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Abstract. In this research, we propose an SEIS epidemic model with immigration and nonlinear incidence rates,

considering the impact of infectious forces in both the latent and infected periods. The local dynamics of an

endemic equilibrium is examined. Using a suitable Lyapunov functional, we established the global asymptotic

stability of the endemic equilibrium. For the SEIS model without immigration, we calculate the basic reproduction

number and establish the global stability of equilibria by means of Lyapunov functionals. Finally, two examples

with numerical simulations are given to illustrate the validity of our results.
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1. INTRODUCTION

Humans are exposed to a variety of infectious diseases, such as the coronavirus (Covid-19)

that emerged in a Chinese city in 2019. Covid-19 is an infectious disease caused by the SARS-

CoV-2 virus and the severe acute respiratory condition that leads to this dangerous disease.

Covid-19 can be spread from one person to another [1]. Mathematicians and epidemiologists

concentrated their efforts on developing mathematical models that could predict the emergence

of these undesirable infectious diseases.
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Some infections, such as AIDS, measles, TB, and Covid-19, have a latency or incubation

phase during which an individual is infected but not infectious. Covid-19, for example, has

a latency period of about 5-6 days [2]. This latency can be represented by the creation of a

new class, the exposed class, in which the susceptible individual stays for some time before

becoming infected. The resulting models are those of SEI [3], SEIS [4], SEIR [5], SEIRI [6],

or SEIRS [7].

The means of transporting people from one place to another have considerably progressed in

the modern world. This development was accompanied by a significant increase in the number

of immigrants. As a result, certain immigrants may be infected by contagious diseases upon

their arrival.

Motivated by the previous discussions, we formulate and study the following SEIS model

with immigration and nonlinear incidence rates that represents the infectious force in both the

latent and infected periods. As a result, we’ll concentrate our study on the following epidemic

model:

(1)



dS
dt

= TS +A−µSS−Sh1(I)−Sh2(E)+δ I

dE
dt

= TE +Sh1(I)+Sh2(E)− (µE + γ)E

dI
dt

= TI + γE− (µI +δ )I,

where the variable S denotes the number of susceptible individuals, E denotes the number

of exposed individuals, and I is for the number of infected individuals, A is the rate that

individuals enter the susceptible class. TS, TE , and TI are the recruitment rates into the classes

S, E, and I through immigration, respectively. δ denotes the rate of transmission from the

infectious class to the susceptible class. γ is the rate of transmission from the exposed class to

the infected class. Hence, 1
γ

represents the average latent period. Individuals with per capita

death rates µS, µE and µI leave the susceptible, exposed, and infected classes, respectively. We

assume that A,µS,µE ,µI,TS,TE ,TI,γ,δ > 0.

We associate the above system with nonnegative initial conditions S(0), E(0), and I(0).

We pose AS = TS +A in all of the following.
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To investigate the dynamics of the model (1), we enumerate some hypotheses over the func-

tions h1 and h2, as follows:

(H0) The functions hi (i = 1, 2) are continuously differentiable on R+;

(H1) h′i(x)≥ 0 for all x ∈ R+, with hi(0) = 0;

(H2)
hi(x)

x
is monotone decreasing on R+.

This article is organized as follows. In Section ‘Basic properties and equilibria’, we give

some fundamental properties and propositions that are needed for this work. Moreover, we es-

tablished the existence of an endemic equilibrium for the model (1) . In Section ‘Local stability

of the endemic equilibrium’, we investigate the local stability of the model (1). The global

asymptotic stability of the unique endemic equilibrium is discussed in Section ‘Global stability

and the uniqueness of the endemic equilibrium’. In Section ‘Analysis of system (1) in the case

of TS = TE = TI = 0’ the model (1) without immigration is presented. Firstly, we calculate the

basic reproduction number and prove the existence and uniqueness of two equilibrium points,

the disease free and endemic equilibrium points. We have shown the global asymptotic stability

of the first one. Furthermore, the global stability of the endemic equilibrium is proved by using

a suitable Lyapunov function. Finally, in the last Section ‘Numerical Simulations’, we present

some numerical simulations to verify our theoretical results.

2. BASIC PROPERTIES AND EQUILIBRIA

Proposition 1. 0 < hi(x)
x ≤ h′i(0) for all x > 0.

Proof. This result can be clearly seen using the hypotheses (H1)-(H2).

The feasible region for the system (1) is given by

Ψ =

{
(S,E, I) : S≥ 0,E ≥ 0, I ≥ 0 | S+E + I ≤ T

µ

}
,

where µ = min{µS,µE ,µI} and T = AS +TE +TI.

Proposition 2. Ψ is positively invariant with respect to system (1).
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Proof. Let S, E and I be the solutions of model (1) and (S(0),E(0), I(0)) ∈Ψ the initial condi-

tion of the system (1).

In system (1), we add the three equations to get the total population size as

N = S+E + I,

taking the derivative of N with respect to t, we have:

dN
dt
≤ T −µN.

Let

(2)
dN
dt

+µN ≤ T.

Multiplying both sides of equation (2) by eµt , we get

(3) d[Neµt ]≤ Teµtdt.

Integrating both sides, we have

(4) N =
T
µ
+Ce−µt

At t = 0, we have N(0)≤ T
µ
+C, which implies

(5) N(0)− T
µ
≤C,

then

(6) N ≤ T
µ
(1− e−µt)+N(0)e−µt .

When t→+∞, N converges to T
µ
.

Remark 1. There is no disease-free equilibrium in the model (1). This is given by the fact

that
(dE

dt +
dI
dt

)
E=I=0 = TE +TI > 0. There is no basic reproduction number since there is no

disease-free equilibrium [8].

Proposition 3. For system (1), there exists an endemic equilibrium designated (S∗,E∗, I∗).
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Proof. Let the right sides of the three differential equations in system (1) be zeros, that is,

(7)


AS−µSS−Sh1(I)−Sh2(E)+δ I = 0,

TE +Sh1(I)+Sh2(E)− (µE + γ)E = 0,

TI + γE− (µI +δ )I = 0.

Then the equilibrium of system (1) satisfies system (7).

From the third equation of (7), we get

E∗ =
1
γ
((µI +δ )I∗−TI).

And summing the first two equations of the system gives

S∗ =
1

µSγ
(γAS + γTE + γδ I∗− (µE + γ)(µI +δ )I∗+(µE + γ)TI).

We define the function ℑ as follow

ℑ(I∗) = −TE − 1
µSγ

(γAS + γTE + γδ I∗− (µE + γ)(µI +δ )I∗+(µE + γ)TI)h1(I∗)

− 1
µSγ

(γAS + γTE + γδ I∗− (µE + γ)(µI +δ )I∗+(µE + γ)TI)h2(
1
γ
((µI +δ )I∗−TI))

+ (µE+γ)
γ

((µI +δ )I∗−TI).

We have ℑ( TI
µI+δ

) = −TE − 1
µS
(AS +TE + δTI

µI+δ
)h1(

TI
µI+δ

) ≤ 0, for a chosen I∗, in such a way

that S∗ = 0, we get I∗ =
γAS+γTE+(γ+µE)TI
(µI+δ )(γ+µE)−γδ

, then ℑ(I∗) =−TE +(γ +µE)E∗. Since, I∗ ≥ ( TE γ

µE+γ
+

TI)
1

µI+δ
. Thus, ℑ(I∗)≥ 0, which prove that an endemic equilibrium exists.

The uniqueness is exhibited in section 4.

3. LOCAL STABILITY OF THE ENDEMIC EQUILIBRIUM

Theorem 3.1. The equilibrium (S∗,E∗, I∗) of model (1) is locally asymptotically stable.

Proof. When the Jacobian matrix of system (1) is evaluated at the positive equilibrium

(S∗,E∗, I∗), we get
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(8) J(S∗,E∗, I∗) =


−µS−h1(I∗)−h2(E∗) −S∗h′2(E∗) −S∗h′1(I∗)+δ

h1(I∗)+h2(E∗) S∗h′2(E∗)− (µE + γ) S∗h′1(I∗)

0 γ −(µI +δ )


The characteristic equation of J(S∗,E∗, I∗) is given by

(9) λ
3 +K2λ

2 +K1λ +K0 = 0,

where

K2 = µS +h1(I∗)+h2(E∗)+(µI +δ )+
TE

E∗
+S∗

(
h2(E∗)

E∗
−h′2(E∗)

)
+S∗

h1(I∗)
E∗

,

K1 = ((µI +δ )+(µE + γ))(h1(I∗)+h2(E∗))+µS((µI +δ )+S∗

(
h2(E∗)

E∗
−h′2(E∗)

)
+ γS∗

((
TI

γE∗
+1
)

h1(I∗)
I∗
−h′1(I∗)

)
+(µI +δ )S∗

(
h2(E∗)

E∗
−h′2(E∗)

)
+(µS +µI +δ )

TE

E∗
+µSS∗

h1(I∗)
E∗

,

and

K0 = ((µI +δ )(µE + γ)−δγ)(h1(I∗)+h2(E∗))+µS(µI +δ )S∗

(
h2(E∗)

E∗
−h′2(E∗)

)
+µSγS∗

((
TI

γE∗
+1
)

h1(I∗)
I∗
−h′1(I∗)

)
+µS(µI +δ )

TE

E∗
.

Using (H2),
hi(x)

x is monotone decreasing on R+, so
(

hi(x)
x

)′
≤ 0, hence hi(x)

x − (hi(x))
′ ≥ 0 for

all x≥ 0. And we have (µI +δ )(µE +γ)−δγ = µIµE +µIγ+δ µE > 0. Then it is easy to verify

that K2 > 0,K1 > 0,K0 > 0 and K2K1 > K0. Therefore, by the Routh-Hurwitz criterion, the

eigenvalues of (9) all have negative real part, and hence the equilibrium is locally asymptotically

stable.

4. GLOBAL STABILITY AND THE UNIQUENESS OF THE ENDEMIC EQUILIBRIUM

Theorem 4.1. If µSS∗−δ I∗ ≥ 0, the endemic equilibrium (S∗,E∗, I∗) of system (1) is globally

asymptotically stable in the case of µS = µE .
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Proof. Let us consider the Lyapunov function Y , defined as follows:

Y = Y1 +Y2,

where

Y1 = S∗l(
S
S∗

)+E∗l(
E
E∗

)+
S∗h1(I∗)

γE∗
I∗l(

I
I∗
),

and

Y2 =
δ

γS∗

(I− I∗)2

2
+

δ

(µS +µI)S∗

(S+E + I−S∗−E∗− I∗)2

2
.

with l(x) =−1+ x− lnx, for all x > 0.

The differentiation of Y1 with respect to t is:

dY1

dt
=

(
1− S∗

S

)
S′+

(
1− E∗

E

)
E ′+

S∗h1(I∗)
γE∗

(
1− I∗

I

)
I′

=

(
1− S∗

S

)
(−µS(S−S∗)+S∗h1(I∗)−Sh1(I)+S∗h2(E∗)−Sh2(E)+δ (I− I∗))

+

(
1− E∗

E

)
(TE +Sh1(I)+Sh2(E)− (µE + γ)E)

+
S∗h1(I∗)

γE∗

(
1− I∗

I

)
(TI + γE− (µI +δ )I)

=−µS
(S−S∗)2

S
+S∗h1(I∗)

(
1− S∗

S
− Sh1(I)

S∗h1(I∗)
+

h1(I)
h1(I∗)

)
+S∗h2(E∗)

(
1− S∗

S
− Sh2(E)

S∗h2(E∗)
+

h2(E)
h2(E∗)

)
+δ

(
1− S∗

S

)
(I− I∗)

+

(
1− E∗

E

)(
TE

(
1− E

E∗

)
+Sh1(I)−S∗h1(I∗)

E
E∗

+Sh2(E)−S∗h2(E∗)
E
E∗

)
+

S∗h1(I∗)
γE∗

(
1− I∗

I

)(
TI

(
1− I

I∗

)
+ γE∗

(
E
E∗
− I

I∗

))
=−µS

(S−S∗)2

S
−TE

(E−E∗)2

EE∗
−TI

S∗h1(I∗)
γE∗

(I− I∗)2

II∗
+δ

(
1− S∗

S

)
(I− I∗)

+S∗h1(I∗)
(

1− S∗
S
− Sh1(I)

S∗h1(I∗)
+

h1(I)
h1(I∗)

)
+S∗h1(I∗)

(
1− E

E∗
+

Sh1(I)
S∗h1(I∗)

− Sh1(I)E∗
S∗h1(I∗)E

)
+S∗h1(I∗)

(
E
E∗
− I

I∗
− I∗E

IE∗
+1
)
+S∗h2(E∗)

(
1− S∗

S
− Sh2(E)

S∗h2(E∗)
+

h2(E)
h2(E∗)

)
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+S∗h2(E∗)
(

1− E
E∗

+
Sh2(E)

S∗h2(E∗)
− Sh2(E)E∗

S∗h2(E∗)E

)
.

Then, we have that

dY1

dt
=−µS

(S−S∗)2

S
−TE

(E−E∗)2

EE∗
−TI

S∗h1(I∗)
γE∗

(I− I∗)2

II∗

+S∗h1(I∗)
((
−1+

h1(I)
h1(I∗)

− I
I∗
+

Ih1(I∗)
I∗h1(I)

)
+

(
4− I∗E

IE∗
− S∗

S
− Sh1(I)E∗

S∗h1(I∗)E
− Ih1(I∗)

I∗h1(I)

))
+S∗h2(E∗)

((
−1+

h2(E)
h2(E∗)

− E
E∗

+
Eh2(E∗)
E∗h2(E)

)
+

(
3− S∗

S
− SE∗h2(E)

S∗Eh2(E∗)
− Eh2(E∗)

E∗h2(E)

))
+δ (I− I∗)

(
1− S∗

S

)
.

The differentiation of Y2 with respect to t is:

dY2

dt
=

δ

γS∗
(I− I∗)(TI + γE− (µI +δ )I)

+
δ

(µS +µI)S∗
(S−S∗+E−E∗+ I− I∗)(−µS(S−S∗)−µE(E−E∗)−µI(I− I∗))

If µS = µE , we have

dY2

dt
=

δ

S∗
(I− I∗)(E−E∗)−

δ (µI +δ )

γS∗
(I− I∗)2− µIδ

(µS +µI)S∗
(I− I∗)2

+
δ

(µS +µI)S∗
(−µS(S−S∗+E−E∗)2− (µS +µI)((S−S∗)(I− I∗)+(E−E∗)(I− I∗))

=− δ (µI +δ )

γS∗
(I− I∗)2− µIδ

(µS +µI)S∗
(I− I∗)2− µSδ

(µS +µI)S∗
(S−S∗+E−E∗)2

−δ (
S
S∗
−1)(I− I∗).

The result of adding these two functions is then

dY

dt
=− ((µSS∗−δ I∗)+δ I)

(S−S∗)2

SS∗
−TE

(E−E∗)2

EE∗
−TI

S∗h1(I∗)
γE∗

(I− I∗)2

II∗

− δ

S∗
(
1
γ
+

µI

µS +µI
)(I− I∗)2− µSδ

(µS +µI)S∗
(S−S∗+E−E∗)2

+S∗h1(I∗)
((
−1+

h1(I)
h1(I∗)

− I
I∗
+

Ih1(I∗)
I∗h1(I)

)
+

(
4− I∗E

IE∗
− S∗

S
− Sh1(I)E∗

S∗h1(I∗)E
− Ih1(I∗)

I∗h1(I)

))
+S∗h2(E∗)

((
−1+

h2(E)
h2(E∗)

− E
E∗

+
Eh2(E∗)
E∗h2(E)

)
+

(
3− S∗

S
− SE∗h2(E)

S∗Eh2(E∗)
− Eh2(E∗)

E∗h2(E)

))
.
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Using the hypotheses (H1) and (H2), we obtain

−1+
h1(I)
h1(I∗)

− I
I∗
+

Ih1(I∗)
I∗h1(I)

=
1
I∗

(
I∗

h1(I∗)
− I

h1(I)

)
(h1(I)−h1(I∗))≤ 0,

−1+
h2(E)
h2(E∗)

− E
E∗

+
Eh2(E∗)
E∗h2(E)

=
1

E∗

(
E∗

h2(E∗)
− E

h2(E)

)
(h2(E)−h2(E∗))≤ 0,

by the expression of l and properties of logarithms, we have

4− I∗E
IE∗
− S∗

S
− Sh1(I)E∗

S∗h1(I∗)E
− Ih1(I∗)

I∗h1(I)
≤ 0,

3− S∗
S
− SE∗h2(E)

S∗Eh2(E)
− Eh2(E∗)

E∗h2(E)
≤ 0,

That is dY
dt ≤ 0 for all S,E, I≥ 0. Furthermore, the singleton {(S∗,E∗, I∗)} is the largest compact

invariant region in
{
(S,E, I) : (S,E, I) ∈ R3

+,
dY
dt = 0

}
. Then we conclude that the equilibrium

(S∗,E∗, I∗) of system (1) is globally asymptotically stable by applying LaSalle’s invariance

principle [9]. The uniqueness can be asserted using the fact that dY
dt = 0 has only one solution

S = S∗.

5. ANALYSIS OF SYSTEM (1) IN THE CASE OF TS = TE = TI = 0

In this section, we shall investigate the existence and the global stability of the equilibria of

system (1) in the case of TS = TE = TI = 0 and µS = µE = µI = µ . Let us consider the following

system:

(10)



dS
dt

= A−µS−Sh1(I)−Sh2(E)+δ I

dE
dt

= Sh1(I)+Sh2(E)− (µ + γ)E

dI
dt

= γE− (µ +δ )I.

System (10) always has a disease-free equilibrium E0(S0,0,0), where S0 = A
µ

. According to

van den Driessche and Watmough’s [10] definition of the basic reproduction number for ODE

systems, the basic reproduction number for system (10) is

R0 = S0
γh′1(0)+(µ +δ )h′2(0)

(µ + γ)(µ +δ )
.

Proposition 4. For system (10), there exists a unique endemic equilibrium designated

(S∗∗,E∗∗, I∗∗) if and only if R0 > 1.
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Proof. Let R0 > 1. At an endemic state, system (10) becomes:

(11)


A−µS−Sh1(I)−Sh2(E)+δ I = 0

Sh1(I)+Sh2(E)− (µ + γ)E = 0

γE− (µ +δ )I = 0,

The third equation of system (11), gives

(12) E =
(µ +δ )

γ
I.

Moreover, by adding the three equations of the system (11), we see that

(13) S =
A−ωI

µ
,

where ω = µ(µ+δ )
γ

+ µ . And S ≥ 0 implies that I ∈
(
0, A

ω

]
. As a result, if I ≥ A

ω
, there is no

positive equilibrium. And it follows from the second equation of (11) and equation (12) that

(14) S =
(µ + γ)(µ +δ )

γ

1

h1(I)
I +

h2(
(µ+δ )

γ
I)

I

,

As a result of equations (13) and (14), we define the function H as follow:

(15) H(I) = A−ωI− µ(µ + γ)(µ +δ )

γ

1

h1(I)
I +

h2(
(µ+δ )

γ
I)

I

, I ∈
(

0,
A
ω

]
.

Unsig the hypothesis (H2), we get the the function H is strictly monotone decreasing on
(
0, A

ω

]
with

lim
I→0+

H(I) = A− µ(µ + γ)(µ +δ )

γ

1

h′1(0)+
(µ+δ )

γ
h′2(0)

= A
(

1− 1
R0

)
> 0,

and H( A
ω
)< 0. Thus, there is only one endemic equilibrium if R0 > 1.

Now, we discuss the global stability of the equilibria in model (10). Let us consider the

stability of disease-free equilibrium E0(S0,0,0) first.

Theorem 5.1. If R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. We define the following Lyapunov function as:

L = L1 +L2,
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where

L1 = S0l(
S
S0

)+E +
(µ + γ)h′1(0)

γh′1(0)+(µ +δ )h′2(0)
I,

L2 =
δ

γS0

I2

2
+

δ

2µS0

(S−S0 +E + I)2

2
,

l(x) =−1+ x− lnx, for all x > 0.

The differentiation of L1 with respect to t is:

dL1

dt
=

(
1− S0

S

)
S′+E ′+

(µ + γ)h′1(0)
γh′1(0)+(µ +δ )h′2(0)

I′

=

(
1− S0

S

)
(A−µS−Sh1(I)−Sh2(E)+δ I)+(Sh1(I)+Sh2(E)− (µ + γ)E)

+
(µ + γ)h′1(0)

γh′1(0)+(µ +δ )h′2(0)
(γE− (µ +δ )I)

=−µ
(S−S0)

2

S
+(h1(I)+h2(E))S0−

(µ + γ)(µ +δ )

γh′1(0)+(µ +δ )h′2(0)
(h′1(0)I +h′2(0)E)

+δ I
(

1− S0

S

)
,

and

dL2

dt
=

δ

γS0
I(γE− (µ +δ )I)

+
δ

2µS0
(−µ(S−S0 +E)2−µI2−2µI(S−S0)−2µEI)

=− δ

S0

(
µ +δ

γ
+

1
2

)
I2− δ

2S0
(S−S0 +E)2−δ I(

S
S0
−1).

Then

dL
dt

=−µ
(S−S0)

2

S
− δ

S0

(
µ +δ

γ
+

1
2

)
I2− δ

2S0
(S−S0 +E)2−δ I

(S−S0)
2

SS0

+(h1(I)+h2(E))S0−
(µ + γ)(µ +δ )

γh′1(0)+(µ +δ )h′2(0)
(h′1(0)I +h′2(0)E).

Using Proposition 1, we get that h1(I)≤ h′1(0)I and h2(E)≤ h′2(0)E. Then

dL
dt
≤− µS0 +δ

SS0
(S−S0)

2− δ

S0

(
µ +δ

γ
+

1
2

)
I2− δ

2S0
(S−S0 +E)2

+S0(h′1(0)I +h′2(0)E)
(

1− 1
R0

)
,
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since R0 ≤ 1, then dL
dt ≤ 0. Furthermore, the singleton E0 represents the largest compact in-

variant region in
{
(S,E, I) : S≥ 0,E ≥ 0, I ≥ 0, dL

dt = 0
}

. By LaSalle’s invariance principle, we

conclude that the disease-free equilibrium E0 of system (10) is globally asymptotically stable.

Theorem 5.2. The equilibrium (S∗∗,E∗∗, I∗∗) is globally stable.

Proof. Here, we choose the following Lyapunov function:

L (t) =
1
2
(S+E + I−S∗∗−E∗∗− I∗∗)2.

The positive equilibrium (S∗∗,E∗∗, I∗∗) of the system (10) satisfies the relations:

A = µS∗∗+S∗∗h1(I∗∗)+S∗∗h2(E∗∗)−δ I∗∗, (µ + γ)E∗∗ = S∗∗h1(I∗∗)+S∗∗h2(E∗∗), (µ +δ )I∗∗ = γE∗∗,

which can be utilized in the differentiation of L with respect to t as follows

dL

dt
= (S+E + I−S∗∗−E∗∗− I∗∗)(

dS
dt

+
dE
dt

+
dI
dt

)

= (S+E + I−S∗∗−E∗∗− I∗∗)(A−µS−µE−µI)

= (S+E + I−S∗∗−E∗∗− I∗∗)(−µ(S+E + I)−µ(−S∗∗−E∗∗− I∗∗))

=−µ(S+E + I−S∗∗−E∗∗− I∗∗)2.

Then we have dL
dt ≤ 0. As a result, we deduce from the Lyapunov theorem that (S∗∗,E∗∗, I∗∗)

is globally stable.

6. NUMERICAL SIMULATION

To see the applicability of our theory, we will study two examples in this section by giving a

particular nonlinear incidence rate.

Example 1

Let us consider the following model

(16)



dS
dt

= TS +A−µSS− β1SI
1+d1I

− β2SE
1+d2E

+δ I

dE
dt

= TE +
β1SI

1+d1I
+

β2SE
1+d2E

− (µE + γ)E

dI
dt

= TI + γE− (µI +δ )I,
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with the initial conditions listed in Table 1.

S1(0) = 0 S2(0) = 200 S3(0) = 400 S4(0) = 600 S5(0) = 800

E1(0) = 0 E2(0) = 60 E3(0) = 120 E4(0) = 180 E5(0) = 240

I1(0) = 0 I2(0) = 50 I3(0) = 100 I4(0) = 150 I5(0) = 200

S6(0) = 1000 S7(0) = 1200 S8(0) = 1400 S9(0) = 1600 S10(0) = 1800

E6(0) = 300 E7(0) = 360 E8(0) = 420 E9(0) = 480 E10(0) = 540

I6(0) = 250 I7(0) = 300 I8(0) = 350 I9(0) = 400 I10(0) = 450

S11(0) = 2000 S12(0) = 2200 S13(0) = 2400 S14(0) = 2600 S15(0) = 2800

E11(0) = 600 E12(0) = 660 E13(0) = 720 E14(0) = 780 E15(0) = 840

I11(0) = 500 I12(0) = 550 I13(0) = 600 I14(0) = 650 I15(0) = 700

S16(0) = 3000 S17(0) = 3200 S18(0) = 3400 S19(0) = 3600 S20(0) = 3800

E16(0) = 900 E17(0) = 960 E18(0) = 1020 E19(0) = 1080 E20(0) = 1140

I16(0) = 750 I17(0) = 800 I18(0) = 850 I19(0) = 900 I20(0) = 950

Table 1 Initial conditions

where the parameters β1, β2, d1, and d2 are defined as follows:

β1 : is the rate of the efficient contact in infected period.

β2 : is the rate of the efficient contact in latent period.

d1,d2 : are used to evaluate the inhibitory or saturation effect.

System (16) is a particular case of model (1) by choosing h1(I) =
β1I

1+d1I and h2(E) =
β2E

1+d2E .

Hence, the hypotheses (H0)− (H2) are satisfied.

Now, we give some numerical simulations with the parameter values as shown in Table 2, in

order to show the applicability of our theoretical results.

Parameter A TS TE TI µS µE µI δ γ β1 β2 d1 d2

Value 30 40 20 10 0.02 0.02 0.03 0.01 0.04 0.02 0.03 7 9

Table 2 Parameter values for model (10)
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By calculating, we have µSS∗− δ I∗ = 51.3390 ≥ 0. And we see that after a specific pe-

riod of time, the solutions of model (16) converge to the equilibrium point (S∗,E∗, I∗) =

(3014,644.2,894.1). The unique equilibrium (S∗,E∗, I∗) is therefore globally asymptotically

stable (see Figure 4). This numerical conclusion and our primary theoretical findings are fairly

consistent.

Example 2

Consider the following system

(17)



dS
dt

= A−µS− β1SI
1+d1I

− β2SE
1+d2E

+δ I

dE
dt

=
β1SI

1+d1I
+

β2SE
1+d2E

− (µ + γ)E

dI
dt

= γE− (µ +δ )I,

with the initial conditions listed in Table 1.

Parameter A µ δ γ β1 β2 d1 d2

Value 30 0.08 0.01 0.04 0.0001 0.0002 7 9

Table 3 Parameter values for model (17)

Parameter A µ δ γ β1 β2 d1 d2

Value 30 0.02 0.01 0.04 0.02 0.03 7 9

Table 4 Parameter values for model (17)

The basic reproduction number of model (17) is

R0 =
γβ1A

µ(µ + γ)(µ +δ )
+

β2A
µ(µ + γ)

.

In order to confirm our theoretical findings, we provide some numerical simulations.

For this purpose, we take into account model (17) with the parameter values listed in Table

3, we have R0 = 0.7639≤ 1. Its can be seen clearly from Figure 5 that after a specific period of

time, the solutions of model (17) converge to the disease-free equilibrium E0 = (375,0,0). The

unique equilibrium E0 is therefore globally asymptotically stable.
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Now, we take into account the model (17) with the parameter values listed in Table 4, in

this case we have R0 = 1.4167e+ 03 ≥ 1. As a result, according to Proposition 4, model (17)

has a unique equilibrium (S∗∗,E∗∗, I∗∗). Figure 6 shows that after a specific period of time, the

solutions of model (17) converge to the equilibrium point (S∗∗,E∗∗, I∗∗) = (1209,124.6,166).

The unique equilibrium (S∗∗,E∗∗, I∗∗) is therefore globally stable.
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400
350

3000

10 300
250

4000

200
5 150

100
50

0 0

FIGURE 1. Dynamics of S the solution of system (16) with the parameter values

listed in Table 2 and initial conditions Si(0) with 1≤ i≤ 20 listed in Table 1.
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FIGURE 2. Dynamics of E the solution of system (16) with the parameter

values listed in Table 2 and initial conditions Ei(0) with 1≤ i≤ 20 listed in Table

1.
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FIGURE 3. Dynamics of I the solution of system (16) with the parameter values

listed in Table 2 and initial conditions Ii(0) with 1≤ i≤ 20 listed in Table 1.
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FIGURE 4. Dynamics of (S,E, I) the solution of system (16) with the parameter

values listed in Table 2 and initial conditions (Si(0),Ei(0), Ii(0)) with 1≤ i≤ 20

listed in Table 1.
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FIGURE 5. Dynamics of (S,E, I) the solution of system (17) with the parameter

values listed in Table 3 and initial conditions (Si(0),Ei(0), Ii(0)) with 1≤ i≤ 20

listed in Table 1.
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FIGURE 6. Dynamics of (S,E, I) the solution of system (17) with the parameter

values listed in Table 4 and initial conditions (Si(0),Ei(0), Ii(0)) with 1≤ i≤ 20

listed in Table 1.

7. CONCLUDING REMARKS

In this research, an SEIS epidemic model with immigration and nonlinear incidence rates,

considering the impact of infectious forces in both the latent and infected periods, is considered.

There is no disease-free equilibrium or basic reproduction number for this model. In fact, it

was demonstrated that models with immigration had a unique equilibrium for all parameter

values. The local asymptotic stability of the endemic equilibrium (S∗,E∗, I∗) is proved using

stability methods of differential equations. Furthermore, global asymptotic stability has been

demonstrated when µSS∗− δ I∗ ≥ 0, so that if there is an immigration of exposed or infected

people into a region, the disease will persist there and will be difficult to eradicate. Moreover,

a particular case is given when TS = TE = TI = 0. In this case, the basic reproduction number

R0 is calculated. So that the model without immigration has two equilibria: the disease-free

equilibrium E0 and the endemic equilibrium (S∗∗,E∗∗, I∗∗). It was found that if R0 ≤ 1, then

the disease-free equilibrium E0 is globally asymptotically stable, which indicates that there is

no chance for the disease to spread among the population. And if R0 > 1, the unique positive

equilibrium (S∗∗,E∗∗, I∗∗) is globally stable. Consequently, if the infection is initially present, it

will persist at its unique endemic equilibrium level. To confirm our finding, two examples are

given with numerical simulations.
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