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Abstract: In this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee 

effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s 

dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main 

objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, 

and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation 

was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of 

varying parameters on the asymptotic behavior of the system. It is observed that the system has different types of 

attractors including stable point, periodic, and even bi-stable behavior. 
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1. INTRODUCTION 

The study of eco-epidemiological systems is important to obtain better real-world life due to 

their direct effects on the capability of the environment. Since mathematical modeling can be used 

to simulate the dynamical behavior of these biological systems and conclude all the requirements 

to improve human life, hence the mathematical models in eco-epidemiology are extensively used 

to understand and solve a lot of real-world life problems. The first eco-epidemiological model 

including infectious disease in the prey was introduced by Anderson and May [1]. Later on, a 

number of researchers proposed and studied eco-epidemiological models involving many 

biological factors [2-13]. 

Many species suffer from Allee effects, disease, and predation. For instance, the combined impact 

of disease and the Allee effect has been observed in the African wild dog Lycaon pictus [14, 15] 

and the island fox Urocyon littoralis [16, 17]. Both the African wild dog and island fox should 

have their enemies in the wild. Thus, understanding the combined impact of Allee effects and 

disease on population dynamics of predator-prey interactions can help us have better insights on 

species abundance as well as the outbreak of disease. Therefore, we can make better policies to 

regulate the population and disease. Thus, for the first time, we propose a general predator-prey 

model with Allee effects and disease in prey to investigate how the interplay of Allee effects and 

disease in prey affect the population dynamics of both prey and predator. 

Although there are many studies interested in eco-epidemiology in literature, the impact of the 

Allee effect on eco-epidemiological systems is not taken sufficient studies yet. The Allee effect 

named after Allee [11]. Biswas et al [18] considered a system of delay differential equations that 

represent prey-predator eco-epidemic dynamics with a weak Allee effect in the growth of the 

predator population. Recently, Huda Abdul Satar studied the dynamics of an eco-epidemiological 

model with the Allee effect and harvesting in the predator [19]. 

Also, several field data and experiments on terrestrial vertebrates exhibited that the fear of 

predators would cause a substantial variability of prey demography. Fear of predator population 

enhances the survival probability of the prey population, and it can greatly reduce the reproduction 
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of the prey population. Based on the experimental evidence [20]. 

Moreover, the impact of harvesting of a particular species on the dynamic behavior of the food 

chain and food web is also investigated. In fact, the existence of harvesting on some interacting 

species is beneficial from both ecological as well as economic points of view. Several studies of 

the effect of harvesting of one species on the other have been done using different types of 

harvesting functions since the pioneering work by Clark [21]. Therefore, in this paper, we intend 

to study the influence of fear on an eco-epidemiological system when the predators are subject to 

the weak Allee effect and harvesting. 

 

2. THE MODEL FORMULATION 

In this section, a mathematical modeling approach was used to study the role of fear and the Allee 

effect on the dynamical behavior of the harvested prey-predator system. In order to formulate the 

model, the following assumptions are adopted.  

It is assumed that the prey species is contracted the SI type of infectious disease, therefore the prey 

species is divided into two compartments: susceptible prey that is denoted to their population size 

at time 𝑡 by 𝑆(𝑡), and the second compartment contains the infected prey, which is denoted to 

their population size at time 𝑡 by 𝐼(𝑡).  

The prey species grows logistically in the absence of the predator where the infected prey cannot 

reproduce while it has the capability to compete with the other prey species to reach the 

environment carrying capacity. Furthermore, the disease causes extra death for the infected prey. 

The prey reproduction is affected by the fear due to the existence of predation. 

The predator species, which represents their population size at time 𝑡 by 𝑃(𝑡), consumes both 

the prey according to the Lottka-Volttera functional response and decays exponentially in the 

absence of food. Further, it is assumed that the predator is affected by the weak Allee effect and 

harvesting. 

Accordingly, the dynamics of the above-described eco-epidemiological system can be represented 

by using the following differential equations: 
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𝑑𝑆

𝑑𝑡
= 𝑆 [ 

𝑟

1+𝑘𝑃
− 𝑏 ( 𝑆 + 𝐼 ) −  𝛽𝐼 − 𝑎𝑃 ] = 𝑆𝑔1(𝑆, 𝐼, 𝑃),   

𝑑𝐼

𝑑𝑡
= 𝐼 [ 𝛽𝑆 − 𝑎𝑃 − 𝑑1 ] = 𝐼𝑔2(𝑆, 𝐼, 𝑃),                                  

𝑑𝑃

𝑑𝑡
= 𝑃 [ 𝑎 ( 𝛼𝑆 +  𝛾𝐼 ) 

𝑃

𝜃+𝑃
 −  𝑑2 − 𝑞𝐸 ] = 𝑃𝑔3(𝑆, 𝐼, 𝑃),

 ,                 (1) 

where 𝑆(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, and  𝑃(𝑡) ≥ 0 . All parameters are assumed to be positive and 

described in Table (1). 

Moreover, the functions 𝑔𝑖 = 1,2,3 in the right-hand side of the system (1) are continuous and 

have continuous partial derivatives in the following space.  

𝔏 = {(𝑆, 𝐼, 𝑃) ∈ ℝ3: 𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑃(0) ≥ 0} 

Therefore, the system (1) solution exists and is unique.  

Table (1) Brief description of the system (1) parameters: 

Parameter    Descriptions     

𝑟  The intrinsic growth rate of the susceptible prey.                                          

𝑏 ∈ (0,1) The intraspecific competition of the prey (Susceptible and infected). 

𝛽 ∈ (0,1)  The infection rate.  

𝑎  The attack rate of the prey by a predator.  

𝑘  The fear rate. 

𝑑1 ∈ (0,1)  The disease death rate of the infected prey.  

𝑑2 ∈ (0,1) The natural death rate of predators.  

𝛼 ∈ (0,1)  The conversion rate of the susceptible prey to the predator.  

𝛾 ∈ (0,1)  The conversion rate infected prey to the predator.  

𝜃  The Allee effect rate.  

𝑞, 𝐸  The harvesting catchability constant and the effort rate.  

Theorem 1. All solutions of system (1) initiating in 𝔏 are uniformly bounded. 

Proof.  From the first equation of system (1), the following is obtained 
𝑑𝑆

𝑑𝑡
≤ (𝑟 − 𝑏𝑆)𝑆. It is 

simple to verify that 𝑆 ≤
𝑟

𝑏
 for 𝑡 → ∞. 

Now, define the function 𝜔1(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑃(𝑡), then after some algebraic manipulation we 
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have:  

𝑑𝜔1

𝑑𝑡
≤  𝑟𝑆 − 𝑑1𝐼 − (𝑑2 + 𝑞𝐸)𝑃. 

Then, it is obtained that 
𝑑𝜔1

𝑑𝑡
≤ 2𝑟𝑠 − 𝑀𝜔1, where 𝑀 = 𝑚𝑖𝑛 {𝑟, 𝑑1, (𝑑2 + 𝑞𝐸)}. Therefore, an 

application of Gronwall inequality [22], gives that 𝜔1 ≤
2𝑟2

𝑀𝑏
= 𝜇.  Hence, all solutions are 

uniformly bounded in 𝔏. 

 

3. EXISTENCE OF EQUILIBRIUM POINTS AND THEIR LOCAL STABILITY ANALYSIS  

The existence of equilibrium points (EPs) of the system (1) is carried out. There are at most five 

non-negative EPs of the system (1), these points are described as follows:  

• The Vanishing equilibrium point (VEP) that is denoted by 𝐸0 = (0,0,0) always exists. 

• The axial equilibrium point (AXEP) that is denoted by 𝐸1 = (
𝑟

𝑏
, 0, 0) always exists. 

• The predator-free equilibrium point (PFEP) is denoted by 𝐸2 = ( 𝑆̂, 𝐼, 0 ) where  

 𝑆̂ =  
𝑑1

𝛽
, 𝐼 =  

𝑟𝛽−𝑏𝑑1

𝛽(𝑏+ 𝛽)
.                                                    (2) 

Clearly, the PFEP exists uniquely in the 𝑥𝑦 − plane under the following condition: 

       𝑑1 <
𝑟𝛽

𝑏
.                                   (3) 

• The disease-free equilibrium point (DFEP) is denoted by 𝐸3 = ( 𝑆̅, 0, 𝑃̅) where 

𝑃̅ =
(𝑑2+𝑞𝐸)𝜃

𝑎 𝛼𝑆̅−(𝑑2+𝑞𝐸)
,                                     (4a) 

while 𝑆̅ represents a positive root for the cubic polynomial equation: 

𝐴1 𝑆
3 + 𝐴2 𝑆

2 +  𝐴3 𝑆 + 𝐴4 = 0                                          (4b) 

where  

      𝐴1 = −𝑏 𝑎2𝛼2,    

      𝐴2 = 𝑟 𝑎2𝛼2 + 2𝑎 𝛼𝑏( 𝑑2 + 𝑞𝐸) − 𝑘𝑏𝑎𝛼𝜃 (𝑑2 + 𝑞𝐸), 

      𝐴3 = (𝑑2 + 𝑞𝐸)[−2𝑎𝛼𝑟 − 𝑏 (𝑑2 + 𝑞𝐸) + 𝑘𝑏𝜃(𝑑2 + 𝑞𝐸) − 𝑎2𝛼𝜃], 

      𝐴4 = (𝑑2 + 𝑞𝐸)2 ( 𝑟 + 𝑎𝜃 − 𝑘𝑎 𝜃2). 

Clearly, the DFEP exists uniquely on the 𝑆𝑃 − axis under conditions 
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(𝑑2+𝑞𝐸)

𝑎𝛼
< 𝑆̅                                                     (5a) 

𝑘 <
𝑟+𝑎𝜃

𝑎 𝜃2 ,                                          (5b) 

with one of the following two conditions: 

𝑟 𝑎2𝛼2 + 2𝑎 𝛼𝑏( 𝑑2 + 𝑞𝐸) < 𝑘𝑏𝑎𝛼𝜃 (𝑑2 + 𝑞𝐸)

2𝑎𝛼𝑟 + 𝑏 (𝑑2 + 𝑞𝐸) + 𝑎2𝛼𝜃 < 𝑘𝑏𝜃(𝑑2 + 𝑞𝐸)
}.                      (5c)                                                            

• The positive equilibrium point (PEP) is denoted by 𝐸4 = ( 𝑆̿, 𝐼,̿ 𝑃̿ ) where  

 𝑆̿ =
𝑎𝑃̿+𝑑1

𝛽
 and  𝐼 ̿ =

𝑟𝛽−[𝑏(𝑎𝑃̿+𝑑1)+𝑎𝑃̿](1+𝑘𝑃̿)

𝛽(1+𝑘𝑃̿)(𝛽+𝑏)
 ,                           (6a) 

while 𝑃̿ represents a positive root for the cubic polynomial equation: 

𝐵1𝑃
3 + 𝐵2𝑃

2 + 𝐵3𝑃 + 𝐵4 = 0                                      (6b) 

where: 

𝐵1 = 𝑎2𝐾[(𝛼 − 𝛾)𝑏 + 𝛼𝛽 + 𝛾], 

𝐵2 = 𝑎2𝛼(𝛽 + 𝑏) + 𝑎𝛼𝑑1𝑘(𝛽 + 𝑏) − [𝑎𝛾(𝑎(1 + 𝑏) + 𝑏𝑘 𝑑1)]

−𝛽𝑘(𝑑2 + 𝑞𝐸) (𝛽 + 𝑏),
    

𝐵3 = 𝑎𝛼𝑑1(𝛽 + 𝑏) + 𝑎𝛾(𝑟𝛽 − 𝑏 𝑑1) − 𝛽𝜃𝑘(𝛽 + 𝑏)(𝑑2 + 𝑞𝐸)

−𝛽(𝛽 + 𝑏)(𝑑2 + 𝑞𝐸),
 

𝐵4 = −𝛽𝜃 (𝛽 + 𝑏 )(𝑑2 + 𝑞𝐸) < 0. 

Clearly, the PEP exists uniquely under conditions: 

[𝑏(𝑎𝑃̿ + 𝑑1) + 𝑎𝑃̿](1 + 𝑘𝑃̿) < 𝑟𝛽,                                 (7a) 

        𝛾𝑏 < 𝛼(𝑏 + 𝛽) + 𝛾,                              (7b) 

with one of the following two conditions: 

 
[𝑎𝛾(𝑎(1 + 𝑏) + 𝑏𝑘 𝑑1)] + 𝛽𝑘(𝑑2 + 𝑞𝐸) (𝛽 + 𝑏) < 𝑎𝛼(𝛽 + 𝑏)(𝑎 + 𝑑1𝑘)

𝑎𝛼𝑑1(𝛽 + 𝑏) + 𝑎𝛾(𝑟𝛽 − 𝑏 𝑑1) < 𝛽(𝛽 + 𝑏)(𝑑2 + 𝑞𝐸)[𝜃𝑘 + 1]    
}.             (7c) 

Now, to establish the local dynamics behaviors of the system (1), around each of these EPs, the 

Jacobian matrix (JM) is computed, and then compute the eigenvalues for the resulting matrix. 

𝐽(𝑆, 𝐼, 𝑃) =

[
 
 
 
 𝑆

𝜕𝑔1

𝜕𝑆
+ 𝑔1 𝑆

𝜕𝑔1

𝜕𝐼
𝑆

𝜕𝑔1

𝜕𝑃

𝐼
𝜕𝑔2

𝜕𝑆
         𝐼

𝜕𝑔2

𝜕𝐼
+ 𝑔2 𝐼

𝜕𝑔2

𝜕𝑃
 

𝑃
𝜕𝑔3

𝜕𝑆
      𝑃

𝜕𝑔3

𝜕𝐼
𝑃 

𝜕𝑔3

𝜕𝑃
+ 𝑔3]

 
 
 
 

,                            (8) 

where: 
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𝜕𝑔1

𝜕𝑆
= −𝑏, 

𝜕𝑔1

𝜕𝐼
= −(𝑏 + 𝛽), 

𝜕𝑔1

𝜕𝑃
= −(

𝑟𝑘

(1+𝑘𝑃)2
+ 𝑎 ), 

𝜕𝑔2

𝜕𝑆
= 𝛽, 

𝜕𝑔2

𝜕𝐼
= 0, 

𝜕𝑔2

𝜕𝑃
= −𝑎, 

𝜕𝑔3

𝜕𝑆
=

𝑎𝛼𝑃

𝜃+𝑃
, 

𝜕𝑔3

𝜕𝐼
=

𝑎𝛾𝑃

𝜃+𝑃
, 

𝜕𝑔3

𝜕𝑃
= 𝑎(𝛼𝑆 + 𝛾𝐼)

𝜃

(𝜃+𝑃)2
. 

Therefore, the 𝐽𝑀 at VEP can be written as  

𝐽𝑉𝐸𝑃 = [

𝑟 0 0
0 −𝑑1 0
0 0 −(𝑑2 + 𝑞𝐸)

]                                     (9) 

Clearly, the eigenvalues are 𝜆01 = 𝑟, 𝜆02 = − 𝑑1, and 𝜆03 = −(𝑑2 + 𝑞𝐸).  Thus the VEP is a 

saddle point.  

The 𝐽𝑀 at AXEP can be written as: 

𝐽𝐴𝑋𝐸𝑃 =  

[
 
 
 −𝑟 −( 𝑟 +

𝛽𝑟

𝑏
) −(

𝑟2𝑘+𝑟𝑎

𝑏
)

0        
𝛽𝑟

𝑏
− 𝑑1 0

0 0 −(𝑑2 + 𝑞𝐸)]
 
 
 

                                 (10) 

Here the eigenvalues are 𝜆11 = −𝑟 < 0 , 𝜆12 = 
𝛽𝑟

𝑑
− 𝑑1 , 𝜆13 = −(𝑑2 + 𝑞𝐸) < 0 . Therefore, 

the AXEP is locally asymptotically stable (LAS) if and only if  the following condition holds:  

𝛽𝑟

𝑏
< 𝑑1                                                    (11) 

The 𝐽𝑀 at PFEP can be written as: 

 𝐽𝑃𝐹𝐸𝑃 = [

−𝑏 𝑆̂ −(𝑏 + 𝛽)𝑆̂ −(𝑟𝑘 + 𝑎)𝑆̂

𝛽𝐼 0 −𝑎𝐼

0 0 −(𝑑2 + 𝑞𝐸)

]                            (12) 

Therefore, the characteristic equation of 𝐽𝑃𝐹𝐸𝑃 can be determined as follows: 

 ( 𝜆2 − 𝑇1𝜆 + 𝐷1)[−(𝑑2 + 𝑞𝐸) − 𝜆] = 0,                                (13a) 

where  𝑇1 = −𝑏 𝑆̂ < 0  and  𝐷1 = (𝑏 + 𝛽)𝛽𝑆̂𝐼 > 0. Hence, the eigenvalues of 𝐽𝑃𝐹𝐸𝑃 are given 

by:  

 𝜆21 =  
𝑇1

2
 + 

1

2
 √𝑇1

2 − 4𝐷1 , 𝜆22 = 
𝑇1

2
− 

1

2
 √𝑇1

2 − 4𝐷1 , 𝜆23 = −(𝑑2 + 𝑞𝐸) .     (13b) 

Therefore the PFEP is unconditionally LAS whenever it exists. 

The 𝐽𝑀 at the DFEP can be written as: 

 𝐽𝐷𝐹𝐸𝑃 =

[
 
 
 
 −𝑏𝑆̅ −(𝑏 + 𝛽)𝑆̅ − (

𝑟𝑘

(1+𝑘𝑃̅)2
+ 𝑎) 𝑆̅

0    𝛽𝑆̅ − 𝑎𝑃̅ − 𝑑1       0 
𝑎𝛼

𝜃+𝑃̅
𝑃̅2 𝑎𝛾

𝜃+𝑃̅
𝑃̅2         

𝑎𝛼𝜃𝑆̅𝑃̅

(𝜃+𝑃̅)2 ]
 
 
 
 

                         (14) 
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Therefore, the characteristic equation of 𝐽𝐷𝐹𝐸𝑃 is given by: 

(𝜆2 − 𝑇2 𝜆 + 𝐷2)[𝛽𝑆̅ − 𝑎𝑃̅ − 𝑑1 − 𝜆] = 0,                                 (15a) 

where 𝑇2 = −𝑏𝑆̅ +  
𝑎𝛼𝜃𝑆̅𝑃̅

(𝜃+𝑃̅)2
, and 𝐷2 = −(

𝑏𝑎𝛼𝜃𝑆̅2 𝑃̅

(𝜃+𝑃̅)2
) + [

𝑟𝑘

(1+𝑘𝑃̅)2
+ 𝑎]

𝑎𝛼

𝜃+𝑃̅
𝑆̅𝑃̅2. 

Then the eigenvalues of 𝐽𝐷𝐹𝐸𝑃 are given by: 

  𝜆31 =
𝑇2

2
+

1

2
√𝑇2

2 − 4𝐷2, 𝜆32 = 𝛽𝑆̅ − 𝑎𝑃̅ − 𝑑1, 𝜆33 =
𝑇2

2
−

1

2
√𝑇2

2 − 4𝐷2.     (15b) 

Then the DFEP is LAS if and only if the following conditions hold.  

𝑎𝛼𝜃𝑃̅

(𝜃+𝑃̅)2
< 𝑏,                                                  (16a) 

𝑏𝜃𝑆̅ 

𝜃+𝑃̅
< (

𝑟𝑘

(1+𝑘𝑃̅)2
+ 𝑎) 𝑃̅,                                                (16b) 

𝛽𝑆̅ < 𝑎𝑃̅ + 𝑑1.                                               (16c) 

Finally, the local stability conditions for the PEP are established in the following theorem.  

Theorem 2. The PEP of the system (1) is a LAS if and only if the following conditions are satisfied. 

𝑎(𝛼𝑆̿ + 𝛾𝐼)̿
𝜃𝑃̿

(𝜃+𝑃̿)2
< 𝑏𝑆̿,                                       (17a) 

ℎ32(ℎ13ℎ21 − ℎ11ℎ23) < ℎ12(ℎ21ℎ33 − ℎ23ℎ31),                            (17b) 

ℎ11ℎ33 − ℎ13ℎ31 > 0,                                                 (17c) 

ℎ12(ℎ11ℎ21 + ℎ23ℎ31) + ℎ32(ℎ23ℎ33 + ℎ13ℎ21) > 0,                        (17d) 

where all the new symbols are given in the proof. 

Proof. Direct computation shows that the 𝐽𝑀 at the PEP is determined as 

𝐽𝑃𝐸𝑃 =

[
 
 
 
 −𝑏𝑆̿ −(𝑏 + 𝛽)𝑆̿ − (

𝑟𝑘

(1+𝑘𝑃̿)
2 + 𝑎 ) 𝑆̿

𝛽𝐼 ̿     0                   −𝑎𝐼 ̿

𝑎𝛼𝑃̿2

𝜃+𝑃̿
 

𝑎𝛾𝑃̿2

𝜃+𝑃̿
𝑎(𝛼𝑆̿ + 𝛾𝐼)̿

𝜃𝑃̿

(𝜃+𝑃̿)2
 ]
 
 
 
 

= (ℎ𝑖𝑗).                    (18)                                       

Therefore, the characteristic equation of  𝐽𝑃𝐸𝑃 can be determined as      

𝜆3 + 𝛿1𝜆
2 + 𝛿2𝜆 + 𝛿3 = 0,                                              (19) 

where    

𝛿1 = −(ℎ11 + ℎ33),                                                                  
𝛿2 = −ℎ12ℎ21 − ℎ23ℎ32 + ℎ11ℎ33 − ℎ13ℎ31,                      

𝛿3 = −[ℎ32(ℎ13ℎ21−ℎ11ℎ23) − ℎ12(ℎ21ℎ33 − ℎ23ℎ31)].
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while  

∆= 𝛿1𝛿2 − 𝛿3 = 𝛿1(ℎ11ℎ33 − ℎ13ℎ31) + ℎ12(ℎ11ℎ21 + ℎ23ℎ31) + ℎ32(ℎ23ℎ33 + ℎ13ℎ21) 

Now, the proof follows if all the eigenvalues of 𝐽𝑃𝐸𝑃 have negative real parts, which are satisfied 

if and only if 𝛿𝑖 > 0, (𝑖 = 1,3) , and  ∆> 0  [23], straightforward computation shows that the 

conditions (17a)-(17d) guarantee the satisfying of these requirements. Then, the PEP is LAS if the 

conditions (17a)-(17d) hold.  

In following, the persistence of system (1) is discussed. Persistence means biologically that the 

survival of all the species for all time. While it is means the solution has no omega limit set in the 

boundary planes of the state space 𝔏 mathematically.  

Now according to the system (1) in the absence of the disease then the following subsystem is 

obtained   

𝑑𝑆

𝑑𝑡
= 𝑆 [ 

𝑟

1+𝑘𝑃
− 𝑏𝑆 − 𝑎𝑃 ] = 𝑆𝑔11(𝑆, 𝑃),   

𝑑𝑃

𝑑𝑡
= 𝑃 [ 

𝑎 𝛼𝑆 𝑃

𝜃+𝑃
 −  𝑑2 − 𝑞𝐸 ] = 𝑃𝑔22(𝑆, 𝑃).

.                      (20) 

The subsystem (20) is a 2𝐷 system that has a unique positive point given by (𝑆̅, 𝑃̅), which are 

given by equations (4a)-(4b) and exists uniquely in the 𝑆𝑃 −plane under the conditions (5a)-(5c). 

According to the well-known Poincare Bendixon theorem, the solution of the bounded system (20) 

approaches either the EP. (𝑆̅, 𝑃̅), or else to the periodic dynamics. Now by using the continuous 

𝜋1 =
1

𝑆𝑃
, it is obtained that:  

∇=
𝜕

𝜕𝑆
(𝜋1𝑆𝑔11) +

𝜕

𝜕𝑃
(𝜋1𝑃𝑔22) = −

𝑏

𝑃
+

𝑎 𝛼 𝜃

(𝜃+𝑃)2
. 

Therefore, according to the Dulac-Bendixon criterion [24], the subsystem (20) has no periodic 

dynamics in the interior of the positive quadrant of the 𝑆𝑃 − plane if one of the following 

conditions are met. 

𝑎 𝛼 𝜃

(𝜃+𝑃)2
<

𝑏

𝑃

𝑏

𝑃
<

𝑎 𝛼 𝜃

(𝜃+𝑃)2

}.                                     (21) 

Consequently, due to Poincare Bendixon’s theorem, the equilibrium point (𝑆̅, 𝑃̅)  is a GAS 

whenever it exists. Hence system (1) has no periodic dynamics in the boundary 𝑆𝑃 −planes under 

condition (21).  
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Theorem 3. If the following conditions, with the condition (21), are met then system (1) is 

uniformly persistent. 

𝑟𝛽 < 𝑑1 <
𝛽𝑟

𝑏
.                          (22a) 

𝑎𝑃̅ + 𝑑1 < 𝛽𝑆̅.                                         (22b) 

Proof: Define the following function using the average Lyapunov function method [25]. 

𝜋2(𝑆, 𝐼, 𝑃) = 𝑆𝑛1𝐼𝑛2𝑃𝑛3 , where 𝑛𝑖, ∀𝑖 = 1,2,3  represent the positive constants. Thus, 

𝜋2(𝑆, 𝐼, 𝑃) > 0 , for all (𝑆, 𝐼, 𝑃) ∈ 𝑖𝑛𝑡. 𝔏  and 𝜋2(𝑆, 𝐼, 𝑃) → 0  when any of their variables gets 

close to zero. Therefore, it is gained that 

 
σ(𝑆, 𝐼, 𝑃) =

𝜋2
′(𝑆,𝐼,𝑃)

𝜋2(𝑆,𝐼,𝑃)
= 𝑛1 [ 

𝑟

1+𝑘𝑃
− 𝑏 ( 𝑆 + 𝐼 ) −  𝛽𝐼 − 𝑎𝑃 ]                 

+𝑛2[ 𝛽𝑆 − 𝑎𝑃 − 𝑑1 ] +  𝑛3 [ 𝑎 ( 𝛼𝑆 +  𝛾𝐼 ) 
𝑃

𝜃+𝑃
 −  𝑑2 − 𝑞𝐸 ] .

 

Recall that, according to condition (21) there is no periodic dynamics in the interior of 𝑆𝑃 −plane 

and hence the only attracting set in the interior of 𝑆𝑃 −plane is the DFEP, and condition (22a) 

guarantees that the PFEP does not exist and hence due to the index theory there are no periodic 

dynamics in the interior of 𝑆𝐼 −plane. 

Now, the proof is done using the average Lyapunov function if σ(𝐸) > 0 for every attractor point 

𝐸 on the border planes. Moreover, since  

  σ(𝐸0) = 𝑛1𝑟 − 𝑛2𝑑1 − 𝑛3( 𝑑2 + 𝑞𝐸 ),    

  σ(𝐸1) = 𝑛2 (𝛽
𝑟

𝑏
− 𝑑1) − 𝑛3( 𝑑2 + 𝑞𝐸), 

  σ(𝐸3) = 𝑛2[ 𝛽𝑆̅ − 𝑎𝑃̅ − 𝑑1 ]. 

Thus, choosing 𝑛1 > 𝑛2 > 𝑛3 > 0 as a sufficiently needed with the help of condition (22a) leads 

to σ(𝐸0) > 0 and σ(𝐸2) > 0. However, σ(𝐸3) > 0 due to condition (22b). Thus the proof is 

done. 

 

4. GLOBAL STABILITY ANALYSIS 

In this section, the global dynamics of the system (1) or else the basin of attraction for each EPs 

are investigated using Lyapunov functions, as demonstrated in the next theorems 



11 

DYNAMIC OF AN ECO-EPIDEMIOLOGICAL SYSTEM 

Theorem 4. Suppose that the AXEP is LAS, then it is a GAS if the following sufficient conditions 

are satisfied:  

( 𝑏 + 𝛽 )𝑆̃ < 𝑑1 (23a) 

(𝑎 + 𝑟𝑘)𝑆̃ < (𝑑2 + 𝑞𝐸) (23b) 

where 𝑆̃ =
𝑟

𝑏
. 

Proof. Define 𝜗1 as a real-valued function that is given by 

𝜗1 = (𝑆 − 𝑆̃ − 𝑆̃  ln
𝑆

𝑆̃
 ) + 𝐼 + 𝑃. 

It is clear that  𝜗1 is a positive definite function that is defined for all {(𝑆, 𝐼, 𝑃) ∈ 𝔏: 𝑆 > 0, 𝐼 ≥

0, 𝑃 ≥ 0}. Recall that, according to the LAS of the AXEP that is given by equation (11), the PFEP 

is not exist.  

Now by differentiating 𝜗1 with respect to (w.r.t.) time, and then simplify the result, it is obtain 

that 

 
 
𝑑𝜗1

𝑑𝑡
 ≤ −𝑏 ( 𝑆 − 𝑆̃ )

2
− [𝑑1 − ( 𝑏 + 𝛽)𝑆̃]𝐼 − [(𝑑2 + 𝑞𝐸) − (𝑎 + 𝑟𝑘)𝑆̃]𝑃

−𝑎(1 − 𝛼)𝑆𝑃 − 𝑎 (1 − 𝛾)𝐼𝑃.
 

Using the biological fact that 𝜶 ∈ (𝟎, 𝟏) and 𝜸 ∈ (𝟎, 𝟏). It is obtained that 

 
𝑑𝜗1

𝑑𝑡
< −𝑏 ( 𝑆 − 𝑆̃ )

2
− [𝑑1 − ( 𝑏 + 𝛽)𝑆̃]𝐼 − [(𝑑2 + 𝑞𝐸) − (𝑎 + 𝑟𝑘)𝑆̃]𝑃 

Consequently, 
𝑑𝜗1

𝑑𝑡
 is negative definite under the conditions (23a) and (23b). Moreover, since the 

function 𝜗1  is radially unbounded then the AXEP is a GAS. 

Theorem 5. Suppose that the PFEP exists, then it has a basin of attraction that satisfies the 

following sufficient conditions. 

𝑎(𝐼 + 𝑆̂) + 𝑟𝑘𝑆̂ <  (𝑑2 + 𝑞𝐸),                                          (24a) 

𝑏( 𝐼 − 𝐼 )
2

< ℳ1 + ℳ2,  (24b) 

here ℳ1 = 𝑏 [( 𝑆 − 𝑆̂ ) + (𝐼 − Î )]
2
 and ℳ2 = [ (𝑑2 + 𝑞𝐸) − 𝑎(𝑆̂ + 𝐼) − 𝑟𝑘𝑆̂]𝑃. 

Proof. Define 𝜗2 as a real-valued function that is given by 

𝜗2 = (𝑆 − 𝑆̂ − 𝑆̂  ln
𝑆

𝑆̂
 ) + (𝐼 − 𝐼 − 𝐼 ln

𝐼

𝐼
 ) + 𝑃. 
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It is clear that 𝜗2 is a positive definite function that is defined for all {(𝑆, 𝐼, 𝑃) ∈ 𝔏: 𝑆 > 0, 𝐼 >

0, 𝑃 ≥ 0}. Now by differentiating 𝜗2 w.r.t. time, and then simplifying the result, it is obtained that 

𝑑𝜗2

𝑑𝑡
< −𝑏( 𝑆 − 𝑆̂ )

2
− 𝑏 ( 𝑆 − 𝑆̂ )(𝐼 − 𝐼) − [(𝑑2 + 𝑞𝐸) − 𝑎(𝐼 + 𝑆̂) − 𝑟𝑘𝑆̂]𝑃. 

Additional operations to complete the square are produced. 

𝑑𝜗2

𝑑𝑡
< −𝑏 [( 𝑆 − 𝑆̂ ) + ( 𝐼 − 𝐼 )]

2
− [ (𝑑2 + 𝑞𝐸) − 𝑎(𝑆̂ + 𝐼) − 𝑟𝑘𝑆̂]𝑃 + 𝑏( 𝐼 − 𝐼 )

2
. 

Therefore, the derivative 
𝑑𝜗2

𝑑𝑡
 is negative definite under the conditions (24a) and (24b). Moreover, 

since the function 𝜗2   is radially unbounded then all the solutions, which are initiated in the 

interior of the sub-region of 𝔏  and satisfy the conditions (24a) and (24b), are approached 

asymptotically to PFEP. Hence the proof is done. 

Theorem 6. Suppose that the DFEP is LAS, then it has a basin of attraction that satisfies the 

following sufficient conditions. 

(𝑏 + 𝛽 )𝑆̅ < 𝑑1,                                                      (25a) 

 [ 
𝑟𝑘

(1+𝑘𝑃)(1+𝑘𝑃̅)
+ 𝑎 −

𝑎𝛼𝑃

𝜃+𝑃
]
2

<
4𝑏𝑎𝛼𝑆̅

𝑅̅
,                                      (25b) 

 
2𝑎𝛼𝑆̅

𝑅̅
(𝑃 − 𝑃̅)2 < ℵ1 + ℵ2                                               (25c) 

where ℵ1 = [√𝑏( 𝑆 − 𝑆̅ ) + √
𝑎𝛼𝑆̅

𝜃+𝑃̅
( 𝑃 − 𝑃̅ )]

2

, and ℵ2 = [𝑑1 − (𝑏 + 𝛽 )𝑆̅]𝐼. 

Proof. Define 𝜗3 as a real-valued function that is given by 

𝜗3 = (𝑆 − 𝑆̅ − 𝑆̅  ln
𝑆

𝑆̅
 ) + 𝐼 + (𝑃 − 𝑃̅ − 𝑃 ̅ ln

𝑃

𝑃̅
 ) 

It is clear that 𝜗3 is a positive definite function that is defined for all {(𝑆, 𝐼, 𝑃) ∈ 𝔏: 𝑆 > 0, 𝐼 ≥

0, 𝑃 > 0}. Now by differentiating 𝜗2 w.r.t. time, and then simplifying the result, it is obtained that 

𝑑𝜗3

𝑑𝑡
< −𝑏( 𝑆 − 𝑆̅ )2 − [ 

𝑟𝑘

(1+𝑘𝑃)(1+𝑘𝑃̅)
+ 𝑎 −

𝑎𝛼𝑃

𝜃+𝑃
] ( 𝑆 − 𝑆̅ )( 𝑃 − 𝑃̅ )

+
𝑎𝛼𝑆̅

𝜃+𝑃̅
( 𝑃 − 𝑃̅ )2 − [𝑑1 − (𝑏 + 𝛽 )𝑆̅]𝐼.

. 

Additional operations to complete the square are produced. 

𝑑𝜗3

𝑑𝑡
<  −ℵ1 − ℵ2 +

2𝑎𝛼𝑆̅

𝑅̅
( 𝑃 − 𝑃̅ )2. 

Therefore, the derivative 
𝑑𝜗3

𝑑𝑡
 is negative definite under the conditions (25a) and (25c). Moreover, 



13 

DYNAMIC OF AN ECO-EPIDEMIOLOGICAL SYSTEM 

since the function 𝜗3   is radially unbounded then all the solutions, which are initiated in the 

interior of the sub-region of 𝔏 and satisfy the conditions (25a), (25b), and (25c) are approached 

asymptotically to DFEP. Hence the proof is done. 

Theorem 7. Suppose that the PEP is LAS, then then it has a basin of attraction that satisfies the 

following sufficient conditions. 

       max {[
𝑟𝑘

(1+𝑘𝑃)(1+𝑘𝑃̿)
+ 𝑎 −

𝑎𝛼𝑃

𝜃+𝑃
]
2

, [𝑎 −
𝑎𝛾𝑃

𝜃+𝑃
]
2

} <
𝑎𝑏(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
,             (26a) 

       2
𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)

2
+ 𝑏(𝐼 − 𝐼)̿

2
<

1

2
𝜎13 +

𝑏

2
𝜎12 +

1

2
𝜎23,            (26b) 

where 𝜎12 = [(𝑆 − 𝑆̿) + (𝐼 − 𝐼)̿]
2
, 𝜎13 = [√𝑏(𝑆 − 𝑆̿) + √𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)]

2

, and 𝜎23 =

[√𝑏(𝐼 − 𝐼)̿ + √𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)]

2

. 

Proof. Define 𝜗4 as a real valued function that is given by 

𝜗4 = (𝑆 − 𝑆̿ − 𝑆̿ ln
𝑆

𝑆̿
 ) + (𝐼 − 𝐼 ̿ − 𝐼 ̿ ln

𝐼

𝐼
 ̿) + (𝑃 − 𝑃̿ − 𝑃 ̿ ln

𝑃

𝑝̿
 ). 

It is clear that 𝜗4 is a positive definite function that is defined for all {(𝑆, 𝐼, 𝑃) ∈ 𝔏: 𝑆 > 0, 𝐼 >

0, 𝑃 > 0}. Now by differentiating 𝜗4 w.r.t. time, and then simplifying the result, it is obtained that: 

𝑑𝜗4

𝑑𝑡
≤  −𝑏 ( 𝑆 − 𝑆̿)

2
− 𝑏(𝑆 − 𝑆̿)(𝐼 − 𝐼)̿ +

𝑎(𝛼𝑆̿ + 𝛾𝐼)̿

𝜃 + 𝑃̿ 
(𝑃 − 𝑃̿)

2

−[
𝑟𝑘

(1 + 𝑘𝑃)(1 + 𝑘𝑃̿)
+ 𝑎 −

𝑎𝛼𝑃

𝜃 + 𝑃
] (𝑆 − 𝑆̿)(𝑃 − 𝑃̿).

− [𝑎 −
𝑎𝛾𝑃

𝜃 + 𝑃
] (𝐼 − 𝐼)̿(𝑃 − 𝑃̿)        

 

Further simplification gives that: 

            

𝑑𝜗4

𝑑𝑡
< −

1

2
[√𝑏(𝑆 − 𝑆̿) + √𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)]

2

                           

−
𝑏

2
[(𝑆 − 𝑆̿) + (𝐼 − 𝐼)̿]

2
+ 2

𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)

2

−
1

2
[√𝑏(𝐼 − 𝐼)̿ + √𝑎(𝛼𝑆̿+𝛾𝐼)̿

𝜃+𝑃̿ 
(𝑃 − 𝑃̿)]

2

+ 𝑏(𝐼 − 𝐼)̿
2
.
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Therefore, the derivative 
𝑑𝜗4

𝑑𝑡
 is negative definite under the conditions (26a) and (26b). Moreover, 

since the function 𝜗4   is radially unbounded then all the solutions, which are initiated in the 

interior of the sub-region of 𝔏  and satisfy the conditions (26a), and (26b) are approached 

asymptotically to PEP. Hence the proof is done. 

 

5. BIFURCATION ANALYSIS  

The influence of varying the parameter value on the dynamic of the system (1) is investigated in 

this section. Now, in order to compute the second derivative of the J, system (1) is rewritten in the 

vector form as follows: 

𝑑𝑿

𝑑𝑇
= 𝐹(𝑋, 𝜀), with 𝑋 = (𝑆, 𝐼, 𝑃)𝑇 and 𝐹 = (𝑆𝑔1, 𝐼𝑔2, 𝑃𝑔3)

𝑇                   (27) 

Therefore, according to the JM of the system (1) at the point (𝑆, 𝐼, 𝑃) given by Eq. (8) it is 

obtained that: 

 𝐷2𝐹(𝑋, 𝜀)(Φ,Φ) = [𝑞𝑖1]3×1                                            (28) 

where Φ = (𝑣1, 𝑣2, 𝑣3)
𝑇 and 𝜀 is any bifurcation parameter, with 

𝑞11 = −2𝑏𝑣1
2 − 2(𝑏 + 𝛽)𝑣1𝑣2 − 2(

𝑟𝑘

(1+𝑘𝑃)2
+ 𝑎)𝑣1𝑣3 + 2

𝑟𝑘2𝑆

(1+𝑘𝑃)3
 𝑣3

2,         

𝑞21 = 2𝛽𝑣1𝑣2 − 2𝑎𝑣2𝑣3,                                                                                          

𝑞31 = 2𝑎𝛼 (
2𝜃𝑃+𝑃2

(𝜃+𝑃)2
) 𝑣1𝑣3 + 2𝑎𝛾 (

2𝜃𝑃+𝑃2

(𝜃+𝑃)2
) 𝑣2𝑣3 + 2𝑎(𝛼𝑆 + 𝛾𝐼)

𝜃2

(𝜃+𝑃)3
𝑣3

2.   

  

Theorem 8. The system (1) at the AXEP undergoes a transcritical bifurcation (TB) when the 

parameter 𝑑1 passes through the value  𝑑1
∗ = 

𝛽𝑟

𝑏
. 

Proof. The JM of the system (1) at (𝐸1, 𝑑1
∗) can be represented by 

𝐽1 = 𝐽(𝐸1, 𝑑1
∗) =   [

−𝑟 −( 𝑟 +
𝛽𝑟

𝑏
) −(

𝑟2𝑘+𝑟𝑎

𝑏
)

0         0           0
0     0 −(𝑑2 + 𝑞𝐸)

]. 

 Then the matrix 𝐽1  has the following eigenvalues 𝜆11
∗ = −𝑟 < 0 , 𝜆12

∗ =  0 , and 𝜆13
∗ =

 −(𝑑2 + 𝑞𝐸) < 0. So, the AXEP is a non-hyperbolic point. 

Let Φ1 = (𝑣11, 𝑣12, 𝑣13)  be the eigenvectors corresponding to 𝜆12
∗ =  0.  
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Thus 𝐽1Φ1 = 0  gives that  Φ1 = (−(1 +
𝛽

𝑏
)𝑣12, 𝑣12, 0)

𝑇

, where 𝑣12 is any nonzero real number. 

Now, let  𝜓1 = (𝜑11, 𝜑12, 𝜑13)
𝑇 represent the eigenvectors associated with the zero eigenvalues 

𝜆12
∗ = 0  of 𝐽1

𝑇 . Thus, 𝐽1
𝑇𝜓1 = 0  gives 𝜓1 = (0, 𝜑12, 0)𝑇  where 𝜑12  represents any nonzero 

real number. 

Now, since 𝐹𝑑1
(𝑋, 𝑑1) = (0,−𝐼, 0)𝑇. Hence 𝐹𝑑1

(𝐸1, 𝑑1
∗) = (0,0,0)𝑇 

Therefore, 𝜓1
𝑇𝐹𝑑1

(𝐸1, 𝑑1
∗) = 0. Hence system (1) has no saddle-node bifurcation (SNB) in view 

of Sotomayor theorem.  

Moreover, it is observed that  𝜓1
𝑇[𝐷𝐹𝑑1

(𝐸1, 𝑑1
∗)Φ1] = − 𝜑12𝑣12  ≠ 0 

Also, by using Eq. (28), it is obtained.  

𝜓1
𝑇[𝐷2𝐹( 𝐸1, 𝑑1

∗) (Φ1, Φ1)] = − 2(1 +
𝛽

𝑏
) 𝛽𝜑12𝑣12

2  ≠ 0. 

Then a TB occurs ear AXEP when 𝑑1 = 𝑑1
∗
, however pitchfork bifurcation (PB) can’t occur.  

Note that, since PFEP is unconditionally LAS whenever it exists, then it is a hyperbolic point 

always and there is no bifurcation at that point. 

Theorem 9. Assume that condition (16a) and (16b) holds, then the system (1) near DFEP 

undergoes a TB when the parameter 𝛽 passes through the value 𝛽∗ = 
𝑎𝑃̅+ 𝑑1

𝑆̅
  if the following 

condition is satisfied   

𝛽∗𝜏1 ≠ 𝑎𝜏2                                                           (29) 

Proof. The JM of the system (1) at (𝐸3, 𝛽
∗) can be represented by:  

𝐽2 =  𝐽(𝐸3, 𝛽
∗) =

[
 
 
 −𝑏𝑆̅ −(𝑏 + 𝛽∗)𝑆̅ − (

𝑟𝑘

(1+𝑘𝑃̅)2
+ 𝑎) 𝑆̅

0 0 0
𝑎𝛼𝑃̅2

𝜃+𝑃̅

𝑎𝛾𝑃̅2

𝜃+𝑃̅
 
𝑎𝛼𝜃𝑆̅𝑃̅

(𝜃+𝑃̅ )2 ]
 
 
 

= (𝑎𝑖𝑗). 

Then the matrix has two eigenvalues having negative real parts due to conditions (16a)-(16b), 

which are given by Eq. (15b). While the third is zero. Hence it is a non-hyperbolic point. 

Let Φ2 = (𝑣21, 𝑣22, 𝑣23)  be the eigenvectors of 𝐽2 corresponding to 𝜆32
∗ =  0. Thus 𝐽2Φ2 = 0 

gives that Φ2 = (𝜏1𝑣23, 𝑣23, 𝜏2𝑣23)
𝑇 , where 𝜏1 =

𝑎13𝑎32−𝑎33𝑎12

𝑎11𝑎33−𝑎13𝑎31
 and 𝜏2 =

𝑎31𝑎12−𝑎11𝑎32

𝑎11𝑎33−𝑎13𝑎31
,  while 
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𝑣23 represents any nonzero real number. 

Now, let  𝜓2 = (𝜑21, 𝜑22, 𝜑23)
𝑇 be the eigenvectors associated with the zero eigenvalue 𝜆2

∗ =

 0  of  𝐽2
𝑇  Thus, 𝐽2

𝑇𝜓2 = 0  gives 𝜓2 = (0, 𝜑23, 0)𝑇 where 𝜑23  represents any nonzero real 

number. 

Now, since 𝐹𝛽(𝑋, 𝛽) = (−𝑆𝐼, 𝑆𝐼, 0)𝑇. Hence 𝐹𝛽(𝐸3, 𝛽
∗) = (0,0,0)𝑇 

Therefore, 𝜓2
𝑇[𝐹𝛽(𝐸3, 𝛽

∗)] = 0. Hence system (1) has no SNB in view of the Sotomayor theorem.  

Moreover, it is observed that 𝜓2
𝑇[𝐷𝐹𝛽(𝐸3, 𝛽

∗)Φ2] =  𝑆̅𝜑23𝑣23  ≠ 0 

Now, by using Eq. (28) with the condition (29), it is obtained.  

𝜓2
𝑇[𝐷2𝐹( 𝐸3, 𝛽

∗) (Φ2, Φ2)] = 2𝜑23𝑣23
2(𝛽∗𝜏1 − 𝑎𝜏2) ≠ 0. 

Then the system (1) undergoes a TB near DFEP when 𝛽 = 𝛽∗.  

Theorem 10. Assume that the conditions (17a) and (17c) are satisfied, then the system (1) near 

PEP undergoes an SNB when the parameter 𝛾  passes through the value 𝛾∗ =

−ℎ12(ℎ21ℎ33
∗ −ℎ23ℎ31)

(ℎ11ℎ23−ℎ13ℎ21)
 
𝜃+𝑃̿

𝑎𝑃̿2   if the following condition is satisfied.   

𝜏5𝑞11
∗ + 𝜏6𝑞21

∗ + 𝑞31
∗ ≠ 0,                                           (30) 

where ℎ𝑖𝑗 are given in the Eq. (18), while all the new symbols are given in the proof. 

Proof. The JM of the system (1) at PEP that is given in Eq. (18), can be rewritten when 𝛾 = 𝛾∗ 

by: 

𝐽3 = 𝐽(𝐸4, 𝛾
∗) 

[
 
 
 
 −𝑏𝑆̿ −(𝑏 + 𝛽)𝑆̿ − (

𝑟𝑘

(1+𝑘𝑃̿)
2 + 𝑎 ) 𝑆̿

𝛽𝐼 ̿ 0 −𝑎𝐼 ̿

𝑎𝛼𝑃̿2

𝜃+𝑃̿
 

𝑎 𝛾∗𝑃̿2

𝜃+𝑃̿

𝜃𝑎(𝛼𝑆̿+,𝛾∗𝐼)̿𝑃̿

𝜃+𝑃̿2  ]
 
 
 
 

. 

It is easy to verify that at 𝛾 = 𝛾∗ > 0, the determinant of 𝐽3 equals zero (𝛿3 = 0). Hence the 

characteristic equation that is given in Eq. (19) has zero eigenvalue and two negative real parts 

eigenvalues due to conditions (17a) and (17c). 

Now, let Φ3 = (𝑣31, 𝑣32, 𝑣33)  be the eigenvectors of 𝐽3 corresponding to 𝜆∗ =  0 . Then, we will 

get Φ3 = (𝜏3𝑣33, 𝜏4𝑣33, 𝑣33)
𝑇 , where 𝜏3 = 

−ℎ23

ℎ21
> 0, 𝜏4 = 

ℎ11ℎ23− ℎ13ℎ21

ℎ12ℎ21
< 0 , while 𝑣33 
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represents any nonzero real number.  

Now, let 𝜓3 = (𝜑31, 𝜑32, 𝜑33)
𝑇, represent the eigenvectors associated with the zero eigenvalue 

𝜆∗ = 0 of  𝐽3
𝑇. Thus, 𝐽3

𝑇𝜓3 = 0 gives 𝜓3 = (𝜏5𝜑33, 𝜏6𝜑33, 𝜑33)
𝑇 where 𝜏5 =

−ℎ32
∗

ℎ12
 and 𝜏6 =

 
ℎ11ℎ32

∗ − ℎ31ℎ12

ℎ12ℎ21
, with 𝜑33 represents any nonzero real number. 

Now, since 𝐹𝛾(𝑋, 𝛾) = (0,0,
𝑎𝐼𝑃2 

𝜃+𝑃
)𝑇. Hence it is obtained that 𝐹𝛾(𝐸4, 𝛾

∗) = (0,0,
𝑎𝐼𝑃̿̿2 

𝜃+𝑃̿
)𝑇. 

Therefore, 𝜓3
𝑇[𝐹𝛾(𝐸4, 𝛾

∗)] =
𝑎𝐼𝑃̿̿2 

𝜃+𝑃̿
𝜑33 ≠ 0.   

Now, using Eq. (28) to compute the 𝐷2𝐹𝛾(𝐸4, 𝛾
∗)(Φ3, Φ3), it is obtained:  

 𝑞11
∗ = −2𝑏𝜏3

2𝑣33
2 − 2(𝑏 + 𝛽)𝜏3𝜏4𝑣33

2 − 2(
𝑟𝑘

(1+𝑘𝑃̿)
2 + 𝑎) 𝜏3𝑣33

2 + 2
𝑟𝑘2𝑆̿

(1+𝑘𝑃̿)
3  𝑣33

2. 

 𝑞21
∗ = 2𝛽𝜏3𝜏4𝑣33

2 − 2𝑎𝜏4𝑣33
2. 

 𝑞31
∗ = 2𝑎𝛼 (

2𝜃𝑃̿+𝑃̿2

(𝜃+𝑃̿)2
) 𝜏3𝑣33

2 + 2𝑎𝛾∗ (
2𝜃𝑃̿+𝑃̿2

(𝜃+𝑃̿)2
) 𝜏4𝑣33

2 + 2𝑎(𝛼𝑆̿ + 𝛾∗𝐼)̿
𝜃2

(𝜃+𝑃̿)
3 𝑣33

2. 

Accordingly, using condition (30), it is simple to verify that: 

  𝜓3
𝑇[𝐷2𝐹𝛾(𝐸4, 𝛾

∗)(Φ3, Φ3)] = 𝜑33(𝜏5𝑞11
∗ + 𝜏6𝑞21

∗ + 𝑞31
∗)  ≠ 0. 

Hence, system (1) undergoes an SNB and the proof is done. 

 

6. NUMERICAL SIMULATION 

In this section, a numerical simulation has been used to verify the obtained theoretical results, and 

understand the impact of changing the parameter values on the system’s dynamics. Therefore, 

system (1) is solved numerically for different sets of parameters and different sets of initial 

conditions using MATLAB version R2013a. Then all the obtained numerical results are presented 

in the form of a 3𝐷 phase portrait and 2𝐷 time series. Therefore, in order to run the simulation, 

the following hypothetical set of biologically feasible data is used in this section. 

𝑟 = 6 , 𝐾 = 0.4, 𝑏 = 0.1, 𝛽 = 0.4 , 𝑎 = 0.25 , 𝑑1 = 0.1,
𝛼 = 0.25 , 𝛾 = 0.25, 𝐴 = 2, 𝑑2 = 0.1, 𝑞 = 0.2, 𝐸 = 0.5.

                    (31) 

The dynamics of the system (1) using (31) is described in Fig. (1). 
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Figure 1: The solutions of the system (1) use parameters set (31) with different initial points. (a) A 3𝐷 phase portrait 

for the bi-stable case between 𝐸2, and 𝐸4. (b) Time series for the trajectories of 𝑥. (c) Time series for the trajectories 

of 𝑦. (d) Time series for the trajectories of 𝑧. 
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Clearly, system (1) approaches two different attractors (𝐸2 and 𝐸4) using the same parameters set 

when the system starts from different initial points that indicate the bi-stable case. This is 

confirming the theoretical finding that indicates the existence of a basin of attraction for each point. 

Now the impact of changing the value of 𝑟 is studied in Fig. (2). 
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Figure 2: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑟. (a) A 3𝐷 phase portrait approaches 𝐸2 when 𝑟 = 5.5. (b) Time series for all populations when 𝑟 = 5.5. (c) A 

3𝐷  phase portrait approaches 𝐸4  when 𝑟 = 6.5 .  (d) Time series for all populations when 𝑟 = 6.5 .  (e) A 3𝐷 

phase portrait approaches 𝐸3 when 𝑟 = 7.25. (f) Time series for all populations when 𝑟 = 7.25. 

Clearly, the range of 𝑟 has different bifurcation points, and hence it affects the dynamic of the 

system (1). However, the impact of 𝑘 on the system’s dynamics is shown in Fig. (3). 

 

Figure 3: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑘. (a) Time series for all populations when 𝑘 = 0.28 that approaches 𝐸3. (b) Time series for all populations when 

𝑘 = 0.48 that approaches 𝐸2. 
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Clearly, the existence of populations depends on the value of 𝑘 as shown in Fig. (3). However, 

the influence of changing 𝑏 on the system’s dynamic is shown in Fig. (4).  

 

 

Figure 4. The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑏 . (a) A 3𝐷  phase portrait for the bi-stable case between 𝐸2 , and 𝐸4  when 𝑏 = 0.07 . (b) A 3𝐷  phase portrait 

approaches 𝐸4 when 𝑏 = 0.05. (c) A 3𝐷 phase portrait approaches periodic attractor when 𝑏 = 0.01. (d) A 3𝐷 

phase portrait approaches 𝐸2 when 𝑏 = 0.15. 
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As shown in Fig. (4), the system’s dynamics are affected by the changing in 𝑏. Now, Fig. (5) 

shows the role of changing in 𝛽. 

 

 

Figure 5: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝛽. (a) Time series for all populations when 𝛽 = 0.34 that approaches 𝐸3. (b) Time series for all populations when 

𝛽 = 0.46 that approaches 𝐸2. (c)Time series for all populations when 𝛽 = 0.7 that approaches periodic attractor in 

𝑥𝑦 −plane. 
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It is clear from Fig. (5), that the system’s dynamics are affected by the changing in 𝛽. However, 

Fig. (6) shows the role of changing in 𝑎. 

 

 

 

Figure 6: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑎. (a) Time series for all populations when 𝑎 = 0.2 that approaches 𝐸2. (b) Time series for all populations when 

𝑎 = 0.3 that approaches 𝐸3. (c)Time series for all populations when 𝑎 = 1.5 that approaches periodic attractor in 

𝑥𝑧 −plane. 

 



24 

Z. K. MAHMOOD, H. A. SATAR 

Again the influence of changing 𝑎 on the system’s dynamic is clearly shown in Fig. (6). However, 

the changing of 𝑑1 is studied in Fig. (7). 

 

Figure 7: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑑1. (a) A 3𝐷 phase portrait for the bi-stable case between 𝐸2, and 𝐸3 when 𝑑1 = 0.35. (b) A 3𝐷 phase portrait 

approaches 𝐸3 when 𝑑1 = 0.55. 

 

Obviously, changing the parameter 𝑑1 affects the system’s dynamic as presented in Fig. (7). Now, 

the role of changing the parameter 𝛼 on the system’s dynamic is studied in Fig. (8).  
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Figure 8: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝛼. (a) Time series for all populations when 𝛼 = 0.15 that approaches 𝐸2. (b) Time series for all populations shows 

the bi-stable case between 𝐸2 , and 𝐸3  when 𝛼 = 0.3 .. (c) Time series for all populations when 𝛼 = 0.5  that 

approaches 𝐸3. 

The impact of changing the parameter 𝛼 on the dynamic of the system (1) is obvious from Fig. 

(8). However, the change in parameter 𝛾 is investigated in Fig. (9). 

 

Figure 9: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝛾. (a) Time series for all populations when 𝛾 = 0.2 that approaches 𝐸2. (b) Time series for all populations when 

𝛾 = 0.3 that approaches 𝐸4. 
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Similarly, Fig. (9) clearly shows the influence of the system’s dynamics due to changing in the 𝛾. 

However, the influence of changing the parameters 𝜃, and 𝑑2 on the system’s dynamic is studied 

in Fig. (10) and (11) respectively. 

 

 

Figure 10: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝜃. (a) Time series for all populations when 𝜃 = 1.15 that approaches 𝐸3. (b) Time series for all populations when 

𝜃 = 1.25 that approaches 𝐸4. (c) Time series for all populations when 𝜃 = 2.4 that approaches 𝐸2. 
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Figure 11: The solutions of the system (1) use parameters set (31) with different initial points and different values of 

𝑑2. (a) Time series for all populations when 𝑑2 = 0.05 that approaches 𝐸3. (b) Time series for all populations when 

𝑑2 = 0.15 that approaches 𝐸2 

Further investigation of the remaining parameters, shows that the parameters 𝑞 and 𝐸 have a  

similar influence as that shown for 𝜃 on the dynamic of the system (1). 

 

7. DISCUSSION AND CONCLUSION 

Predator under the effect of the weak Allee effect and harvesting is proposed and studied. The 

influence of fear from the predation process is considered. The solution properties of the proposed 

system are studied. All possible equilibrium points are determined. The stability analysis of the 

equilibrium points is investigated. The possible basin of attraction for each point is determined. 

The survival conditions of the system throughout the entire time are constructed. The impact of 

varying the values of the parameters on the dynamics of the system is studied using the Sotomayor 

theorem for local bifurcation. Numerical simulation was used to investigate the global dynamics 

of the proposed system and specify the parameter set that controls the dynamics of the system (1) 

using a hypothetical set of parameters.   

Depending on the numerical results, the following observations were obtained. The system (1) 

undergoes a bi-stable case between the PFEP and PEP due to the fact that PFEP is unconditionally 
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stable whenever it exists and the selected data set satisfies the existence condition. Hence whenever 

the initial point falls near the 𝑥𝑦 −plane there is some trajectories approach to PFEP. Decreasing 

the intrinsic growth rate of the prey leads to extinction in predator species and the solution 

approaches PFEP from different initial points. However. Increasing the value of the growth rate 

makes the system approaches globally to PEP for a specific range. Then extinction happens in the 

infected population of prey and the solution approaches DFEP. Otherwise, the system still has a 

bi-stable behavior. However, decreasing the fear rate causes extinction in the infected population 

due to the weakness of the individuals in this compartment and the high possibility of catching 

them by a predator. However, increasing the value of the fear rate leads to extinction in a predator 

species due to hiding prey that causes unavailability of food. Otherwise, the system still undergoes 

a bi-stable behavior. 

The intraspecific competition of the prey has a clear influence on the system’s dynamics so 

that the dynamics transfer from bi-stable to GAS at a PEP and then the system losses its stability 

and undergoes periodic dynamics in the interior of their state space when the intraspecific 

competition decrease. However, the system losses persistence and the solution goes to PFEP as 

the value of the intraspecific competition increase. The decreasing infection rate yields extinction 

of the infected population and the system approaches DFEP. On the other hand, rising the infection 

rate causes extinction in predator species and the solution approaches PFEP. Moreover, rising the 

value of the infection rate further leads to losing the stability of PFEP and periodic dynamics in 

the 𝑥𝑦 −plane appear. In contrast to the infection rate, lowering the attack rate leads to the 

extinction of predator species and hence the system approaches PFEP while rising the attack rate 

leads to the extinction of the infected prey and hence the system approaches DFEP. Further, 

increasing the attack rate makes the system lose its stability at DFEP and goes to periodic dynamics 

in the 𝑥𝑧 −plane.  

Although decreasing the death rate of the infected prey does not change the behavior of the 

system (1), it is observed that rising this value leads first to the transfer of the bi-stable case 

between PFEP and PEP to bi-stable between PFEP and DFEP and then the system approaches 
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asymptotically to DFEP only. On the other hand, lowering the conversion rate of the susceptible 

prey to the predator leads to the extinction of the predator and the system approaches PFEP, 

however rising their value causes extinction in infected prey and hence the system approaches 

DFEP. Otherwise, the system undergoes a bi-stable behavior. Also, lowering the conversion rate 

of the infected prey to the predator leads to the extinction of the predator, and hence the system 

has a GAS at PFEP. While rising the value of this parameter causes stabilizing of the system at a 

PEP. 

The Allee effect rate has the same impact on the system’s dynamics as that occurs with the 

infection rate when decreasing their value, so that the infected prey disappears and the solution 

approaches DFEP. However, increasing their value leads to the extinction in the predator species 

and hence the system approaches PFEP. Otherwise, the system has a bi-stable behavior case. 

Finally, it is observed that varying the predator death rate, the harvesting catchability constant and 

the effort rate has the similar influence of the system’s dynamics as that shown with Allee effect 

rate. 

According to the above, the system (1) is very sensitive to changing in their parameters and 

undergoes different behavior. 
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