(M,L) = DLP(M∗,0)L− P̂(M,L)

and we want to show P̂(M,L),which is obtained as

(41) P̂(M,L) =

 θ1Y
(

b1
µ
−A
)

θ2B
(

b2
δ
−X

)

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Here b1
µ
≥ A and b2

δ
≥ B . Hence it is clear that P̂(M,L) ≥ 0, ∀(M,L) ∈ Ω. Thus, this proves

that disease free equilibrium point E0 is globally asymptotically stable when R0 ≤ 1.

3.6. Disease Endemic Equilibrium Point of the Model. The endemic equilibrium point, E1,

of the model is the steady state solution where leaf curl virus persist in the population of cotton

plants. We can obtain by equating each system of the equation equal to zero; that is,

b1−θ1A∗Y ∗−µA∗ = 0,

θ1A∗Y ∗− (µ +ω)B∗ = 0,

b2−θ2B∗X∗−δX∗ = 0,(42)

θ2B∗X∗−δY ∗ = 0,

From first equation of (42), we get

(43) A∗ =
b1

θ1Y ∗+µ
.

From second equation of (42), we have

(44) B∗ =
θ1A∗Y ∗

(µ +ω)
.

Substituting the value of A from equation (43) in to equation (44), we obtain

(45) B∗ =
b1θ1Y ∗

(µ +ω)(θ1Y ∗+µ)
.

From third equation of (42), we have

(46) X∗ =
b2

θ2B∗+δ
.

Substituting the value of B from equation (45) in to equation (46), we obtain

(47) X∗ =
b2(µ +ω)(θ1Y ∗+µ)

b1θ1θ2Y ∗+δ (µ +ω)(θ1Y ∗+µ)
.

From last equation (42), we have

(48) θ2B∗X∗ = δY ∗.
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Substituting the value B∗ from equation (45) and the value X∗ from equation (47) in equation

(48), we have

(49)
b1b2θ1θ2

b1θ1θ2Y ∗+δ (µ +ω)(θ1Y ∗+µ)
= δ .

By re arranging and simplifyingbequation (49), we get

(50) Y ∗ =
µδ (µ +ω)(R2

0−1)
θ1(b1θ2 +δ (µ +ω))

.

Thus, by substituting equation (50) into equations (43), (45) and (47), we obtain

A∗ =
b1(b1θ2 +δ (µ +ω))

µδ (µ +ω)(R2
0−1)+µ(b1θ2 +δ (µ +ω))

,(51)

B∗ =
b1δ (R2

0−1)
δ (µ +ω)(R2

0−1)+(b1θ2 +δ (µ +ω))
,(52)

X∗ =
b2(δ (µ +ω)(R2

0−1)+b1θ2 +δ (µ +ω))

δ ((b1θ2 +δ (µ +ω))(R2
0−1)+b1θ2 +δ (µ +ω))

(53)

3.7. Local Stability of the Endemic Equilibrium Point. We used the Jacobian stability ap-

proach to prove the local stability of the disease endemic equilibrium state in this section.

Theorem 4: When R0 > 1, the model’s endemic equilibrium point, E1, is locally asymptotically

stable.

Proof: The local stability of the endemic equilibrium, E1, is determined based on the signs of

the eigenvalues of the Jacobian matrix which is computed at the disease endemic equilibrium,

E1. Now, using the method proposed by [30], the Jacobian matrix of the our model at E1 is

given by:

(54) J =


−(θ1Y ∗+µ) 0 0 −θ1A∗

θ1Y ∗ −(µ +ω) 0 θ1A∗

0 −θ2X∗ −(θ2B∗+δ ) 0

0 θ2X∗ θ2B∗ −δ

 ,
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The characteristic equation of Jacobian matrix of equation (54) at disease endemic equilibrium

point, E1 is |J(E1)−λ I4|= 0. That is

(55)

∣∣∣∣∣∣∣∣∣∣∣∣

−(θ1Y ∗+µ)−λ 0 0 −θ1A∗

θ1Y ∗ −(µ +ω)−λ 0 θ1A∗

0 −θ2X∗ −(θ2B∗+δ )−λ 0

0 θ2X∗ θ2B∗ −δ −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Equation (55) can be simplified as:

(56) P(λ ) = f4λ
4 + f3λ

3 + f2λ
2 + f1λ + f0,

where

f4 =1, f3 = 2µ +2δ +ω +θ1Y ∗+θ2B∗,

f2 =µδ +(µ +δ )(µ +ω +δ )(µ +ω)δ+

(2δ +µ +ω)θ1Y ∗+(2µ +ω +δ )θ2B∗+

θ1θ2(B∗−A∗X∗),

f1 =µδ (µ +ω +δ )+(µ +δ )(µ +ω)δ+

(µδ +(µ +δ )(µ +ω))θ2B∗+(2µ +2ω +δ ))δθ1)Y ∗

+(µ +ω +δ )θ1θ2B∗Y ∗−θ1θ2(µ +δ )A∗X∗,(57)

f0 =δθ1θ2(µ +ω)B∗Y ∗+θ1δ
2(µ +ω)Y ∗

+δ µθ2(µ +ω)B∗+µδ
2(µ +ω)−µδθ1θ2A∗X∗.

Now, the characteristic polynomial of equation (56) can be analyzed by Routh-Hurwitz criteria.

The coefficients f4, f3, f2, f1, f0 of the characteristic polynomial are real positive. Thus, the

necessary condition for stability of the disease endemic equilibrium point is fulfilled. Then,

the sufficient condition for stability of the system using the Hurwitz array for the characteristic

polynomial is presented as follows:

where f4, f3, f2, f1, f0 are the coefficients of the characteristic polynomial and the remaining
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s4 f4 f2 f0

s3 f3 f1 0

s2 g1 g2 g3

s1 h1 h2 h3

s0 k1 k2 k3

elements in the array are obtained as follows:

g1 =−
1
f3

∣∣∣∣∣∣ f4 f2

f3 f1

∣∣∣∣∣∣= f3 f2− f1

f3
> 0,g2 =−

1
f3

∣∣∣∣∣∣ f4 f0

f3 0

∣∣∣∣∣∣= f0,g3 =−
1
f3

∣∣∣∣∣∣ f4 0

f3 0

∣∣∣∣∣∣= 0,

h1 =−
1
g1

∣∣∣∣∣∣ f3 f1

g1 g2

∣∣∣∣∣∣= f1g1− f3 f0

g1
> 0,h2 =−

1
g1

∣∣∣∣∣∣ f3 0

g1 0

∣∣∣∣∣∣= 0,h3 =−
1
g1

∣∣∣∣∣∣ f3 0

g1 0

∣∣∣∣∣∣= 0,

k1 =−
1
h1

∣∣∣∣∣∣ g1 g2

h1 0

∣∣∣∣∣∣= f0,k2 =−
1
h1

∣∣∣∣∣∣ g1 0

h1 0

∣∣∣∣∣∣= 0,k3 =−
1
h1

∣∣∣∣∣∣ g1 0

h1 0

∣∣∣∣∣∣= 0.

Since, the coefficients of the characteristic polynomial; f4, f3, f2, f1, f0 are real positive and the

first column of the Routh-Hurwitz array has the same positive sign. Therefore, by the Routh-

Hurwitz criteria all eigenvalues of the characteristics polynomial are negative. Thus, the disease

endemic equilibrium point E1 is locally asymptotically stable if R0 > 1.

3.8. Global Stability of Disease Endemic Equilibrium Point. In this subsection, we will

prove the global stability disease endemic equilibrium point.

Theorem 5: For R0 > 1, then the system of equation of (1) at E1 is globally asymptotical stable.

Proof: To investigate the global stability of the endemic equilibrium point E1 , we consider the

following Lyapunov function for model of equation (1):

V (t) =K1
(A−A∗)2

2
+K2

(B−B∗)2

2

+K3
(X−X∗)2

2
+K4

(Y −Y ∗)2

2
(58)
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where K1,K2,K3,K4 are chosen. By differentiating (58) with respect to time , we have

dV
dt

=K1 (A−A∗)
dA
dt

+K2 (B−B∗)
dB
dt

+

K3 (X−X∗)
dX
dt

+K4 (Y −Y ∗)
dY
dt

(59)

Using system equation (1), equation (59) can becomes,

dV
dt

=K1 (A−A∗) [b1− (θ1Y +µ)A]+K2 (B−B∗)

[θ1AY − (µ +ω)B]+K3 (X−X∗)

[b2− (θ2B+δ )X ]+K4 (Y −Y ∗) [θ2BX−δY ] .(60)

By re arranging equation (60), we have

dV
dt

=−K1 (A−A∗)A
[
−b1

A
+(θ1Y +µ)

]
−K2 (B−B∗)B

[
−θ1AY

B
+(µ +ω)

]
−K3 (X−X∗)X

[
−b2

X
+(θ2B+δ )

]
−K4 (Y −Y ∗)Y

[
−θ2BX

Y
+δ

]
.(61)

Here, we can choose

K1 =
A

(θ1Y +µ)A−b1
,

K2 =
B

(µ +ω)B−θ1AY
,(62)

K3 =
X

(θ2B+δ )X−b2

K4 =
Y

δY −θ2BX
.

Hence, we observe that dV
dt < 0 and an endemic equilibrium point, E1, of the model is globally

stable. Moreover, dV
dt = 0 if and only if either A = A∗,B = B∗,X = X∗,Y = Y ∗ or A = B = X =

Y = 0. Thus, using [31], E1 is global asymptotical stable whenever R0 > 1.
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3.9. Sensitivity Analysis of Model Parameters. Sensitivity indices allow us to quantify how

much a variable varies when a parameter is changed Rodrigues et al. [32]. The sensitivity index

can also be constructed using partial derivatives when the variable is a differentiable function

of the parameter.

Definition: The normalized forward sensitivity index of a R0, that depends differentiably on a

parameter, qi, is given as:

MR0
b1

=
∂R0

∂b1
.
b1

R0

=

 1

2
√

b1b2θ1θ2
µδ 2(µ+ω)

b2θ1θ2

µδ 2(µ +ω)

 .
b1√

b1b2θ1θ2
µδ 2(µ+ω)

=
1
2
.

We determine the sensitivity index of the other parameters using the same technique. table 2

lists the criteria in order of most to least sensitive.

3.10. Interpretation of Sensitivity Indices. Table 2 displays the basic reproductive number

sensitivity indices in relation to the important parameters. Positive indices (b1,b1,θ1,θ2) in-

dicate that parameters with increasing values have a significant impact on the spread of the

disease. Because the basic reproduction number increases as their values increase, so does the

average number of secondary cases of infection. Additionally, those parameters with nega-

tive sensitivity indices (µ,δ ,ω) have the effect of reducing disease burden when their values

rise while the others remain constant. Furthermore, as their values rise, the basic reproduction

number decreases, resulting in the disease’s endemic areas being reduced.

4. NUMERICAL SIMULATION

We used MATLAB ode45 solvers to numerically validate our work in this section. Our sim-

ulations investigate the effect of various model parameter combinations on the transmission

dynamics of cotton leaf curl virus (CLCuV). The simulation is run with a wide range of param-

eter values. The source of the set of parameter values are mainly using assumption. The relevant

initial circumstances are used in the simulations and analyses: A(0) = 800,B(0) = 100,X(0) =

200,Y (0) = 80 and the parameters values are displayed in Table 2.
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TABLE 2. The parameter values and sensitivity index of model.

Parameter Value Sensitivity index

b1 0.97 +ve

b2 0.27 +ve

θ1 0.000023 +ve

θ2 0.00021 +ve

µ 0.0005 -ve

δ 0.0029 -ve

ω 0.019 -ve

The time series plot of state variables for R0 < 1 and R0 > 1 is shown in figure 2 and figure

3. From figure 2, we observe that susceptible cotton individuals are increases asymptotically to

the disease free equilibrium point, while the infected cotton individuals are decreases asymp-

totically to the disease free equilibrium point. Furthermore, the susceptible vector individuals

are increases asymptotically to the disease free equilibrium point, while the infected vector in-

dividuals are decreases asymptotically to the disease free equilibrium point. In this case, the

disease may remove out in the long run. The existence of such condition is due to the fact that

R0 = 0.2012 which is less than one. This supports theorem that the stability of disease free

equilibrium point exists when R0 < 1, that is if R0 < 1, then on average, one infected cotton

plant produces less than one newly infectious plant over the course of its disease period.

From figure 3, we observe that susceptible cotton and vector individuals are decreased due to

influence of infected cotton and vector individuals, then they are joins into infected class as a

result the infected cotton and vector individuals are increased. Therefore, infected cotton and

vectors are increased and the disease endemic equilibrium point exists and stable. The existence

of this condition is due to the fact that R0 = 3.9277 which is greater than one. This supports

theorem that the stability of disease endemic equilibrium point exists when R0 > 1, that is if

R0 > 1, each infected cotton and vectors produces, on average more than one new infected

cotton and vectors, then disease will be able to spread in the given area.
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FIGURE 2. Time series plot of state variables for R0 = 0.2012 < 1

FIGURE 3. Time series plot of state variables for R0 = 3.9277 > 1
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Susceptible cotton population (A) and infected cotton population (B) with respect to time t

for different values of θ1 are shown in figure 4. From figure 4, we observe that as infection rate

of cotton,θ1, increases susceptible cotton population (A) decreases while infected cotton pop-

ulation (B) increased. Also, Susceptible vector population (X) and infected vector population

(Y ) with respect to time t for different values of θ2 are shown in figure 5. From figure 5, we

observe that as the value of infection rate of vector,θ2, increases susceptible vector population

(X) decreases while infected vector population (Y ) increased.

FIGURE 4. Susceptible cotton population (A) and infected cotton population

(B) w.r.t. time t for different values of θ1.

FIGURE 5. Susceptible vector population (X) and infected vector population

(Y) w.r.t. time t for different values of θ2.

5. CONCLUSION

This study established an ecoepidemiological model for the dynamics of Cotton leaf curl

virus (CLCuV) illness in cotton. The model’s well-posedness, positivity, and boundedness are
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all explored. The basic reproduction number was explored, as well as the stability study of the

model’s cotton equilibria. The cotton-free equilibrium is locally and worldwide asymptotically

stable if the basic reproduction number is less than one, but the endemic equilibrium is locally

and globally asymptotically stable if the basic reproduction number is more than one. The

numerical simulation shows that as infection rate of cotton, θ1, increases susceptible cotton

population (A) decreases while infected cotton population (B) increased. Furthermore, as the

value of infection rate of vector, θ2, increases susceptible vector population (X) decreases while

infected vector population (Y ) increased.
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