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Abstract: In this research, we developed model of SIR for COVID-19 spread. The model is represented by a 

deterministic discrete-time model. The model is constructed with divided the population into three compartments, 

namely Susceptible, Infected, and Recovered denoted by 𝑆, 𝐼, and 𝑅, respectively. This research aims to formulate 

a model for describing the spread of COVID-19 with a data-driven approach. In this research, the model parameters 

were estimated using the nonlinear least squares method. The data used are daily cases of COVID-19 data in West 

Java, Indonesia. In addition, other parameters such as birthrate and mortality rate were calibrated using population 

data and mortality data in the pre-pandemic period. Finally, through numerical simulation, the population dynamics is 

observed in the model that has been formed based on the estimated parameters. 
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1. INTRODUCTION 

The infectious illness COVID 19 is caused by the SARS-CoV-2 coronavirus, which is a virus 

that attacks the respiratory system. The World Health Organization (WHO) reported the first 

occurrence on December 31, 2019, in Wuhan, China [1]. WHO declared COVID-19 a global 

pandemic on March 11, 2020 [2]. COVID-19 symptoms might occur between 2 and 14 days after 

infection. COVID-19 infection produces a range of symptoms ranging from mild to severe 

symptoms. Fever and cough are the most typical symptoms of this illness, however other 

symptoms may appear. [3]. 

This pandemic has a fairly large and universal impact, so not only a health crisis is caused by 

this pandemic, but one of the major aspects of economic growth is the COVID-19 pandemic. 

Hence, this makes this pandemic an interesting object and strategy to research. COVID-19 

researchers are challenged to solve the COVID-19 problem through both vaccines and drugs. 

Mathematician contribution to addressing the COVID-19 issue is modeling the dynamics of 

COVID-19 spread throughout the population. The output of the model can be used as a reference 

for the policy or as input for further research. Mathematical models that have been studied 

previously include the COVID-19 transmission model considering vaccination and treatment [4]–

[6], the model of COVID-19 transmission with waning immunity [7], the mathematical model of 

the spread of COVID-19 with treatment costs [8],[9] and the mathematics Spread of COVID-19 

with the effectiveness of vaccination in reducing health expenditure [10],[11]. This research 

examined at the spread of COVID-19 in the population. Given that the current data is generally 

recorded on a daily time frame, the model utilized is a discrete approach. In this research, all 

parameters used in the model were calibrated and estimated using the collected data. The model 

created is then analyzed and simulated to accurately describe the population dynamics that occur. 

 

2. MATERIALS AND METHODS 

This section describes the materials and methods used in this research. 

2.1 Data 
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The data used in this research is data on positive, recovered, died, and active COVID-19 cases 

in West Java. The data was obtained from the West Java COVID-19 Information and Coordination 

Center [12]. The data is from June 1, 2021, to June 1, 2022. Other data, such as the demographics 

of the population of West Java, were obtained from the results of the 2020 Indonesian population 

census [13]. Figure 1 shows a graph of positive cases, recovered, and died in West Java. 

 

 

Figure 1. Graph of positive cases, recovered, died in West Java 

 

2.2 Model Formulation  

The mathematical model for studying the spread of COVID-19 is represented by a deterministic 

discrete-time model. The model is constructed by dividing the human population into three 

compartments such as Susceptible, Infected, and Recovered, denoted by 𝑆, 𝐼, and 𝑅, respectively. 

The schematic diagram for the COVID-19 model is visualized in Figure 1, with the definition of 

parameters used in Table 1. 
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Table 1. Parameters Definition 

Parameter Definition 

Λ Birthrate rate 

𝜇 Mortality rate 

𝑑 Mortality rate due to COVID-19 

𝛽 Infection rate 

𝛼 Recovery rate 

 

Figure 2. Schematic diagram of the COVID-19 model 

 According to Figure 2, all compartment decreases because of mortality at the rate of 𝜇. The 

susceptible (𝑆) increases because of the recruitment at the rate of 𝛬 and decreases because of the 

infection at the rate of 𝛽. The Infected (𝐼) increases because of the infection at the rate 𝛽 and 

decreases not only because of the mortality but also mortality due to COVID-19 at the rate of d. 

The Recovered (𝑅) increases because of the recovery rate at the rate of 𝛼. Therefore, the difference 

equation system for representing the COVID-19 transmission can be written as follows: 

𝑆𝑡+1 = Λ + (1 − 𝜇)𝑆𝑡 − 𝛽𝑆𝑡𝐼𝑡 

(1) 𝐼𝑡 = 𝛽𝑆𝑡𝐼𝑡 + (1 − 𝛼 − 𝑑 − 𝜇)𝐼𝑡 

𝑅𝑡 = 𝛼𝐼𝑡 + (1 − 𝜇)𝑅𝑡 

2.3 Parameter Estimation 

In this section, there were 5 parameters used in the COVID-19 spread model. Parameters Λ  

obtained from the results of the 2020 West Java population census, these parameters are calibrated 

first into daily form before being used in the simulation model. For parameters 𝜇 estimated from 

data on health deaths and deaths due to accidents before the COVID-19 pandemic. So that the 

parameters are estimated using death data with health causes and accidents in 2019. For parameters, 

𝛼, 𝛽, dan 𝑑 are estimated using the non-linear least squares method. 
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Nonlinear least-squares is one of the least squares analysis that is used for 𝑚 observations 

on a model with 𝑛  unknown parameters [14]. The objective function of the Nonlinear least 

squares problem is, 

𝑓(𝑥) =
1

2
∑  

𝑀

𝑖=1

∥∥𝑟𝑖(𝑥)∥∥2

2
=

1

2
𝒓𝑇𝒓 

with the vector 𝒓 =  (𝑟1, . . . , 𝑟𝑚)  is the residual vector. Because nonlinear least squares 

problems constitute a transition from nonlinear equations to optimization problems, their solutions 

reflect this. 

 

3. MAIN RESULTS 

3.1. Equilibria Point 

 In terms of epidemic model analysis, there are two types of equilibria points which are non-

endemic and endemic. The non-endemic equilibria point represents the absence of an infected 

population in the system. To obtain the non-endemic equilibria point, the infected population is set 

to be at zero (𝐼∗ = 0). Based on (1), a non-endemic equilibria point is obtained as follows: 

𝐸𝑞0 = {𝑆∗, 𝐼∗, 𝑅∗} = {
Λ

𝜇
, 0,0} (2) 

 Endemic equilibria represents that the epidemic occurs. Based on (1), an endemic equilibria 

point is obtained as follows: 

𝑆∗ =
𝛼 + 𝑑 + 𝜇

𝛽
 (3) 

𝐼∗ =
Λ𝛽 − 𝜇𝛼 − 𝜇𝑑 − 𝜇2

𝛽(𝛼 + 𝑑 + 𝜇)
 (4) 

𝑅∗ = −
𝛼(𝜇2 + (𝛼 + 𝑑)𝜇 − Λ𝛽)

𝛽(𝛼 + 𝑑 + 𝜇)𝜇
 (5) 

3.2. Basic Reproduction Ratio 

 In mathematical epidemiology, the basic reproduction ratio (ℛ0) is one of the important 

things to know [15], [16]. It represents the potential whether the disease is epidemic or not. Hence 

some interventions can be considered to control the disease spread. We use the next generation 

matrix [15] to get the basic reproduction ratio, with 𝑓 as the new infection matrix and 𝑣 as the 
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change in the infection matrix (including a decrease by recovery or death due to the disease). The 

𝑓 and 𝑣 matrix follows: 

𝑓 = [𝛽𝑆𝐼] and 𝑣 = [𝛼𝐼 + 𝑑𝐼 + 𝜇𝐼] 

 The Jacobian matrix for 𝑓 and 𝑣 is represented by 𝐹 and 𝑉−1, respectively. We determine 

the spectral radius (dominant eigenvalue) of the 𝐹𝑉−1 matrix at the non-endemic equilibria point. 

Hence, we get: 

ℛ0 =
𝛽Λ

𝜇(𝛼 + 𝑑 + 𝜇)
 

3.3. Stability Analysis 

 Based on (1), the Jacobian matrix is obtained as follows: 

𝐽 = [
−𝛽𝐼 − 𝜇 + 1 −𝛽𝑆 0

𝛽𝐼 𝛽𝑆 − 𝛼 − 𝑑 − 𝜇 + 1 0
0 𝛼 1 − 𝜇

] 

 The following theorem gives the local stability of the non-endemic equilibria point: 

Theorem 1 

The non-endemic equilibria point of the model is locally asymptotically stable if ℛ0 < 1 −
1

𝛼+𝑑+𝜇
. 

Proof 

By following [1], substituting the non-endemic equilibria point (2) into the Jacobian matrix, then 

the characteristic polynomial of 𝐽(𝐸𝑞0) is obtained as follows: 

(𝜆 + 𝜇 − 1)2((𝜆 + 𝛼 + 𝑑 − 1)𝜇 + 𝜇2 − Λ𝛽)

𝜇
= 0 

 From that polynomial, the eigenvalues are known as follows: 

𝜆1,2 = 1 − 𝜇 

Based on the eigenvalue, 𝜆1 and 𝜆2 will be negative if 𝜇 > 1; hence the system is locally stable, 

then 𝜆3 must be negative. By considering the polynomial, we obtain 

((𝜆 + 𝛼 + 𝑑 − 1)𝜇 + 𝜇2 − Λ𝛽)

𝜇
= 0 

𝜆 =
Λ𝛽 − (𝛼 + 𝑑 + 𝜇)𝜇 + 𝜇

𝜇
=

ℛ0((𝛼 + 𝑑 + 𝜇)𝜇) − (𝛼 + 𝑑 + 𝜇)𝜇 + 𝜇

𝜇
< 0 
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ℛ0((𝛼 + 𝑑 + 𝜇)𝜇) − (𝛼 + 𝑑 + 𝜇)𝜇 + 𝜇 < 0 → (ℛ0 − 1)(𝛼 + 𝑑 + 𝜇)𝜇 < −𝜇 

(ℛ0 − 1)(𝛼 + 𝑑 + 𝜇) < −1 → ℛ0 − 1 < −
1

(𝛼 + 𝑑 + 𝜇)
 

ℛ0 < 1 −
1

(𝛼 + 𝑑 + 𝜇)
 

This completes the proof. 

3.4 Parameter Estimation Results 

Table 2 shows the results of the parameter estimate utilized in this research. 

Table 2. Parameter Estimation Results 

Parameter Definition Value 

Λ Birthrate rate 3.0411E-05 

𝜇 Mortality rate 3.85316E-07 

𝑑 Mortality rate due to COVID-19 0.0006568 

𝛽 Infection rate 0.05874 

𝛼 Recovery rate 1.47E-09 

The parameters presented in Table 2 were then used to simulate the COVID-19 spread model 

numerically in this research. Before being used in numerical simulations, the parameter estimation 

results are checked first, evaluating the accuracy of the model against the data used. Figure 3 shows 

the plot between model predictions and data on COVID-19 cases in West Java. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 3. Comparison between model predictions and data (a) S compartment (b) S residual (c) I 

compartment (d) I residual (e) R compartment (b) R residual 
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Figure 3 compares the data plot and the predicted model results plot. At first glance, it can be 

seen that the prediction results of the model are close to the data, even though there are still errors 

in the prediction results. For example, in Figure 3 (b), (d), (f) the residuals from each compartment 

in the population are shown. Based on this residual plot, it can be seen that there are errors that are 

not visible at a glance, and several periods of time are also found where the errors that occur have 

increased. However, in general, it can be concluded that the parameters used are fit for use in 

numerical simulations. 

 

3.5 Numerical Simulation 

The aim of this numerical simulation is to figure out the population dynamics in the COVID-19 

spread model. The numerical simulation in this research uses the parameters presented in Table 2. 

Figure 2 shows the population dynamics of COVID-19 in West Java. 

 

 

Figure 4. S, I, R Population Dynamics in West Java 

Figure 4 shows population dynamics on the spread of COVID-19 in West Java. Based on Figure 

4, it is found that the susceptible population will continue to decrease over time, while the infected 

and recovered populations will continue to increase. For more detailed observations, Figure 5 

shows population I and R dynamics on the spread of COVID-19 in West Java. 
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Figure 5. I, R Population Dynamics in West Java 

Based on Figure 5. It was found that the increase in the recovered population was much more 

significant than the increase in the infected population, or as the pandemic progressed, the number 

of people who recovered would be much higher than the number of people infected with COVID-

19. 

 

4. CONCLUSION 

 We developed a deterministic discrete-time model of SIR for COVID-19 spread. This research 

is focusing on a data-driven approach and numerical simulation to formulate a COVID-19 

population dynamics in West Java, Indonesia. The model has two equilibrias: the non-endemic 

equilibria which is stable when ℛ0 < 1  and the endemic equilibria. The infection rate, the 

recovery rate, and the mortality rate due to COVID-19 were estimated using the non-linear least-

squares method. While the birthrate and the mortality rate were calibrated using population data 

and mortality data in the pre-pandemic period. The result of the parameter estimation using a non-

linear least squares is fitting the data very well. Finally, the population dynamics are observed 

through numerical simulation of the model. The susceptible continuously decreases while the 

recovered always increases in a year. 
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