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Abstract. In this paper, we develop an age-structured viral infection model with latency age, infection age and
general incidence rate. The developed model is formulated by ordinary and partial differential equations. The well
posedness and the existence of equilibria are rigorously investigated. Moreover, the qualitative properties including
uniform persistence, local stability of equilibria as well as the global behavior of the model are fully established.
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1. INTRODUCTION

The main objective of this paper is to propose and analyze the dynamics of an age-structured
viral infection model with latency and general incidence rate. This model is governed by the

following nonlinear system:
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% = s —dx(t) — f(x(t),v(2))v(2),
de(t,a) de(t,a)
(1) o T oa Ol
di(t,b)  di(t,b) :
> 5y = 2(b)ilb),

O [ byt

with boundary conditions
e(t,0) = nf(x(2),v(0)v(2),

2) oo
i(£,0) = (1= 1) £(x(r), v(1))v(r) + /O ki (a)e(r,a)da,

and initial conditions

3) x(0) =x9, e(0,a)=eo(a), i(0,a)=1ip(a), v(0)=vp.

Here, the state variables x(7), e(t,a), i(t,b) and v(r) are the concentrations of uninfected target
cells, latently infected cells of latency age a, productively infected cells of infection age b and
free viruses particles at time ¢, respectively. The biological meanings of the other parameters in
the system (1) are listed in Table 1. The general incidence function f(x,v) denotes the average
number of cells which are infected by each virus in unit time. It is assumed to be continuously
differentiable in the interior of ]R%r and satisfies the three fundamental hypotheses given in [1]
and used in [2, 3, 4], that are:

(Hy): f(0,v) =0, forallv >0,

(H»): f(x,v) is a strictly monotone increasing function with respect to x,

for any fixed v > 0,

(H3): f(x,v) is a monotone decreasing function with respect to v,
df(x,v)

v

i.e, <Oforallx>0andv>0.
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TABLE 1. Biological meanings of parameters

Parameter Biological meaning
s Recruitment rate of uninfected cells
d Death rate of uninfected cells
01(a) Death rate of latently infected cells with latency age a
0 (b) Death rate of productively infected cells with infection age b
ki(a) Activation rate of latently infected cells with latency age a
ky(b) Viral production rate of productively infected cells with infection age b
u Clearance rate of virions
n Fraction of infected cells lead to latency

Throughout this paper, we consider the following assumptions:
)z s,d,u > 0.
(ii): 61(-),8(-),k1(-),ka(-) € LL[0,00) and

81 := esssup 8;(a) < oo, & := esssup &(b) < oo,
a€0,00) be[0,00)

ky :=ess sup ky(b) < oo, ki := ess sup kj(a) < oo.
be0,e0) a€0,e)

(iii): There exists mg € (0,d], such that &;(a), 8 (b) > myq for all a,b > 0.
(iv): There exists a maximum age b > 0, such that ky(b) > 0 for b € [0,b™], and k5 (b) =0

forb > bt.

It is important to note that our model described by system (1) improves and generalizes the
recent age-structured model introduced by Wang and Dong [5] in order to model the dynamics
of HIV infection with latency and infection age. More precisely, it suffices to take f(x,v) = Bx,
where 8 > 0 is the infection rate.

The rest of the paper is organized as follows. The next section deals with preliminaries
including properties of solutions and existence of equilibria. Section 3 is devoted to uniform
persistence. Section 4 establishes the local and global stability of equilibria. Section 5 closes

the paper with an application.
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2. PRELIMINARIES
In this section, we present some preliminary results. We first study the existence and unique-

ness of solutions of problem (1)-(3).

Let
o1(a) = e W0 0(@dO  and Gy (b) =€ fé)‘sz(“’)d“’, for a,b € [0,00).
According to (iii) and (iv), one has
0<oi(a)<e ™% and 0<oy(b)<e ™MP
oi(a) =—8i(a)oi(a) and oy(b) =—&(b)0s(D).

Integrating the second and third equations of (1) along the characteristic lines t — a = constant

and r — b = constant, respectively, it yields

nfx(t—a),v(t—a))v(t—a)oi(a), ift>a,
Gl(a)
(03] (a —l‘) ’

“) e(t,a) =

ep(a—t) ifr <a,

and

[(1—=n)f(x(t—b),v(t—b))v(t —b)+M(t —b)]|or(b), ift>Db,

S i(t,b) =
io(b—t)%, it <b,
where M(t) = [o ki(a)e(t,a)da.
Let
Gi(t) = x(1) +/Oooe(t,a)da.

Then

delt(r) = s—dx(t) — F(x(e)(O)W(E) + 1 (x(e) v(0)v(r) — /0 " 5 (a)elt,a)da

<s—mpG(1).

Hence, we have
) s
limsup G () < —
t—+oo mg

Next, we define

Ga (1) = x(1) + /0 " e(t,a)da + /0 " i(t,b)db.
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Then

dezt(t) =s—dx(t) — f(x(2),v(t))v(t) +nf(x(t),v())v(r) _/Ooo 81(a)e(t,a)da

(=) (), v(0))v(e) + /0 “ki(@)elt, a)da— /0 " 8 (b)i(t,b)db

=s —dx(t —I—/ ki(a)e(t,a)da

_ / 51(a)e(t,a)da— / " 8 (b)ilt, b)db
0 0

SS—Fk_li —mpG(t).
mo

Thus,

ki
limsup G, () < i—i—s—zl.
t—+oo mgo  my

From the fourth equation of system (1), we obtain
/ ko (B)i(t, b)db — (1)

Skz(i+%) — (1),

Then
k: ki
limsupv(r) < = (i + S—;) .
t—+oo H\mo my
Consequently,
Q= {(x,e,i,v) € Ry x L (0,00) x L (0,00) x R : x(t) +/ e(t,a)da
0
ki ki
+/ (t,b)db < — + =L, v(t)§—2<i+s—;), szo},

is a positively invariant set of system (1).
In the following, we use the approach introduced by Thieme [6] in order to reformulate the

system (1) with the boundary and initial conditions as an abstract Cauchy problem. To this end,

define

Z =R x L'((0,+),R) x R x L' ((0, +%),R) x R x R,
2o =R x L'((0,4e0),R) x {0} x L'((0,+),R) x {0} x R,

2 =R, x L1 ((0,400),R) x Ry x L} ((0,+%),R) x Ry x R},
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and

2o+ = 22N Zo.

Let A:Dom(A) C 2" — 2 be the linear operator defined by

X —dx
e —e' —1(a)e
0 —e(0)
A = ’
i —i' = & (b)i
0 —i(0)
% — W

with Dom(A) = R x Wh1((0, +e0),R) x {0} x WH1((0,4),R) x {0} x R, where W!! is a
Sobolev space. Define F : Zy — 2~

X s—flx,v)v
¢ 071
0 nf(x,v)v
F ) = ,
: 0,1
0 (1—n)f(x,v)v+/()°ok1 (a)e(t,a)da
, /O " ko (b)ilt, b)db
and
x(r)
e(t,.)
0
u(r) =
it,.)
0
v(7)
Rewriting system (1), we obtain the following abstract Cauchy problem:
(6) du(t) =Au(t)+F(u(t)), for t>0, with u(0)€ Zp,.

dr
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Using the results in [7, 8, 9], we have the following theorem.

Theorem 2.1. System (6) generates a unique continuous semiflow {U (t)};>0 on Zoy that is
bounded dissipative and asymptotically smooth. Furthermore, the semiflow {U(t)};>0 has a

global attractor of in Zy.1, which attracts the bounded sets of 2.

Next, we investigate the existence of equilibria of our model. Clearly, system (1) has always

one disease-free equilibrium of the form E%(x,0,0,0), where x° = 2 Let

Ny = /O " k1(a)61 (a)da and Ny = /O " ka(b)0(b)db.

Hence, we define the basic reproduction number of our model as follows

— 0
(7) 2y = 2L =N +1N)F7,0)

U

For the biological meaning, %, denotes the average number of secondary infections produced
by one infected cell during the period of infection when all cells are uninfected, and the disease-
free equilibrium EY represents the extinction of the viruses.

To find the other equilibrium of system (1), we solve the following

(8) s—dx— flx,y)y = 0,

©) L9~ siaeta)

(10) Al sy(aita),

(1) Oookz(a)i(a)da—,uv _ o,

(12) e(0) = nflxvy,

(13) i0) = (1—n)f(xv)v+ /Oookl(a)e(a)da.

By (9), (10), (12) and (13), we get
(14) e(a) =nf(x,v)voi(a), i(b)=(1-n+nNi)f(x,v)vor(b).
From (11) and (14), we have

(15) (1=n+nN1)f(x,v)N = p.
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By (8) and (15), we deduce that
No(s —dx)(1 —n+nN1)

(16) V= .
U

Substituting (16) into (15) yields

a7 Nz(l—n+nN1)f(x,N2<S—dX><1—n+nN1>) L

u

Na(s —dx)(1 =1 +1N1)

U
equilibrium if x > x°. Define a function g on the interval [0,x"] by

> 0, we have x < x°. Thus, system (1) has no biological

Since v =

gx) = Nz(l—n+nN1)f(x,N2<s_dx)(L_n+an))—u

We have g(0) = —u < 0, g(x°) = u(%y — 1) and

, of dNr(1—m+nNy)d
g(x)zNz(l—n+nN1)<a—§— 2 ZLHU l)a—]:>>o.

Hence for %y > 1, the equation g(x) = 0 has a unique solution x* € (0,x°). Then system (1)
admits a unique infection equilibrium E*(x*,e*(a),i*(b),v*) called the chronic infection equi-

librium, where x* € (0,xY), e*(a) = nf(x*,v*)v*o1(a), i(b) = (1 —n + NNy f(x*,v)v*or(b)

—dx*) (1 =
andv*:Nz(s dx")( n+nN1>‘

u
In summary, we get the following result.

Theorem 2.2. Let % be defined by Eq. (7).

(1): If Z9 < 1, then the system (1) has a unique infection-free equilibrium of the form
E%(x°,0,0,0), where x° = 2

(ii): If Zy > 1, the infection-free equilibrium E* is still present and the system (1)
has a unique chronic infection equilibrium of the form E*(x*,e*(a),i*(b),v*) with
x* € (0,x0), v = Ng(s—dx*)(li—n +T]N1), e*(a) = nf(x*,v*)v*oi(a) and i*(b) =
(L=n+nN)f(x*, v ) or (D).
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3. UNIFORM PERSISTENCE

This section investigates the uniform persistence of system (1). Let

a b
M = egmz/ e(a)ch—/ i(b)db+v>0,
0 0

and 0.4 = 2o, \ A , where

B:inf{b:/;kl(e)dezo} andc‘z:inf{a:/:kg(e)dezo}.

Theorem 3.1. 0.7 is positively invariant under the semiflow {U(t) }s>0 generated by system

XY

(%)

(6) on Zo.. Moreover, the equilibrium E° is globally asymptotically stable for
+ q

(%)

0

the semiflow {U (1) };>q restricted to d.4.

Proof. Let € d./4, we have
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( de(t,a) de(t,a)

a; + 36,1 = —61 (a)e(t,a),
di(t,b)  di(t,b) .
S S — 5 (b)ir,b),

b
:/ ky(a)i(t,a)da — puv(t),
e(1,0) = nf(x(1),v(1))v(1),
i(t,0)=(1-n)f +/ ki(a

\ e(0,a) =eo(a), i(0,b)=1ip(b), v(0)=0.

Since x(1) < x¥ for large enough time ¢, it follows that

(18) e(t,a) < é(t,a), i(t,b) <i(t,b) and v(t) < (1),
where
8é(att,a) n 8éétc;a) — _8(a)é(t,a),
di(t,b) 8f(t D)
K = ~&:(b)i(1.b).
(19) / ky(a)i(t,a)da — uo(t),
&(t,0) = nf(x?,0)9(r),
i(1,0) = 9(0)+ [ k(e
\ é(0,a) = ep(a), 1(0,b) =io(b), »(0)=0.
This yields that
00, ) {nﬂoO)O a)oi(a), 0<a<t
e(t,a G]( )
eo(a—t)Gl(a_t), 0<t<a
end
o .b) [(1=m)f(x2,0)9(t = b) + M(r = b)]oa(b), 0<b<t
i(t,b) =
io(b—t) aizb(li)t) 0<t<b
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where
. t—b oo
Mt —b) =n£(:°,0) /O ki(a)i(—b—a)oi(a)da+ | ki(@)ola—1+ b)m(j_—%da.
From the third equation of (19) and Egs. (20), (21), we have
( dA t
% =(1- n)f(xO,O)/O ko(D)V(t —b)oa(b)db + F,(t) — uv(t)
t t—b
L0 f(°,0) / ko (b) / k1(a)9(t — b— a) oy (a)dacy (b)db
(22) 0 0 @
! e . o1 (a
+/() k2 (b) /tb k1 (61)6()(61 —t+ b)mdacz (b)db,
\ v(0) =0,
where

(1) = /t+ook(a)io(a—t) ola)_u,

o(a—t)
According to (ki(a),k2(a)) € (LT((0,4e<),R) \ {OLw})z, we can obtain that F,(z) = 0 and
= pki(a)éo(a—1+ b)m(%(flb)da = 0 for all # > 0. Then system (22) has a unique solution
9(t) = 0. It follows from (20) and (21) that (é(t,a),i(t,a)) = (0,0) for¢ > a. Fort < a,, we get

A Gl(a) .
Jete.alls =|feofa—0) T Cs | < e eol
L
and
2 . 62((1) — .
il = |iota— g 2 2| <o il
L

which means that (é(z,a),i(t,a)) — (0,0) as t — co. From (18), we know that (e(z,a),i(t,a)) —
(0,0) and v(t) = 0 as t — oo. Thus, we can show that x(¢) — x” as t — oo from the first equation

of system (1). O

Next, we use the method of Magal et al. [10] in order to prove the following result of the

uniform persistence.

Theorem 3.2. Suppose that Zy > 1, the semiflow {U (t)},;>0 generated by system (6) is uni-
formly persistent with respect to the pair (0.4 ,.#), that is, there exists € > 0 such that for
eachy e M,

liminfd (U (t)y,d.4) > e.

f—oo

Furthermore, the semiflow {U (t)};>0 has a compact global attractor <ty C M .
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Proof. Since the equilibrium E° is globally asymptotically stable in oM, by

Theorem 4.2 in [11], we only need to show

WS(EO .4 =0,
where
WS(E%) = {y € Zos: lim U(t)y = EO}.
Assume by contradiction that for each n > 0, there exists
X0

n
€

N 1
Yn = G{yE///:HEO—yHg;}

such that

1
IE?=U(t)ya| < =, Vt>0.
n

Let
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Then, we can get

1, 1
') = <= () -0l < -

n

1 N
This implies that x° — — > 0 for large enough n > 0. For the given n, there exists 7 > 0 such that
n

for all r > 7, we get

1 1
<) <%+ =, 0<v(n) <
n n

S| =

Applying comparison principle and

e'(t,a) > nf(X"(t —a)v'(t —a)V'(t — a)oi(a),

>nf (¥ 10)e- ajonla)

and
"(1,0) > [(1=n) f(X"(t —b) V' (t —b) V' (1 —b) +M(t — b)| 02(D),
> (1= (3012 - b))
inf (xo _ % %) /Owk] ()01 (@' (i — b— a)dacn(b),
we obtain

Vi) <V,

where " (¢) is a solution of the following system

)
nn

( %t(t) ={1-n)f <X0—1 1) /Oookz(b)Gz(b)\?"(t—b)db

+nf <x0 — 1, 1) /Oookz(b)cz(b) /Owkl (b)o1(b)V"(t — b — a)dadb

nn

—uv(t),

When "(0) = 0, we have ¥*(¢) > 0. Thus, without loss of generality, we take #"(0) > 0. If

%y > 1, then we can choose the large enough n such that

11
N2(1—77+77N1)f( O—;,Z) > U.

From Lemma 3.5 of Browne and Pilyugin [12], we conclude that V*(z) is unbounded. Since

V' (t) <V*(t), we obtain that v"(¢) is unbounded. This is a contradiction with the boundedness
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of v'(t). Hence, W*(E®) N.# = 0. By the results of [13], we show that {U (¢)};>0 is uniformly

persistent and there exists a compact set <% C .# which is a global attractor for {U(t)};>o. [

4. STABILITY ANALYSIS

In this section, we study the local and global stability of equilibria of system (1).

4.1. Local stability.

Theorem 4.1. The infection-free steady state E° is locally asymptotically stable if %y < 1 and

it is unstable if %y > 1.

Proof. Linearizing system (1) about E® and defining the perturbation variables

we obtain
( dx
10 _ i)~ 1.0 ),
8618(?61) n 8618(;,61) _ _Si(a)er(t,a),
(23) . .
8115;19) n alla(lc‘;b) _ —5(b)i1 (l‘,b),
d .
\ "ét(’) _ /O ka (b)i (1, b)da — vy (1),
and
el(l70> = nf(x()?())vl(t)’
(24)

i(2,0) = (1—1)£(2,0)v (£) +/O°°k1 (@)e1 (t,a)da.

Look for non-trivial solutions of (23) and (24) of the form

(25) xi(t) =cre,  ei(t,a) =€V (a)e*, ii(t,b) = (b)eM, vi(t) = creM.
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Substituting (25) into (23) and (24), it follows that

;

(A +d)er = —f(x°,0)ca,
del(a)

a—a = —(ﬂ, + 04 (a))e(l)(a)’
i (b) :
, 5 = (A &0)H0),

(e = [ la®)i(b),
0
(0) = nf(x,0)c2,

0(0) = (1— n)f(xO,O)cz—I—/ookl (@)e0(a)da.
0

\

Integrating the second and third equation of (26) yields

) &(a) = Y(0)e  (-+310040 2 — 8(0)e I (+:(0)d0,

We derive from the fifth and sixth equation of (26) and (27) that
() = N f(x°,0)cpe i (A+81(6))a6
(28) b
0(b) = £(x°,0)e2 [1— 1+ NNy (A)] e~ 0 (A+E(0))d0,

Substituting e(l)(a) and i(l) (b) into the fourth equation of (26), we obtain the characteristic equa-

tion

A+p N 1—-n+nN, >
29 : - — % | =0,
) ( LN T
where

(oo}

Ni(A) = /0 ki(a)oy(a)e **da and Ny(L) = /Owkz(a)cz(a)e_lada.

We claim that if Z < 1, all roots of equation (29) have negative real parts. Otherwise, equation

(29) has at least one root satisfying Re(A) > 0, in this case

1—
Fy — ’7L+H N> n+nh ‘

po N2(A)1=n+nNi(4)
’)H_HH N> H 1—n+nN; '
po [ |N2(A) ]| 1=n+nNi ()

> 1.
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It condradicts with Zy < 1. Therefore, all roots of equation (29) have negative real parts.

Therefore, E° is locally asymptotically stable if %y < 1 and it is unstable if % > 1. U

Next, we investigate the local and global stability of the chronic infection equilibrium E* by

assuming that %, > 1 and the incidence function f satisfies the following hypothesis

H: fe) 402 g; )

>0, forallx>0andv>0.

Theorem 4.2. Assume %y > 1 and (Hy) holds, then the chronic infection equilibrium E* is

locally asymptotically stable.

Proof. Linearizing system (1) about E* and defining the perturbation variables

x(t) =x(t) —x*, i(t,a) =i(t,a)—i*(a), wa(t)=v(t)—v", wa(t)=w(t)—w",

we obtain
( d 0 *’ * *a *, * .
x;t(t) — _(d+v* f(;xv ))xz(l‘)— (V %—Ff(x v ))Vz(l‘),
des(t,a) N des(t,a) _ S (a)ealt.a)
R T
n(t, (7, _ .
2 CELD) 5 (b)in(r, ),
d oo
| v;t(l) _ /0 ka(b)ia (t,b)db — wva (1),
and
’ If (", v7) If (x*,v")

t.0) =y 0 ) (a— +f(x*,V*)>Vz(t),

G iy(,0) = (1 - @xza)m—n>(v*@+f<x*,v*>)vz<r>
/Iq a)er(t,a)d

Look for non-trivial solutions of (30) and (31) of the form

(32) () =cre?, ext,a) =eY(a)e*, ir(t,b) =id(b)eM, va(t) = creM.

By using a similar method to the proof of Theorem 4.1, we obtain the characteristic equation
(33)

A+pu _ l—l—d (Nz(l)(l—rH_an()L))) (f(x*,v*)—i— w?f(;vv )) Ly
H 7L+d—|—v* (x V) Nz(l—T[—}—an) f(X*,V*) ’
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where

Ni(A) = /O " ki (a)0y (a)e2da and Na(A) = /O " ka(@)0s(a)e M da.

If Re(A) > 0, then we obtain

’/H-u

=1
u

‘( A+d )(Nz(it)(l—n+nN1(/l))>(f(xT,VT)TLVTm)'

A+d+v>{af(§£v">f) N2(1—TI+T]N1) f(XT,VT)
4 No(AV (1 — Ni(A * % « Of (1))
_ +d ‘ 2(A) (1= +nNi( ))Hf(xla‘ﬁ)‘”l v <1
Atd+vi2BRR ] Ma(l-n+0M) FOiovi) |

which is a contradiction to (33). This implies that the chronic infection equilibrium E* is locally

asymptotically stable. 0

4.2. Global stability.

Theorem 4.3. The infection-free equilibrium E° of system (1) is globally asymptotically stable
if % < 1.

Proof. Considering Lyapunov functional

_ W F(0,0)  Nf60,0) [+
L) = x) == [ ae = /O o (a)e(t,a)da
XO o XO

where

ou(a) = /Mkl(e)eff‘sl@dide and o (b) = Amkz(g)efb9&<5>d§d9,

Note that o (0) = N; and a(0) = N,. Further, o (a) and ap(a) is bounded and its derivative

satisfies

oy (a) = 8 (a)ot (a) — ki (a) and 0 (a) = & (a) o (a) — ka(a).
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Calculating the time derivative of Ly(z) along the solution of system (1)

dLo(1) f(x,0)\ dx(t)  Npf(x,0) [= de(t,a)
c(l)t a (l_f(x,0)> dt : u /()a1<a) ot da

f(x2,0) [ di(t,b) F(x0,0) dv(r)
v R /Oaz(b) G+

— (1 - J;(g;—()”oo))> (s—dx—f(x,v)v)

— W/Owal(a)<aeéza) —|—e(t,a)>da

_ w /w a0 (a) (aigbb) +i(t,b))db

+

i(t,b)db — £(x°,0).

Using integration by parts and s = dx*, we get
dLo(1) 0 X f(x°,0)
= dx'(1- 1— Hy— 1
P X 0 76.0) +f(x,v)v( 0 )

Since the function f(x,v) is strictly monotonically increasing with respect to x and decreasing

w2

function with respect to v, we have
0
=5 (1= 2920 g ang 59 <,
x0 f(x,0) f(x,0)

<0 for Zy < 1. Further, it is easy to show that the largest invariant set where

dv(t)
dr

Therefore,
dLo(1)
dt
disease-free equilibrium E 0is globally asymptotically stable for Z, < 1. ]

= 0 is the singleton {E°}. By the Lyapunov-LaSalle asymptotic stability theorem, the

Theorem 4.4. Assume %y > 1 and (Hy) holds, then the chronic infection equilibrium E* is

globally asymptotically stable.

Proof. From Theorem 3.2, let u(r) = { (x(¢), e(t,a),i(t,b),O,v(t))T}th C ./ be a given entire
solution of U (). It remains to prove that <% = {u*}. Similar to the proof of Lemma 3.6 and

Claim 5.3 in [14], we know that there exist A; > 0 and A, > O such that

Ap <x(t) <Ay, Ap<e(t,a) <Ay, A <i(t,h) <Ay, A <(t) <A,
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forallt € R and a,b > 0. Now, we consider the following Lyapunov functional
0 fO ) o Naf (V) e e(t,a)
Li(t) = x(t)—x"— 2do + ’ / oi(a)e’(a ( . )da
1( ) ( ) - f(G,v*) m 0 1( ) ( )(P

Jrf(x:;v*) /Ooo az(b)i*(b)(P(iiit(,:))>db+f(x:v*)v*(l,(vv(i)),

where ¢(x) = x—1—Inx, x € RT. Obviously, ¢ : Rt — R attains its strict global minimum
atx= 1 and ¢(1) = 0. Calculating the time derivative of L (¢) along the solution of system (1),

we have

0 - (182 ()

_w[ (xl(a)<1— ¢(@) ) (aeéi’l“) +51(a)e(t,a))da

m e(t,a)
f <x_: [ a) (1 _ iigtfl;)) (‘9 b +62(b>i<t,b>>db

ﬁ% <1 _ %) (/Omk(a)i(t,a)da _ uv) .

Further, we have

dLit) _ dx*<1—i> (1 - f(x*’v*>> —flxv)v

dt x* f(X,V*)
O (1‘ 7o) +v_*f(x,v*)>

NINZf(X*aV*) * e(t70)
RS0 ()

_w /Owkl (a)e* ()6 (e(t,a))da

Naof (V") i(t,0)
B l(o)¢<i*(0)>

fv) /Omkzw*(bm(
/0 "l (b)ilr,b)d

i(t,D)
(b) )d”
S v

u
f(X*7V*) ' - ]
L Rt /0 ka (b)i(t,b)db

+ (VW = F(XT v



20 WARRAK, LASFAR, HATTAF, YOUSFI

Recall that

(0)=i(0,1) = (1= M) (/0" )" = fle)) + [ (e (@)=

and
nf(x*,v )NIN, N (1—=n)f(x",v*)N2
u u

T o e () (R ) ];(<x>)) (o

+%e*(0)¢( ) £ V) / ol ¢(zﬁt(,£l: )db

=1.

+N2f(Z*7V )_{ <(t<0(;)l(t( )}
szx v / » < ‘;lt,(g )da
+f(xu’v )/Owk (b)it, b)db—f V)V A ko (b)i(t.b)db

+f (VW = f(x,v)w.

By using wv* = [ k(a)i* )daande() N f(x*,v*)v*, we have
S *(1 o) (- Fen
52 Lo (50

i
e ”Eb?ﬂn(viffiz?’)}db
(

+

m e (0)i(1,0) T "\ e
Nof(x*,v*) [ . e(t,a)i*(0) e(t,a)i*(0)
R e @ {1 T e@io) " (e*<a>i<r,o>>] da-

u

Note that

o - SO0). Chiao|-
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we have

- (2452
ety (1= >)+ =)

S5 oo [p(55) o (5w - ()]
- (152) [uoron(S5EG

sz( )/ (@)e* (@) ((())((;)

Since £(x,v) is strictly monotonically increasing with respect to x, we have

(1-5) (-F) =0

According to (H3) and (Hy4), we have

1+f(x,v*) +1M_ (1_ fx,v) ) <f(x,v*) 1) <o.

vi fley) vt flet) VAV E R
dL](t)

Since ¢ (x) > 0 for x > 0, we have

< 0. Therefore, L;(¢) is a bounded and decreasing

dt
map. Arguing similarly as the end of the proof of Theorem 2.2(i) in Demasse and Ducrot
[14], we get u(t) = u*, i.e., o = {u*}. By using Theorem 4.2, we deduce that E* is globally
asymptotically stable. 0

5. APPLICATION

In this section, we apply our main results to the following age-structured viral infection model

with Hattaf-Yousfi functional response:

(& _ s—dx(t) — Bx(t)v(t)
v oo -+ (1) + 0v(t) + asx(t)v(r)’
de(t,a) de(t,a)
(34) o T Toa T —0di(a)e(t,a),
8i(l,b) 81'(;’[)) B .
ot ob —&(b)i(t,b),
\ d‘(}i(tt) :/0 kz(b)i(lab)db—,uv(t),
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where 0, 01, 0,03 > 0 are the saturation factors measuring the psychological or inhibitory
effect and B > 0 is the infection coefficient. The other parameters have the same biological

meanings as those in (1). The boundary condition is as follows:

e Bl
(35) ’ (X0+(X1x(l)+azv(t)—|—a3x( ) (
T g oux(r) + onv(t )+oc3x 1

The initial conditions of system (34) are similar to that of system (1). Further, the incidence

rate of infection is modeled by Hattaf-Yousfi functional response [15] of the form f(x,v) =
Bx

O + 01 x + Ov + Ozxv

literature. For example, when oy = 1 and a; = op = o3 = 0, we get the model of Wang and

Dong [5].

. Moreover, system (34) includes many special cases existing in the

On the other hand, it is not hard to see that the Hattaf-Yousfi functional response satisfies the

three hypotheses (H1)-(H3), In addition, we have

df(x,v) _ B(ao+ aux)
Flav) v v (ao+ ox+ oy + azx)? = 0.

Hence, the hypothesis (Hy) is satisfied. From (7), the basic reproduction number of system (34)

is given by

> No(1—n+nN1)Bs
36 Ry = :
(36) 0 w(apd + oy s)

By applying Theorems 4.3 and 4.4, we obtain the following corollary.

Corollary 5.1.

(): If %o < 1, then the infection-free equilibrium E of system (34) is globally asymptoti-
cally stable.
(ii): If Zy > 1, then the infection-free equilibrium E° becomes unstable and the chronic

infection equilibrium E* of system (34) is globally asymptotically stable.
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