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Abstract. This paper presents and analyzes a mathematical model that takes into account media coverage to ex-

plain how corruption spreads and is controlled. The model solution’s positivity and boundedness are established,

and the fundamental reproduction number is determined. We also examine the local and global stability of the

model’s endemic and corruption-free equilibrium points, as well as their corruption equilibria. According to the

study, the free-corruption equilibrium is locally and globally asymptotically stable if the basic reproduction number

is less than one. When the basic reproduction number is greater than one, the endemic equilibrium point is asymp-

totically stable both locally and globally. To verify the study findings, numerical simulations were performed using

MATLAB software’s ode45.
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1. INTRODUCTION

The word ”corrupt” comes from the Latin word ”corruptus,” which means ”to disturb or

damage” [1]. It is an illegal practice carried out for private benefit by public or private officials

abusing their position or power, [2]. Corruption is non-compliance, a gain that breaks down
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any law or rule or community action [3]. It’s a worm inside society’s body, and it’s a cancer

for economic, social, and political reform [4]. Many nations round the sector be afflicted by

deep-seated corruption that hampers financial improvement, undermines democracy, harms so-

cial justice and the guideline of thumb of regulation [5]. It is one of the reasons of instability

and battle seen withinside the present day state of affairs in Ethiopia [6].

Nowadays, different epidemiological models are used to study the transmission dynamics of

corruption as a disease. [7] have proposed and analyzed a easy social contagion version that

depicts the dynamics of social impacts amongst politicians in an artificially corrupt parliament.

The outcomes display that there may be a essential density of such zealot above which sincere

deputies can not live to tell the tale as sincere after an extended time, whilst zealot density

under the stated essential density of sincere deputies coexist with corrupt ones. [1] models an

epidemiological version of corruption of immunity clauses in Nigeria. The simulation end re-

sult indicates that managing corruption withinside the presence of an immunity clause regime

may be a tough conflict to win if the clause persists.

Nathan and Jackob [8] divided the overall population into three classes: susceptible, corrupt,

and politically corrupt. They mainly target those who exploit officials and politicians. Preven-

tion and disengagement strategies are modeled using model parameters and strategies are eval-

uated to counteract the vice of corruption. A model of corruption dynamics was proposed by

[9]. Using an approximation of the honest population, an epidemiological corruption threshold

was updated and developed. [4] provided a mathematical model for the transmission dynamics

of corruption as a disease with a constant recruiting rate and a current occurrence. The version

answer’s positivity and boundedness are tested. In addition, the primary duplicate number (R0),

corruption unfastened and the endemic equilibrium factor had been determined.

Lemecha [6] proposed and analyzed a deterministic model for the spread of corruption like

a disease. The version has comparable residences to [4] besides that someone who loses the

immunity received thru the council in prison does now no longer immediately be a part of the

corrupt elegance however is prone because of human behavior. And they’re involved approxi-

mately the effect of the notice created with the aid of using anti-corruption.
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Cuervo-Cazurra [10] proposed and analyzed a deterministic mathematical model for the trans-

mission of corruption dynamics. [11] developed differential equation-based models for the

spread of corruption that represented either growth or decay norms. To measure the level of

corruption dynamics, [12] developed a difference equation-based approach. [5] developed and

assessed a mathematical model with a standard incidence for studying corruption dynamics as

a disease. Local stability analyses of endemic corruption and corruption-free equilibrium were

investigated. The importance of the parameters in the model’s long-term trajectory is also ex-

plained via numerical simulations.

By identifying and measuring the drivers that explain political corruption, [13] model and quan-

tify the population at risk of political corruption in Spain. Once the problem has been quan-

tified, the model allows parameters to be modified and fiscal, economic and legal measures to

be simulated in order to quantify and better understand the impact on Spanish citizens. The re-

sults suggest strengthening women’s leadership positions to mitigate this problem, in addition

to changes in the law governing political parties in Spain and an increase in the budget of the

judiciary system.

Mokaya et al.[14] developed and studied a deterministic model for the spread of corrupt morals

that involves a group of people who are going through a counseling and guidance procedure.

They determined theoretical results by computing the basic reproduction number, R0, studying

the presence and stability of equilibria, and doing numerical simulations. The findings reveal

that an integrated control strategy is the most effective way to counteract moral corruption

transmission. [15] used Lotka Volterra, Predator-Prey equations to broaden a version to explain

corruption in better training institutions. Corrupt students and staff act as predators even as their

non-corrupt friends act as prey withinside the newspaper. The numerical simulation indicates a

growing trend towards corruption. The trend of staff and student corruption is declining, con-

cluding that more emphasis should be placed on staff than on students to curb the spread of

corruption.

[16] created a mathematical model of corruption dynamics in the presence of management con-

trols. The model was simulated in MATLAB using RungeKutta’s fourth-order technique, and

the findings suggest that combining mass education with religious education reduces corruption



4 ZERIHUN KINFE BIRHANU, ABAYNEH KEBEDE FANTAYE

in a timely manner as compared to utilizing each control strategy independently.

Bonyah [17] formulated the fractional optimal control model of corruption dynamics. The re-

sults of the numerical solution show that the best strategy to control corruption in society is to

optimize all controls at the same time. [18], broaden a deterministic version of the unfold of

corruption and its evaluation the use of differential equations. Then the version changed into

prolonged to optimum manage and the end result suggests that the extent of corruption in society

may be decreased if anti-corruption efforts are made via the consequences are improved and po-

sitioned into practice. [3] developed and tested a deterministic mathematical model to describe

the dynamics of corruption transmission while taking into account the social consequences for

honest people. The basic features of the model are determined, including the basic reproduction

number, corruption equilibria, and local and global asymptotic stability. The model was then

extended to optimal control, and the results reveal that the prevention and punishment technique

is the most effective way to limit corruption’s transmission dynamics.

Recently, [2] developed a non-linear deterministic mathematical model for the dynamics of

corruption by dividing the total population into susceptible (S), exposed (E), corrupt (C), recov-

ered (R) and honest (H) classes. Furthermore, the model was extended to the optimal control

problem and the author concluded that the integrated control strategy should be used to fight

corruption. Media coverege has been known to greatly influence an individuals behaviour as

well as government policies on prevention and control of infectious disease [19].

In this study, we modify the model proposed by [2] by adding the jail class to the existing

model. Moreover, in our present model, we have taken into account that the impact of media

coverege for the transmission and control of corrruption dynamics. This study is organized as

follows. In the second part, a new mathematical model for the spread of corruption dynamics

is constructed. In part three, we look at the existence and stability of corruption equilibria, as

well as the positivity and boundedness of solutions. Part four deals about numerical simulation.

Finally, conclusions are given in part five.
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2. MODEL FORMULATION

In this section, we subdivided the total population into six classes:- Susceptible(S(t)), Ex-

posed(E(t)), Corrupted(C(t)), Jailed(J(t)), Recovered(R(t)) and Honest(H(t)) individuals and we

assumed that:

• Susceptible are individuals not involved in corrupt activities, or individuals who are

imprisoned and then released after taking the advice;

• Exposed are individuals who are exposed to corruption but are not involved in corrupt

activities;

• Individuals who are involved in corrupt activities are considered to as corrupted;

• Jailed are those found guilty by law of corrupt activities;

• Recovered are an individuals who are stopped to do any corrupt activities;

• An honest person is a sincere person who can never corrupt and

• An individuals can engage in corrupt activities only by coming into contact with corrupt

people.
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FIGURE 1. Flow Chart of the Model.
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Parameter Description

Λ Recruitment rate.

β Effective corruption contact rate.

φ Measures the efficacy of media coverage.

m Media coverage.

α Rate at which exposed individuals become corrupted.

θ Proportion of individuals that joins to corrupt class from exposed class.

ρ Rate at which corrupted individuals become jailed.

ω Proportion of individuals that joins to jailed class from corrupted class.

γ Proportion of individuals that joins to recovered class from jailed class.

σ Rate at which jailed individuals become recovered.

δ Rate at which recovered individuals become honest.

τ Proportion of individuals that joins to honest class become recovered class.

ε Rate at which susceptible individuals become honest.

µ Natural death rate.

TABLE 1. Parameters of the model

In addition, we assumed that there is a positive recruitment rate Λ in the susceptible class

and a positive natural mortality rate µ for all classes. The susceptible individuals can be joined

to exposed class by the reduced rate of contact with corrupt individuals due to media coverage
φβC
m+C ; where m, is media coverege, φ(0< φ < 1) is efficacy of media coverege, the function C

m+C

is a continuous bounded function which has taken corruption saturation into account. And, the

remaining individuals from susceptible class are joined to honest class with ε proportion. The

exposed individuals are joined to corrupt class with the rate of αθ . And due to their corrupt

activities,these corrupt individuals are joined to jailed class with the rate of ωρ . Also, the

exposed and corrupt individuals can be joined to recovered class with the rate of (1−θ)α and

(1−ω)ρ respectively and then, they become more honest with the rate of γδ as a result of anti-

corruption or therapy in jail, as well as moral or religious beliefs. In Table 1, all of the parameter

descriptions are presented. We can derive the following from the model’s assumptions and flow
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chart in figure 1:

We can derive the following from the model’s assumptions and flow chart in figure 1.

dS
dt

= Λ−
(

1− φC
m+C

)
βSC+(1− γ)σJ+(1− τ)δR− (µ + ε)S,

dE
dt

=

(
1− φC

m+C

)
βSC− (µ +α)E,

dC
dt

= αθE− (µ +ρ)C,

dJ
dt

= ωρC− (µ +σ)J,(1)

dR
dt

= (1−θ)αE +(1−ω)ρC+ γσJ− (µ +δ )R,

dH
dt

= εS+δτR−µH,

with

(2)

S(0) = S0 > 0, E(0) = E0 ≥ 0 ,C(0) =C0 ≥ 0, J(0) = J0 ≥ 0, R(0) = R0 ≥ 0, H(0) = H0 ≥ 0,

and

0 < γ < 1,0 < θ < 1,0 < τ < 1,0 < ω < 1.

3. MODEL ANALYSIS

In this part, we look at the epidemiologically feasible region’s solution to equation (1).

(3) Ω =

{
(S,E,C,J,R,H) ∈ R6

+ : 0≤ S(t)+E(t)+C(t)+ J(t)+R(t)+H(t)≤ Λ

µ

}
.

3.1. Positivity and boundedness of the solution. The following theorem is used to demon-

strate the positivity and boundedness of the system of equation (1).

Theorem 1:

Let the initial data be {S(0)> 0,E(0)≥ 0,C(0)≥ 0,J(0)≥ 0,R(0)≥ 0,H(0)≥ 0} ∈Ω. Then,

the solution set {S(t),E(t),C(t),J(t),R(t),H(t)} of the system of equation (1) is non-negative

for all t ≥ 0.

Proof:

Let r = sup{t > 0 : S0(u)> 0,E0(u)≥ 0,C0(u)≥ 0,J0(u)≥ 0,R0(u)≥ 0,H0(u)≥ 0,u ∈ [0, t]}.
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Since, from equation (2), all initial data are non negative, then r > 0. But, if r < 0, then either

of the initial data is zero at r. Now, from the first equation of system (1), we can that:

(4)
dS
dt

= Λ−
(

1− φC
m+C

)
βSC+(1− γ)σJ+(1− τ)δR− (µ + ε)S.

Then, using the variation of constant formula, the solution of equation (4) at t is given by:

S(r) =S(0)exp
[
−
∫ T

0

((
1− φC

m+C

)
βC+(µ + ε)

)
sds
]

+
∫ t

0
(Λ+(1− γ)σJ+(1− τ)δR)

.exp
[
−
∫ t

s

((
1− φC

m+C

)
βC+(µ + ε)

)
udu
]

ds > 0.(5)

Furthermore, since all the state variables are positive in [0,r], thus S(r) > 0. Similarly, it can

be shown that E(r) ≥ 0,C(r) ≥ 0,J(r) ≥ 0,R(r) ≥ 0 and H(r) ≥ 0 which is a contradiction.

Therefore, r = 0. Hence, all the solution sets are positive for t ≥ 0.

Theorem 2: Assume that all the initial conditions are non-negative in R6
+ for the system

(6) Ω =

{
(S,E,C,J,R,H) ∈ R6

+;0≤ S(t)+E(t)+C(t)+ J(t)+R(t)+H(t) : N(t)≤ Λ

µ

}
,

then the region Ω is positively invariant.

Proof:- Let N be the total population, N(t) = S(t)+E(t)+C(t)+J(t)+R(t)+H(t). Then, by

differentiating N(t) with respect to time and substituting equation (1), we can obtain that:

(7)
dN
dt

= Λ−µN.

After some simplification,

N(t) =
Λ

µ
+

(
N(0)− Λ

µ

)
e−µt .(8)

Then, limsupt→∞ N(t)≤ Λ

µ
. As a result, is invariant in a positive sense. As a result, all solutions

of the system of equations (1) with initial conditions in Ω continue to be in Ω.
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3.2. Corruption Free Equilibrium Point of the Model. The model’s corruption-free equi-

librium points, E0, are stationary solutions in which society is devoid of corruption. It is ob-

tained by equating equation (1) to zero and using E = 0, C = 0, J = 0 and R = 0. Then,

corruption free equilibrium points, E0 of our model equation (1) is given by:

(9) E0 = (Ŝ, Ê,Ĉ, Ĵ, R̂, Ĥ) =

(
Λ

(µ + ε)
,0,0,0,0,

εΛ

(µ + ε)µ

)
.

The basic reproduction number R0: The basic reproduction number R0 measures the ex-

pected quantity of secondary infections so one can end result from a newly inflamed man or

woman delivered right into a susceptible population. Rewriting the model equation (1) starting

with newly corrupt classes and using the next generation matrix method, the basic reproduction

number R0 is obtained as follows:

dE
dt

=

(
1− φC

m+C

)
βSC− (µ +α)E,

dC
dt

= αθE− (µ +ρ)C,

dJ
dt

= ωρC− (µ +σ)J,(10)

dR
dt

= (1−θ)αE +(1−ω)ρC+ γσJ− (µ +δ )R,

dH
dt

= εS+δτR−µH,

the basic reproduction number R0 is its own dominant value of the FV−1 generation matrix or

spectral radio FV−1 where

F =



0 βΛ

µ+ε
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,and V =



µ +α 0 0 0 0

−αθ µ +ρ 0 0 0

0 ωρ µ +σ 0 0

−(1−θ)α −(1−ω)ρ −γδ µ +δ 0

0 0 0 −δτ µ


.

As a result, the basic number reproduction ratio R0 is given by:

(11) R0 =
βαθΛ

(µ +α)(µ +ρ)(µ + ε)
.
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3.3. Local Stability of the Corruption Free Equilibrium Point. The Jacobian matrix of the

system equation (1) at E0 can be used to discuss the local stability of the model’s corruption-

free equilibrium point, E0.

Theorem 3: Corruption free equilibrium point. E0 of system of equation (1) is locally asymp-

totically stable, if R0 < 1.

Proof. The Jacobian matrix of system of equation (1) is J =

(12)

−
(

1− φC
m+C

)
βC− (µ + ε) 0 −βS+

(
2m+C
(m+C)2

)
φβSC (1− γ)σ (1− τ)δ 0(

1− φC
m+C

)
βC −(µ +α) βS−

(
2m+C
(m+C)2

)
φβSC 0 0 0

0 αθ −(µ +ρ) 0 0 0

0 0 ωρ −(µ +σ) 0 0

0 (1−θ)α (1−ω)ρ γσ −(µ +δ ) 0

ε 0 0 0 δτ −µ


The characteristic equation of Jacobian matrix of equation (10) at corruption free equilibrium

point, E0 is |J(E0)−λ I4|= 0. That is

(13)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(µ + ε)−λ 0 − βΛ

µ+ε
(1− γ)σ (1− τ)δ 0

0 −(µ +α)−λ
βΛ

µ+ε
0 0 0

0 αθ −(µ +ρ)−λ 0 0 0

0 0 ωρ −(µ +σ)−λ 0 0

0 (1−θ)α (1−ω)ρ γσ −(µ +δ )−λ 0

ε 0 0 0 δτ −µ−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(14) (−(µ +σ)−λ )(−(µ +δ )−λ )(−µ−λ )(λ 2 + c1λ + c2) = 0.

Clearly,

λ1 =−(µ +σ)< 0,

λ2 =−(µ +δ )< 0

λ3 =−µ < 0
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Here, λ1 < 0,λ2 < 0 and λ3 < 0. Moreover, using Routh Hurwitz criteria, the last equation

of (14) has strictly negative real part since c1 = (2µ + α + ρ) > 0 and c2 = (µ + α)(µ +

ρ)
(

1− βαθΛ

(µ+α)(µ+ρ)(µ+ε)

)
= (µ +α)(µ +ρ)(1−R0)> 0 if R0 < 1 . As a result, with R0 < 1,

our model equation (1) at E0 offers all eigenvalues with a negative real part, and so it is locally

asymptotically stable.

3.4. Global Stability of the Corruption Free Equilibrium Point. We used the method pro-

posed by [20] to investigate global stability. We have expressed the system of equation (1) in

the following form, based on [20]: To investigate the global stability, we applied the method

proposed by [20]. Based on [20], we have written the system of equation (1) in the following

form:

dX
dt

= A(X−XE0,n)+A1Y,

dY
dt

= A2Y,(15)

where X = (S,H) represent the number of uncorrupted individuals, while, Y = (E,C,J,R) rep-

resent the number of corrupted individuals and XE0,n is a vector at corruption free equilibrium

point of the same vector length as X. Based on [20], the corruption free equilibrium point E0 is

globaly asymptotically stable if the following conditions are fulfilled:

(1) A should be a matrix with real negative eigenvalues.

(2) A2 should be a Metzler matrix.

Theorem 4: The corruption free equilibrium point, E0 is globally asymptotically stable if R0 <

1.

Proof: From our model of equation (1),

X = (S,H)T ,Y = (E,C,J,R)T ,E0 =

(
Λ

(µ + ε)
,0,0,0,0,

εΛ

(µ + ε)µ

)T

,XE0,n =

(
Λ

(µ + ε)
,

εΛ

(µ + ε)µ

)T

The system of equation (1) together with equation (15) can be written as Λ−
(

1− φC
m+C

)
βSC+(1− γ)σJ+(1− τ)δR− (µ + ε)S

εS+δτR−µH


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= A

 S− Λ

(µ+ε)

H− εΛ

(µ+ε)µ

 +A1


E

C

J

R

 ,



(
1− φC

m+C

)
βSC− (µ +α)E

αθE− (µ +ρ)C

ωρC− (µ +σ)J

(1−θ)αE +(1−ω)ρC+ γσJ− (µ +δ )R

 = A2


E

C

J

R

 ,

Using uncorrupt entry of Jacobian matrix of sytem of equation (1) and the representation in

equation (13), the matrix A,A1,A2 are:

A =

 −(µ + ε) 0

ε −µ)

 , A1 =

 0 −βS+
(

2m+C
(m+C)2

)
φβSC (1− γ)σ (1− τ)δ

0 0 0 δτ

 .

A2 =


−(µ +α) βS−

(
2m+C
(m+C)2

)
φβSC 0 0

αθ −(µ +ρ) 0 0

0 ωρ −(µ +σ) 0

(1−θ)α (1−ω)ρ γσ −(µ +δ )

 .

This implies that the sufficient conditions are satisfied. Thus, the corruption free equilibrium

point, E0, is globally asymptotically stable if R0 < 1.

3.5. Corruption Endemic Equilibrium Point of the Model. The endemic equilibrium point

for corruption, E1, is a steady-state solution in which corruption endures in the population. The

corruption endemic equilibrium point, E1 = (S∗,E∗,C∗,J∗,R∗,H∗), is obtained by equating

each equation in (1) to zero:

Λ−
(

1− φC∗

m+C∗

)
βS∗C∗+(1− γ)σJ∗+(1− τ)δR∗− (µ + ε)S∗ = 0,(

1− φC∗

m+C∗

)
βS∗C∗− (µ +α)E∗ = 0,

αθE∗− (µ +ρ)C∗ = 0,

ωρC∗− (µ +σ)J∗ = 0,(16)
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(1−θ)αE∗+(1−ω)ρC∗+ γσJ∗− (µ +δ )R∗ = 0,

εS∗+δτR∗−µH∗ = 0.

Then, after some simplification, we can obtain corruption endemic equilibrium point, E1 interms

of C∗ as

S∗ =
(µ +α)(µ +ρ)(
1− φC∗

m+C∗

)
βαθ

,

E∗ =
(µ +ρ)

αθ
C∗,

J∗ =
ωρ

µ +σ
C∗,

R∗ =
((µ +σ)(1−θ)α(µ +ρ)+αθ(µ +σ)(1−ω)ρ + γσωραθ)

(µ +δ )αθ(µ +σ)
C∗,

H∗ =
ε(µ +α)(µ +ρ)(
1− φC∗

m+C∗

)
β µαθ

+
δτ((µ +σ)(1−θ)α(µ +ρ)+αθ(µ +σ)(1−ω)ρ + γσωραθ)

(µ +δ )αθ(µ +σ)µ
C∗,

where C∗ is positive solution of

(17) d2C∗2 +d1C∗+d0,

d2 =αθωρ(µ +δ )(1− γ)σβ (1−φ)+(1− τ)δ ((µ +σ)(µ +ρ)(1−θ)α +αθ(µ +σ)

(1−ω)ρ + γσωραθ)β (1−φ)− (µ +α)(µ +ρ)(µ +δ )(µ +σ)β (1−φ),

d1 =(R0−1)(µ +α)(µ +ρ)(µ +δ )(µ +σ)(µ + ε)−βαθΛφ(µ +ρ)(µ +σ)+

βσm(1− τ)((µ +σ)(µ +ρ)(1−θ)α +αθ(µ +σ)(1−ω)ρ + γσωραθ)

mωρβαθ(1− γ)(µ +δ )−βm(µ +α)(µ +ρ)(µ +σ)(µ +δ ),

d0 =(R0−1)(µ +α)(µ +ρ)(µ +δ )(µ +σ)(µ + ε)m.

3.6. Local Stability of the Corruption Endemic Equilibrium Point. We used the Jacobian

stability approach to prove the local stability of the corruption endemic equilibrium state in this

section.

Theorem 5: When R0 > 1, the model’s endemic equilibrium point, E1, is locally asymptotically

stable.

Proof: The local stability of the corruption endemic equilibrium, E1, is determined based on
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the signs of the eigenvalues of the Jacobian matrix which is computed at the corruption endemic

equilibrium, E1. Now, the Jacobian matrix of the our model at E1 is given by:

(18) J =



−
(

1− φC∗
m+C∗

)
βC∗− (µ + ε) 0 −βS∗+d (1− γ)σ (1− τ)δ 0(

1− φC∗
m+C∗

)
βC∗ −(µ +α) βS∗−d 0 0 0

0 αθ −(µ +ρ) 0 0 0

0 0 ωρ −(µ +σ) 0 0

0 (1−θ)α (1−ω)ρ γσ −(µ +δ ) 0

ε 0 0 0 δτ −µ


,

where d =
(

2m+C∗
(m+C∗)2

)
φβS∗C∗. After simplification, the characteristic polynomial is obtained

as:

(19) g(λ ) = (µ +λ )
[
a5λ

5 +a4λ
4 +a3λ

3 +a2λ
2 +a1λ +a0

]
,

where;

a5 =1,a4 = 5µ +α +ρ +σ +δ + ε +

(
1− φC∗

m+C∗

)
βC∗,a3 =

((
1− φC∗

m+C∗

)
βC∗+(µ + ε)

)
(4µ +α +ρ +σ +δ )+(µ +α)(3µ +ρ +σ +δ )+(µ +ρ)(2µ +σ +δ )+(µ +σ)(µ +δ ),

a2 =

((
1− φC∗

m+C∗

)
βC∗+(µ + ε)

)
(µ +α)(3µ +ρ +σ +δ )+(µ +ρ)(2µ +σ +δ )((

1− φC∗

m+C∗

)
βC∗+2µ + ε +α

)
+(µ +σ)(µ +δ )

((
1− φC∗

m+C∗

)
βC∗+3µ +α + ε +ρ

)
+

(
1−
(

2m+C∗

(m+C∗)2

)
φC∗

)
αθβ

2S∗C∗− (1− τ)(1−θ)αδ

(
1− φC∗

m+C∗

)
βC∗,

a1 =(2µ +σ +δ )

((
1− φC∗

m+C∗

)
βC∗+(µ + ε)

)
(µ +α)(µ +ρ)+αθ

((
1− φC∗

m+C∗

)
βC∗

)
(

1−
(

2m+C∗

(m+C∗)2

)
φC∗

)
βS∗(2µ +σ +δ )+(µ +σ)(µ +δ )

((
1− φC∗

m+C∗

)
βC∗+(µ + ε)

)
(2µ +α +ρ)−αθ

((
1− φC∗

m+C∗

)
βC∗

)
((1− γ)σωρ +(1− τ)(1−ω)σρ)− (1− τ)(1−θ)δα((

1− φC∗

m+C∗

)
βC∗

)
(2µ +ρ +σ),a0 =

((
1− φC∗

m+C∗

)
βC∗+(µ + ε)

)
(µ +α)(µ +ρ)+

αθ

((
1− φC∗

m+C∗

)
βC∗

)(
1−
(

2m+C∗

(m+C∗)2

)
φC∗

)
βS∗(µ +σ)(µ +δ )− (1− γ)σαρθω(µ +δ )((

1− φC∗

m+C∗

)
βC∗

)
− (1− τ)δ

((
1− φC∗

m+C∗

)
βC∗

)
(αθ(γσρω +(1−ω)ρ(µ +σ))

+(1−θ)α(µ +ρ)(µ +σ)).



MODELING AND ANALYSIS OF CORRUPTION DYNAMICS 15

From the characteristic polynomial of equation (19), one of the eigenvalues of J(E1) is λl =

−µ < 0 and the others five roots of equation (19) are analyzed by Routh-Hurwitz criteria. The

coefficients a5,a4,a3,a2,a1,a0 of the characteristic polynomial are real positive. As a result,

the required conditions for the stability of the endemic corruption equilibrium point have been

met. The following are the required conditions for system stability using the Hurwitz array for

the characteristic polynomial:

λ 5 a5 a3 a1

λ 4 a4 a2 a0

λ 3 b1 b2 b3

λ 2 c1 c2 c3

λ 1 d1 d2 d3

λ 0 e1 e2 e3

where a5,a4,a3,a2,a1,a0 are the coefficients of the characteristic polynomial and the remain-

ing elements in the array are determined as follows:

b1 =−
1
a4

∣∣∣∣∣∣ a5 a3

a4 a2

∣∣∣∣∣∣= a3a4−a2

a4
> 0,b2 =−

1
a4

∣∣∣∣∣∣ a5 a1

a4 a0

∣∣∣∣∣∣= a1a4−a0

a4
,b3 =−

1
a4

∣∣∣∣∣∣ a5 0

a4 0

∣∣∣∣∣∣= 0,

c1 =−
1
b1

∣∣∣∣∣∣ a4 a2

b1 b2

∣∣∣∣∣∣= a2b1−a4b2

b1
> 0,c2 =−

1
b1

∣∣∣∣∣∣ a4 a0

b1 b3

∣∣∣∣∣∣= a0b1−a4b3

b1
= a0,c3 =−

1
b1

∣∣∣∣∣∣ a4 0

b1 0

∣∣∣∣∣∣= 0,

d1 =−
1
c1

∣∣∣∣∣∣ b1 b2

c1 c2

∣∣∣∣∣∣= b2c1−b1c2

c1
> 0,d2 =−

1
c1

∣∣∣∣∣∣ b1 b3

c1 c3

∣∣∣∣∣∣= b3c1−b1c3

c1
= 0,d3 =−

1
c1

∣∣∣∣∣∣ b1 0

c1 0

∣∣∣∣∣∣= 0,

e1 =−
1
d1

∣∣∣∣∣∣ c1 c2

d1 d2

∣∣∣∣∣∣= c2d1− c1d2

d1
= c2 = a0 > 0,e2 =−

1
d1

∣∣∣∣∣∣ c1 c3

d1 d3

∣∣∣∣∣∣= 0,e3 =−
1
d1

∣∣∣∣∣∣ c1 0

d1 0

∣∣∣∣∣∣= 0.

The coefficients of the characteristic polynomial a5,a4,a3,a2,a1,a0 are real positive and the

first column of the Routh-Hurwitz array have the same positive sign. Therefore, by Routh-

Hurwitz’s criteria, all eigenvalues of the characteristic polynomial are negative. Hence, the

corruption endemic equilibrium point E1 is locally asymptotically stable if R0 > 1.



16 ZERIHUN KINFE BIRHANU, ABAYNEH KEBEDE FANTAYE

3.7. Global Stability of Corruption Endemic Equilibrium Point. The following results are

used to study the global asymptotical stability of the corruption endemic equilibrium point E1

of the model of equation (1):

Λ =

(
1− φC∗

m+C∗

)
βS∗C∗− (1− γ)σJ∗− (1− τ)δR∗+(µ + ε)S∗,(

1− φC∗

m+C∗

)
βS∗C∗ = (µ +α)E∗,

αθE∗ = (µ +ρ)C∗,

ωρC∗ = (µ +σ)J∗,(20)

(1−θ)αE∗+(1−ω)ρC∗+ γσJ∗ = (µ +δ )R∗,

εS∗+δτR∗ = µH∗.

The following theorem can then be given and proved.

Theorem 6: For R0 > 1, then the model equation of (1) at E1 is global asymptotical stable.

Proof: Using the method proposed by [3], we consider the following Lyapunov function for

model of equation (1):

L(t) =S−S∗−S∗ ln
S
S∗

+E−E∗−E∗ ln
E
E∗

+
µ +α

αθ(
C−C∗−C∗ ln

C
C∗

)
+

µ +α

ωρ

(
J− J∗− J∗ ln

J
J∗

)
.(21)

By differentiating (21) with respect to time, we have

dL
dt

=

(
1− S∗

S

)
dS
dt

+

(
1− E∗

E

)
dE
dt

+
µ +α

αθ

(
1−C∗

C

)
dC
dt

+
µ +α

ωρ

(
1− J∗

J

)
dJ
dt

=

(
1− S∗

S

)[
Λ−

(
1− φC

m+C

)
βSC+(1− γ)σJ+(1− τ)δR− (µ + ε)S

]
+

(
1− E∗

E

)[(
1− φC

m+C

)
βSC− (µ +α)E

]
+

µ +α

αθ

(
1−C∗

C

)
[αθE− (µ +ρ)C]

+
µ +α

ωρ

(
1− J∗

J

)
[ωρC− (µ +σ)J] .(22)
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Using equation (20), equation (22) can becomes,

dL
dt

=

(
1− S∗

S

)[(
1− φC∗

m+C∗

)
βS∗C∗− (1− γ)σJ∗− (1− τ)δR∗+(µ + ε)S∗

]
(

1− S∗

S

)[
−
(

1− φC
m+C

)
βSC+(1− γ)σJ+(1− τ)δR− (µ + ε)S

]
+

(
1− E∗

E

)
[(µ +α)E∗− (µ +α)E]+

µ +α

αθ

(
1−C∗

C

)
[(µ +ρ)C∗− (µ +ρ)C]

+
µ +α

ωρ

(
1− J∗

J

)
[(µ +σ)J∗− (µ +σ)J] ,(23)

=− (m+(1−φ)C∗)
m+C∗

βS∗C∗
[
−1+

SC(m+(1−φ)C)(m+C∗)
S∗C∗(m+C)(m+(1−φ)C∗)

](
1− S∗

S

)
−
[
(µ + ε)S

(
1− S∗

S

)
+(1− γ)σJ∗

(
1− J

J∗

)
+(1− τ)δR∗

(
1− R

R∗

)](
1− S∗

S

)
− (µ +α)

[
E
(

1− E∗

E

)2

+
(µ +ρ)C

αθ

(
1−C∗

C

)2

+
(µ +σ)J

ωρ

(
1− J∗

J

)2
]
.(24)

Here, from equation (24), we observe that dL
dt < 0. Therefore, using [21], E1 is global asymp-

totical stable whenever R0 > 1.

Bifurcation: The central manifold theory is used to establish the equilibrium point stability

behavior at R0 = 1. At R0 = 1, the uncorrupted equilibrium point shifts from stable to unstable,

and when R0 passes one, there is a positive equilibrium. E0 = E1 as well as R0 = 1. As a result,

at the bifurcation point R0 = 1, a transcritical bifurcation occurs in the model.
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FIGURE 2. Susceptible population (S) and exposed population (E) w.r.t. time t

for different values of φ and m.
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4. NUMERICAL SIMULATION

In this section, we used MATLAB ode45 solvers to numerically verify our work. Our sim-

ulations look at the impact of various model parameter combinations on the transmission and

control of corruption dynamics. The simulation is carried out with a variety of parameter val-

ues. The source of the set of parameter values are mainly from literature review as well as some

assumption to investigate the effect of the awarness of the media coverege in the transmission

of corruption model. The relevant initial circumstances are used in the simulations and anal-

yses: S(0) = 100000,E(0) = 1000,C(0) = 100,J(0) = 0,R(0) = 1300,H(0) = 13000 and the

parameters values are displayed in Table 2.

Parameter Value Source

Λ 15000 Assumption

β 0.002 Assumption

φ 0.6 varies

µ 0.016 [6]

ε 0.03 [6]

m 0.00001 varies

σ 0.19 Assumption

α 0.2 [2]

θ 0.3 [6]

ρ 0.007 [2]

ω 0.06 Assumption

γ 0.125 [4]

δ 0.35 [2]

τ 0.1 [6]

TABLE 2. The parameter values of model.
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FIGURE 3. Exposed population (E) and Corrupted population (C) w.r.t. time t

for different values of α .

Susceptible population and exposed population with respect to time t for different values of

φ and m is shown in fig.2. From figure 2a and 2b, we observe that as media coverage increases

susceptible population increases while exposed population decrease as a result the corrupt pop-

ulation removes out from the community. Also, exposed population and corrupted population

with respect to time t for different values of α is shown in fig.3. The figure shows that as the

value of α increases the exposed population decreases, while the corrupt population increases.

From figures 4a and 4b we observe that as the value of ρ increases the corrupt population de-

creases, while the jail population increases. From figures 5a and 5b we observe that as the

value of δ increases the recovered population decreases, while the honest population increases.

Furthermore, figures 6a and 6b we observe that as the value of ε increases the susceptible pop-

ulation decreases, while the honest population increases.
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FIGURE 4. Corrupted population (C) and jailed population (J) w.r.t. time t for

different values of ρ .
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FIGURE 5. Recovered population (R) and honest population (H) w.r.t. time t for

different values of δ .
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FIGURE 6. Susceptible population (S) and honest population (H) w.r.t. time t

for different values of ε .

5. CONCLUSION

A mathematical model for the dynamics of corruption transmission, including media cover-

age, has been developed in this work. The model’s well-posedness, as well as its positivity and

boundedness, are examined. The basic reproduction number, as well as the stability analysis

of the model’s corruption equilibria, were investigated. According to the study, if the basic

reproduction number is less than one, the corruption-free equilibrium is locally and globally

asymptotically stable, however if the basic reproduction number is more than one, the endemic

equilibrium is locally asymptotically stable. The numerical simulation shows that in the pres-

ence of media coverage, the susceptible individuals increase, while the exposed as well as the

corrupted individuals decreases. This implies that in the presence of media coverage, corrup-

tion is removed out faster while ineffective media reporting on the transmission and control of

the corruption measures greatly increases the number of corrupt individuals in the population.

Our model has not conducted out optimal control and cost effectiveness of different corruption

intervention strategies, which can be investigated in future to find out which strategy is the best

in the control of the corruption.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.



22 ZERIHUN KINFE BIRHANU, ABAYNEH KEBEDE FANTAYE

REFERENCES

[1] R.I. Gweryina, M.Y. Kura, E. Okwu, An epidemiological model of corruption with immunity clause in Nige-

ria, World J. Model. Simul. 15 (2019), 262–275.

[2] H.T. Alemneh, Mathematical modeling, analysis, and optimal control of corruption dynamics, J. Appl. Math.

2020 (2020), 5109841. https://doi.org/10.1155/2020/5109841.

[3] A.K. Fantaye, Z.K. Birhanu, Mathematical model and analysis of corruption dynamics with optimal control,

J. Appl. Math. 2022 (2022), 8073877. https://doi.org/10.1155/2022/8073877.

[4] S. Abdulrahman, Stability analysis of the transmission dynamics and control of corruption, Pac. J. Sci. Tech-

nol. 15 (2014), 99–113.

[5] F.Y. Eguda, F. Oguntolu, T. Ashezua, Understanding the dynamics of corruption using mathematical model-

ing approach, Int. J. Innov. Sci. Eng. Technol. 4 (2017), 190–197.

[6] L. Lemecha, Modelling corruption dynamics and its analysis, Ethiopian J. Sci. Sustain. Develop. 5 (2018),

13–27.

[7] N. Crokidakis, J.S. Sa Martins, Can honesty survive in a corrupt parliament?, Int. J. Mod. Phys. C. 29 (2018),

1850094. https://doi.org/10.1142/s0129183118500948.

[8] O. M. Nathan, K.O. Jackob, Stability analysis in a mathematical model of corruption in Kenya, Asian Res. J.

Math. 15 (2019), ARJOM.53447.

[9] S. Hathroubi, H. Trabelsi, Epidemic corruption: A bio-economic homology, Eur. Sci. J. 10 (2014), 228-235.

[10] A. Cuervo-Cazurra, Corruption in international business, J. World Bus. 51 (2016), 35–49. https://doi.org/10

.1016/j.jwb.2015.08.015.

[11] S.R. Waykar, Mathematical modelling: A comparatively mathematical study model base between corruption

and development, IOSR J. Math. 6 (2013), 54–62.

[12] S.R. Waykar, Mathematical modelling: A study of corruption in the society of India, IOSR J. Math. 13

(2017), 09–17.

[13] E. de la Poza, L. Jodar, P. Merello, Modeling political corruption in Spain, Mathematics. 9 (2021), 952.

https://doi.org/10.3390/math9090952.

[14] N.O. Mokaya, H.T. Alemmeh, C.G. Ngari, et al. Mathematical modelling and analysis of corruption of morals

amongst adolescents with control measures in Kenya, Discr. Dyn. Nat. Soc. 2021 (2021), 6662185. https:

//doi.org/10.1155/2021/6662185.

[15] M. Kawira, C.G. Ngari, S. Karanja, A theoretical model of corruption using modified lotka volterra model:

A perspective of interactions between staff and students, J. Adv. Math. Computer Sci. 35 (2020), 12–25.

[16] O. Danford, M. Kimathi, S. Mirau, Mathematical modelling and analysis of corruption dynamics with control

measures in Tanzania, J. Math. Inform. 21 (2020), 57–79.

[17] E. Bonyah, Fractional optimal control for a corruption model, J. Prime Res. Math. 16 (2020), 11–29.

https://doi.org/10.1155/2020/5109841
https://doi.org/10.1155/2022/8073877
https://doi.org/10.1142/s0129183118500948
https://doi.org/10.1016/j.jwb.2015.08.015
https://doi.org/10.1016/j.jwb.2015.08.015
https://doi.org/10.3390/math9090952
https://doi.org/10.1155/2021/6662185
https://doi.org/10.1155/2021/6662185


MODELING AND ANALYSIS OF CORRUPTION DYNAMICS 23

[18] S. Athithan, M. Ghosh, X.Z. Li, Mathematical modeling and optimal control of corruption dynamics, Asian-

Eur. J. Math. 11 (2018), 1850090. https://doi.org/10.1142/s1793557118500900.

[19] A.K. Misra, A. Sharma, J.B. Shukla, Modeling and analysis of effects of awareness programs by media on

the spread of infectious diseases, Math. Computer Model. 53 (2011), 1221–1228. https://doi.org/10.1016/j.

mcm.2010.12.005.

[20] A. Iggidr, J. Mbang, G. Sallet, et al. Multi-compartment models, Discr. Contin. Dyn. Syst. 2007(suppl. 2)

(2007), 506–519.

[21] J.P. LaSalle, Stability theory and invariance principles, Dyn. Syst. 1 (1976), 211–222. https://doi.org/10.101

6/b978-0-12-164901-2.50021-0.

https://doi.org/10.1142/s1793557118500900
https://doi.org/10.1016/j.mcm.2010.12.005
https://doi.org/10.1016/j.mcm.2010.12.005
https://doi.org/10.1016/b978-0-12-164901-2.50021-0
https://doi.org/10.1016/b978-0-12-164901-2.50021-0

	1. Introduction
	2. Model Formulation
	3. Model Analysis
	3.1. Positivity and boundedness of the solution
	3.2. Corruption Free Equilibrium Point of the Model
	3.3. Local Stability of the Corruption Free Equilibrium Point
	3.4. Global Stability of the Corruption Free Equilibrium Point
	3.5. Corruption Endemic Equilibrium Point of the Model
	3.6. Local Stability of the Corruption Endemic Equilibrium Point
	3.7. Global Stability of Corruption Endemic Equilibrium Point

	4. Numerical Simulation
	5. Conclusion
	Conflict of Interests
	References

