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Abstract. We propose a HIV-1 dynamics model with CTL immune response and both infected and immune cell

infections. Both actively infected cells and immune cells are incorporated with two time delays. The infected-

susceptible and immune-susceptible infection rates are given by saturated incidence. By calculation, we obtain

immunity-inactivated reproduction number R0 and immunity-activated reproduction number R1. By analyzing the

distribution of roots of the corresponding characteristic equations, we study the local stability of an infection-free

equilibrium, an immunity-inactivated equilibrium and an immunity-activated equilibrium of the model. We discuss

the persistence theory for addressing the long term survival of all components of system.
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1. INTRODUCTION

Delay differential equations (DDEs), are the subject of active research for more than 60

years and has been studied by many different mathematicians. Delay differential equations are
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equations which have a delayed argument [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12]. These equations con-

stitute a large and important class of dynamical systems. Time delays are natural components

of the dynamic processes of biology, ecology, physiology, economics, epidemiology and me-

chanics and so a realistic model of these processes must include time delays. Delay differential

equations arise in situations where some hereditary function appears in the ordinary differential

equation. Detailed studies of the real world compel us to take account of the fact that the rate of

change of physical systems depends not only on their present state, but also on their past history

[13].

In many real world phenomena, the initial conditions or boundary conditions are not enough

to predict the future behaviour of the function. Hence to deal with such complexities, it is

necessary to have some knowledge of the earlier behaviour of the function. The last few decades

have witnessed a substantial increase in the application of mathematical models to HIV-1 viral

infection model. Many authors are interested in studying the HIV infection models (see, for

example,[14, 15, 16, 17, 18, 19, 20, 21] and the references cited therein). Several mathematical

models have been used to investigate the dynamics of viral infections, the majority using a set of

ordinary differential equations for the time evolution of the population of healthy and infected

cells, as well as virus load and Lymphocities cells of the immune system [22].

In general, the interaction of viruses with uninfected cells are considered to be as ”mass-

action” which suggests that rate of infection is directly proportional to the product of concen-

trations of uninfected cells and viruses. But this principle is not always true in real life. For ex-

ample, the law of mass-action will not be followed if the concentration of viruses is greater than

that of concentration of uninfected cells. In such case, increase in concentration of viruses will

not increase infection. Taking this into consideration, we suggest that infection rate can be taken

as nonlinear infection rate. Here in the proposed model we have considered saturated infection

rate, also known as Holling type II infection rate and represented by the term βxv
1+αv ;β > 0,α ≥ 0.

Let us we consider the following saturated infection rate on a four-dimensional equations with
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two delays are as follows:

ẋ = λ −d1x(t)− βx(t)v(t)
1+αv(t)

,

ẏ =
βx(t− τ1)v(t− τ1)

1+αv(t− τ1)
−d2y(t)−µy(t)z(t),

v̇ = ky(t)−d3v(t),

ż =
γy(t− τ2)z(t− τ2)

h+ z(t− τ2)
−d4z(t).(1)

where the interaction between activated CD4+ T cells, x(t), infected CD4+ T cells, y(t),

viruses, v(t) and immune cells, z(t). where activated CD4+ T cells are produced at a rate of λ

cells day−1, decay at a rate d1 day−1 and can become infected at a rate that is proportional to the

number of infected CD4+ T cells y(t) with a infection rate constant β day−1cell−1. The infected

CD4+ T cells are assumed to decay at the rate of d2 day−1 . The CTL responses eliminate at a

rate that is proportional to the number of CTLs with a killing rate constant µ day−1cell−1. Free

viruses produced from infected cells at the rate k, decay at a rate d3 day−1. The CTLs immune

response to the infection rate γ , d4 is a decay rate of CTLs immune response . We considered

saturated immune response function
γy(t)z(t)
h+ z(t)

to replace the bilinear rate, here h is a saturation

constant. Namely, we incorporate a time delay τ1 to describe the period between healthy cells

contacting with viruses and complete production of viral RNA and protein. τ2 represents the

period between infected cells and contacting with CTL’s immune cells.

This paper is organized as follows: In section 2, we describe that the solutions of (1) with

positive initial conditions will remain positive for all time and their boundedness. stability

analysis of disease-free, immunity inactivate and immunity activated equilibrium are analyzed

in section 3. In section 4, we present the permanence of the system with the help of steady state.

Finally, we draw our conclusion in section 5.

2. PROPERTIES OF SOLUTIONS

We denote by C the Banach space of continuous function φ : [−τ,0]→ R4 with norm

||φ ||= sup
−τ≤θ≤0

{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|, |φ4(θ)|} ,
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where φ = (φ1,φ2,φ3,φ4) and τ = max{τ1,τ2}. Further, let

C+ = {φ = (φ1,φ2,φ3,φ4) ∈C, φi ≥ 0 for all θ ∈ [−τ,0], i = 1,2,3,4} .

The initial condition for system (1) is given as

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ), z(θ) = φ4(θ), −τ ≤ θ ≤ 0(2)

where φ = (φ1,φ2,φ3,φ4).

Theorem 1. Let x(t),y(t),v(t),z(t) be the solution of the system (1) with initial conditions (2)

then x(t),y(t),v(t) and z(t) are all positive and bounded for t > 0 at which the solution exists.

3. STABILITY ANALYSIS

In this section, we perform the stability analysis of the steady states to study the long term

behavior of the solution trajectories of the system (1). We study the local stability analysis of

an immunity inactivated equilibrium, immunity activated equilibrium and a disease-free equi-

librium of system (1) by analyzing the corresponding characteristic equations respectively.

System (1) has a disease free equilibrium

I0(x0,y0,v0,z0) =

(
λ

d1
,0,0,0

)
.

Further, if λβk > d1d2d3, then the system has a unique immunity-inactivated equilibrium

I1(x1,y1,v1,0) =

 λ

(
1+α

ky1

d3

)
d1

(
1+α

ky1

d3

)
+β

ky1

d3

,
d3d1(R0−1)
k(αd1 +β )

,
ky1

d3
, 0



Let R0 =
λβk

d1d2d3
. It is well known the importance of the value R0, which is called as the basic

reproductive ration of system (1). It represents the average number of secondary infection

caused by a single infected T cells in an entirely susceptible T cells population throughout its

infectious period. And it determines the dynamical properties of system (1) over a long period

of time.
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Denote R1 =
γd3d1(R0−1)
khd4(αd1 +β )

where R1 is called immunity-activated reproduction number

of system (1). Besides, we can show that if R1 > 1, system (1) has an immunity-activated

equilibrium

I2(x2,y2,v2,z2) =

(
(d2 +µz2)(γd3 +αd4k(h+ z2))

γβk
,
d4(h+ z2)

γ
,
d4k(h+ z2)

γd3
,
−b+

√
∆

2a

)

a = d4µk(αd1 +β ); b = d4k(αd1 +β )(d2 +hµ)+d1µγd3;

∆ = (d4k(αd1 +β )(d2 +hµ)+d1µγd3)
2 +4d2d4

2k2hµ(αd1 +β )2(R1−1).

Theorem 2. If R0 < 1, I0 of model (1) is locally asymptotically stable for any time delay τ > 0.

If R0 > 1, I0 of model (1) is unstable for any time delay τ > 0. �

When R0 > 1, the system (1) has a immunity inactivated steady state I1 = (x1,y1,v1,0). Then

the linearized system (1) at I1 yields

˙u11 = −d1u11(t)−
βv1

1+αv1
u11(t)−

βx1

(1+αv1)2 u31(t),

˙u21 =
βv1

1+αv1
u11(t− τ1)+

βx1

(1+αv1)2 u31(t− τ1)−d2u21(t)−µu21(t)z1−µu41(t)y1,

˙u31 = ku21(t)−d3u31(t),

˙u41 =
γy1

(h+ z1)2 u41(t− τ2)+
γz1

(h+ z1)
u21(t− τ2)−d4u41(t).(3)

The characteristic equation of the above linear system is given by

−
(

d1 +
βv1

1+αv1

)
−℘ 0 − βx1

(1+αv1)2 0

βv1

1+αv1
e−℘τ1 −(d2 +µz1)−℘

βx1

(1+αv1)2 e−℘τ1 −µy1

0 k −d3−℘ 0

0
γz1

(h+ z1)
e−℘τ2 0

γy1

(h+ z1)2 e−℘τ2−d4−℘

= 0,

From the above Jacobian matrix, we conclude the following theorem

Theorem 3. If R1 < 1 < R0, then the immunity inactivated steady state I1 of model (3) is locally

asymptotically stable in the case of τ2 = 0. [23]
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When R1 < 1 < R0, the system (1) has a immunity activated steady state I2 = (x2,y2,v2,z2).

Then the linearized system (1) at I2 yields

u̇1 = −d1u1(t)−
βv2

1+αv2
u1(t)−

βx2

(1+αv2)2 u3(t),

u̇2 =
βv2

1+αv2
u1(t− τ1)+

βx2

(1+αv2)2 u3(t− τ1)−d2u2(t)−µu2(t)z2−µu4(t)y2,

u̇3 = ku2(t)−d3u3(t),

u̇4 =
γy2

(h+ z2)2 u4(t− τ2)+
γz2

(h+ z2)
u2(t− τ2)−d4u4(t).(4)

The characteristic equation of the above linear system is given by

−
(

d1 +
βv2

1+αv2

)
−℘ 0 − βx2

(1+αv2)2 0

βv2

1+αv2
e−℘τ1 −(d2 +µz2)−℘

βx2

(1+αv2)2 e−℘τ1 −µy2

0 k −d3−℘ 0

0
γz2

(h+ z2)
e−℘τ2 0

γy2

(h+ z2)2 e−℘τ2−d4−℘

= 0,

From the above Jacobian matrix, we conclude the following theorem

Theorem 4. Suppose

(1) R1 > 1

(2) If τ1 = 0 and τ2 > 0, then the infected steady state I2 of model (4) is locally asymptoti-

cally stable when τ2 < τ∗2 .

Proof. For τ2 > 0 and τ1 = 0 the characteristic equation (4) becomes

℘
4 + k∗1℘

3 + k∗2℘
2 + k∗3℘+ k∗4 + e−℘τ2(m1℘

2 +m2℘+m3) = 0,(5)

where

k∗1 = d1 +
βv2

1+αv2
+d2 +µz2 +d3 +d4,

k∗2 =

(
d1 +

βv2

1+αv1

)
(d2 +µz2)+d3d4 +

(
d1 +

βv2

1+αv2
+d2 +µz2

)
(d3 +d4)

− βkx2

(1+αv2)2 ,
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k∗3 =

(
d1 +

βv2

1+αv2

)
(d2 +µz2)(d3 +d4)+

(
d1 +

βv2

1+αv2
+d2 +µz2

)
d3d4−

βkx2

(1+αv2)2

(
d1 +

βv2

1+αv2

)
d4 +

(
d1 +

βv2

1+αv2

)
d3,

k∗4 =

(
d1 +

βv2

1+αv2

)
(d2 +µz2)(d3 +d4)−

(
d1 +

βv2

1+αv2

)
d4 +

β 2v2kx2d4

(1+αv2)3(h+ z2)2 ,

m1 =
µy2γz2

h+ z2
− y2γ

(h+ z2)2 −
d3y2γ

(h+ z2)2 ,

m2 =
µy2γz2

h+ z2

(
d1 +

βv2

1+αv2
+d3

)
− d3γy2

(h+ z2)2

(
d1 +

βv2

1+αv2
+d2 +µz2

)
− d3γy2

(h+ z2)2

(
d1 +

βv2

1+αv2

)
− (d2 +µz2),

m3 =

(
d1 +

βv2

1+αv2

)
βkγx2y2

(1+αv2)2(h+ z2)2 +
βkγx2y2

(1+αv2)2(h+ z2)2

+
µy2γz2

h+ z2

(
d1 +

βv2

1+αv2

)
d3−

β 2v2kx2y2

(1+αv2)3(h+ z2)2

−
(

d1 +
βv2

1+αv2

)
(d2 +µz2)d3

γy2

(h+ z2)2

Let ℘= iω∗ (ω∗ > 0) be a root of (5), and separating the real and imaginary parts, we have

ω
∗4−ω

∗2k∗2 + k∗4 = (m1ω
∗2−m3) cos(ω∗τ3)−m2 ω

∗ sin(ω∗τ3)(6)

ω
∗k∗3−ω

∗3k∗1 = (m1ω
∗2−m3) sin(ω∗τ3)+m2 ω

∗ cos(ω∗τ3).(7)

Squaring and adding both equations of (6) and (7), we can obtain the following Eight-degree

equation for ω∗:

ω
∗8 +ω

∗6(k∗21 −2k∗2)+ω
∗4(k∗22 −m2

1 +2k∗4−2k∗1k∗3)+ω
∗2(k∗23 −2k∗2k∗4−m2

2)+ k∗24 −m2
3 = 0.(8)

Putting ω∗2 = u∗∗ into (8), we can get the following equation:

F(u∗∗) = u∗∗4 +A∗1u∗∗3 +A∗2u∗∗2 +A∗3u∗∗+A∗4 = 0.(9)
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Where

A∗1 = k∗21 −2k∗2

A∗2 = k∗22 −m2
1 +2k∗4−2k∗1k∗3

A∗3 = k∗23 −2k∗2k∗4−m2
2

A∗4 = k∗24 −m2
3.

Taking derivative with respect to u∗∗ of equation (9), we get

Ḟ(u∗∗) = 4u∗∗3 +3u∗∗2A∗1 +2u∗∗A∗2 +A∗3 = 0.(10)

Set

4u∗∗3 +3u∗∗2A∗1 +2u∗∗A∗2 +A∗3 = 0.(11)

Let m∗ = u∗∗+
A∗1
4

, then (11) becomes

m∗3 +α1m∗+α2 = 0,(12)

where

α1 =
A∗2
2
−

3A∗12
16

, α2 =
A∗13
32
−

A∗1A∗2
8

+
A∗3
4
.

Define

∆ =
(

α2

2

)2
+
(

α1

3

)3
; δ =

−1+ i
√

3
2

;

m∗1 = 3

√
−α2

2
+
√

∆+ 3

√
−α2

2
−
√

∆;

m∗2 = 3

√
−α2

2
+
√

∆δ + 3

√
−α2

2
−
√

∆δ 2;

m∗3 = 3

√
−α2

2
+
√

∆δ 2 + 3

√
−α2

2
−
√

∆δ ;

u∗∗i = m∗i −
A∗1
4
, i = 1,2,3.

We cite the results in [24] about the existence of positive roots of the fourth-degree polynomial

equation, namely, we have the following lemma.

Lemma 5. (1) If A∗4 < 0, then (9) has at least one positive root.



MODIFIED HIV-1 INFECTION MODEL 9

(2) If A∗4 ≥ 0 and ∆≥ 0 then (9) has positive roots if and only if u∗1 > 0 and F(u∗1)< 0.

(3) If A∗4 ≥ 0 and ∆ < 0, then (9) has positive roots if and only if there exists at least one

u∗∗ ∈ {u∗1,u∗2,u∗3} such that u∗∗ > 0 and F(u∗∗)< 0.

Supposing one of the above three cases in Lemma 5, is satisfied, (9) has finite positive rootss

u1,u2,u3, ...,uk,k ≤ 4. Therefore (8) has finite positive roots.

ω1 =
√

u∗1, ω2 =
√

u∗2, ..., ωk =
√

u∗k , k ≤ 4.

For every fixed ωi(i = 1,2, ...k), k ≤ 4), there exists a sequence

τ
j

2i =
1
ωi

arccos
(

η1

η2

)
where j = 0,1,2, ..., i = 1,2, ...,k, k ≤ 4,

where

η1 = (ω∗4i − k∗2ω
∗2
i + k∗4)(m1ω

∗2
i −m3))+(ω∗2i k∗3−ωik∗1)m2

η2 = (m1ω
2
i −m3)

2 +ω
∗2
i m2

2.

Now, we determine sign
(

dRe(λ )
dτ3

)∣∣∣∣
τ2=τ∗2

where sign is the signum function and Re(λ ) is a

real part of λ . By using the following mathematical calculation we can say that the immunity

activated steady state of model (1) remains stable for τ2 < τ∗2 and Hopf bifurcation occurs when

τ2 = τ∗2 .

When τ2 > 0 we show the existence of bifurcating periodic solutions. We already proved

that the characteristic equation (5) has a purely imaginary eigenvalues iω∗, now we shall verify

the transversality condition only.

Differentiating (5) with respect to τ2, we get

{
(4℘

3 +3℘
2k∗1 +2℘k∗2 + k∗3)+ e−℘τ2(2℘m1 +m2)− τ2e−℘τ2(m1℘

2 +m2℘+m3)
}

d℘

dτ2
=℘e−℘τ2(m1℘

2 +m2℘+m3)
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which implies,(
d℘

dτ2

)−1

=
4℘3 +3℘2k∗1 +2℘k∗2 + k∗3

℘e−℘τ2(m1℘2 +m2℘+m3)
+

2℘m1 +m2

℘(m1℘2 +m2℘+m3)
− τ2

℘
,

=
4℘3 +3℘2k∗1 +2℘k∗2 + k∗3

−℘(℘4 + k∗1℘
3 + k∗2℘

2 + k∗3℘+ k∗4)
+

2℘m1 +m2

℘(m1℘2 +m2℘+m3)
− τ2

℘
,

=
3℘4 +2k∗1℘

3 + k∗2℘
2− k∗4

−℘2(℘4 + k∗1℘
3 + k∗2℘

2 + k∗3℘+ k∗4)
+

℘2m1−m3

℘2(m1℘2 +m2℘+m3)
− τ2

℘
.

Therefore,

Ξ = sign
{

Re
(

3℘4 +2k∗1℘
3 + k∗2℘

2− k∗4
−℘2(℘4 + k∗1℘3 + k∗2℘2 + k∗3℘+ k∗4)

+
℘2m1−m3

℘2(m1℘2 +m2℘+m3)
− τ2

℘

)}
℘=iω∗0

= sign
{

Re
(

(3ω∗40 −ω∗20 k∗2− k∗4)+ i(−2ω∗30 k∗1)
ω∗20 (ω∗40 −ω∗20 k∗2 + k∗4)+ i(ω∗0 k∗3−ω∗30 k∗1)

+
m1ω∗20 +m3

ω∗20 (m3−m1ω∗20 )+ i(m2ω∗0 )
− τ2

iω∗0

)}
=

1
ω∗20

sign
{
(3ω∗40 −ω∗20 k∗2− k∗4)(ω

∗4
0 −ω∗20 k∗2 + k∗4)−2ω∗30 k∗1(ω

∗
0 k∗3−ω∗30 k∗1)

(ω∗40 −ω∗20 k∗2 + k∗4)2 +(ω∗0 k∗3−ω∗30 k∗1)2

+
(m1ω∗20 +m3)(m3−m1ω∗20 )

(m3−m1ω∗20 )2 +(m2ω∗0 )
2

}
=

1
ω∗20

sign
{
(3ω∗40 −ω∗20 k∗2− k∗4)(ω

∗4
0 −ω∗20 k∗2 + k∗4)−2ω∗30 k∗1(ω

∗
0 k∗3−ω∗30 k∗1)

(m3−m1ω∗20 )2 +(m2ω∗0 )
2

+
(m1ω∗20 +m3)(m3−m1ω∗20 )

(m3−m1ω∗20 )2 +(m2ω∗0 )
2

}
=

1
ω∗20

sign
{

3ω∗80 +(k∗21 −2k2)ω
∗6
0 +(k∗22 −2k∗1k∗3 +2k∗4−m2

1)ω
∗4
0 + k∗24 −m2

3

(m3−m1ω∗20 )2 +(m2ω∗0 )
2

}
.

As k∗21 − 2k∗2, k∗22 − 2k∗1k∗3 + 2k∗4−m2
1 and k∗24 −m2

3 are both positive by virtue of equation

(8), we have (
dRe(℘)

dτ2

)∣∣∣∣
ω∗=ω∗0 ,τ2=τ∗2

> 0.

Therefore the transversality condition holds and hence Hopf bifurcation occurs at ω∗=ω∗0 ,τ2 =

τ∗2 .

�

4. PERMANENCE OF SYSTEM

Persistence (or permanence) is an important property of dynamical systems and of the sys-

tems in ecology, epidemics etc., they are modeling. Persistence addresses the long-term survival

of some or all components of a system, while permanence also deals with the limits of growth
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for some (or all) components of the system. In this section, we shall present the permanence of

the system (1).

Definition 6. The system (1) is said to be persistent if there are positive constants P1,P2 such

that each positive solution (x(t),y(t),v(t),z(t)) of the system (1) with initial conditions (2)

satisfies

P1 ≤ liminf
t→∞

x(t)≤ limsup
t→∞

x(t)≤ P2,

P1 ≤ liminf
t→∞

y(t)≤ limsup
t→∞

y(t)≤ P2,

P1 ≤ liminf
t→∞

v(t)≤ limsup
t→∞

v(t)≤ P2,

P1 ≤ liminf
t→∞

z(t)≤ limsup
t→∞

z(t)≤ P2.(13)

Definition 7. (Metzler matrix) (see [25], 6) Matrix Ji j is a Metzler matrix if and only if all its

off-diagonal elements are non-negative.

Lemma 8. (Perron-Frobenius Theorem) (see [25], 6) Let Ji j be an irreducible Metzler matrix.

Then, λM the eigenvalue of Ji j of largest real part is real, and the elements of its associated

eigenvector νM are positive. Moreover, any eigenvector of Ji j with non-negative elements be-

longs to span νM.

In order to prove the permanence of the system (1), we present the permanence theory for

inifinite dimensional system from Theorem 4.1 [25]. Let X be a compact metric space. Suppose

that X0 ∈ X , X0 ∈ X , X0⋂X0 = /0. Assume that x(t) is a C0 semigroup on X satisfying:

x(t) : X0→ X0,

x(t) : X0→ X0.(14)

Let xb(t) = x(t)|X0 and let Ab be the global attractor for xb(t).

Theorem 9. (See [26]) Suppose that x(t) satisfies (14) and we have the following:

(1) there is a t0 ≥ 0 such that x(t) is compact for t > t0;

(2) x(t) is dissipative in X;

(3) Āb = ∪x̂∈Abω(x̂) is isolated and has an acyclic covering Q = ∪k
i=1Qi.
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(4) For each Qi ∈ Q,W s(Qi)∩X0 = Ø, where W s refers to the stable set.

Then x(t) is uniformly repeller with respect to X0, i.e., there is a σ > 0 such that for any

x̂ ∈ X0,

liminf
t→∞

d(x(t)x̂,X0)≥ σ ,

where d is the distance of x(t)x̂ from X0.

Theorem 10. If R0 > 1, then the system (1) is permanent.

Proof. The result follows from the above Theorem 9, Let us define Z1 be the interior of R4
+ and

Z2 be the boundary of R4
+, i.e.,Z1 = int(R4

+) and Z2 = bd(R4
+). This choice is in accordance

with the conditions stated in this theorem. We begin by showing that sets Z1 and Z2 repel the

positive solution of the system (1) uniformly. Furthermore, note that by using theorem 1, there

exists a compact set B in which all solutions of the system (1) initiated in R4
+ ultimately enter

and remain forever after. Denoting the Ω limit set of the solution z̃(t, z̃0) of the system (1)

starting in z̃0 ∈ R4
+ by Ω(z̃0), we need to determine the following set:

Θ =
⋃

κ1∈Y2

Ω(κ1), Y2 = {z̃0 ∈ Z2|z̃(t, z̃0) ∈ Z2,∀t > 0}.

From the system (1), it follows that all solutions starting in bd(R4
+), but not on the x- axis leave

bd(R4
+) and that the x- axis is an invariant set, implying that Y2 = {(x,y,v,z) ∈ bd(R4

+)|y = v =

z = 0}. Furthermore, it is easy to see that {I0} as all solutions initiated on the x- axis converges

to I0, in fact, in the set Y2, the system (1) becomes

dx
dt

= λ −d1x.

It is easy to see that I0 is globally asymptotically stable if R0 < 1. Hence any solution

(x(t),y(t),v(t),z(t)) of the system (1) initiating from Y2 is such that (x(t),y(t),v(t),z(t))

→ I0(x,0,0,0). Obviously, I0 is isolated invariant, {I0} is isolated and is an acyclic covering.

Next, we show that W s(I0)
⋂

Z1 = /0 i.e., I0 is a weak repeller for Z1.

By the definition of I0 is a weak repeller for Z1, if for every solution starting in z̃0 ∈ Z1,

lim
t→∞

d(x(t, z̃0), I0)≥ σ ,(15)
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We claim that (15) is satisfied if the following holds:

W s(I0)
⋂

int(R4
+) = /0.(16)

To see this, suppose (15) does not hold for some solution x(t, z̃0) starting in z̃0 ∈ Z1. In view

of the fact that the closed positive orthant is positively invariant for system (1), it follows that

limt→∞ d(x(t, z̃0), I0) = 0 and thus that limt→∞ x(t, z̃0) = I0, which is clearly impossible if (16)

holds. What remains to show is that (16) holds. Now the jacobian matrix of the system (1) at I0

is given in the following:

J0 =


−d1 0 −β

λ

d1
0

0 −d2 β
λ

d1
e−λτ1 0

0 k −d3 0

0 0 0 −d4

 .(17)

It is easy to see that J0 is unstable if R0 > 1. In particular, J0 possesses one eigenvalue

with positive real part, which we denote as λ+, and two eigenvalues with negative real part

which we denote as λ−. We proceed by determining the location of Es(I0), the stable eigen

space of I0. Clearly, (1,0,0,0)T is an eigenvector of J0 associated to−µ . If λ− 6=−d1, then the

eigenvector associated to λ− has the following structure: (0,q2,q3,q4)
T , where q2,q3,q4 satisfy

the eigenvector equation


−d2 β

λ

d1
e−λτ1 0

k −d3 0

0 0 −d4




q2

q3

q4

= λ−


q2

q3

q4

 .(18)

If λ− = −d1, then λ− is a repeated eigenvalue, and associated generalized eigenvector will

possess the following structure (∗,q2,q3,q4)
T , where the value of ∗ is irrelevant for what follows

and q2,q3 and q4 also satisfy (18).

We claim that in both case, the vector (q2,q3,q4)
T /∈ R3

+. Obviously, the matrix in (18)

is an irreducible Metzler matrix. From Definition 7, we know that it is a matrix with non-

negative off-diagonal entries. By using Lemma 8, we get the real eigenvalue which is larger
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then the real part of any other eigenvalue, also called the dominant eigenvalue. Clearly, the

dominant eigenvalue here is λ+. But, the Perron-Frobenius Theorem also implies that every

eigenvector that is not associated with the dominant eigenvalue does not belong to the closed

positive orthant, this means that (∗,q2,q3,q4)
T /∈ R3

+. Consequently, Es(I0)
⋂

int(R3
+) = /0 and

therefore also W s(I0)
⋂

Z1 = /0, which concludes the proof. �

5. CONCLUSION

We conclude with a brief discussion of our results. In this paper, we considered two incorpo-

rated delays in a model to study HIV-1 dynamics for viral infection with CTL immune response

and both infected and immune cell infections. Incorporating the immune response delay into the

model generates rich dynamics. In our model shows that the positive immune delay, τ2 is able

to destabilize the immunity activated equilibrium. We showed that for this simplified model

(1), immunity activated steady state is locally asymptotically stable for τ2 < τ∗2 and bifurcation

leads when τ2 = τ∗2 . Further we show that bifurcation analysis at τ2 = τ∗2 and proofs on this

issue are needed and we will concern about this problem in our further studies.
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