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Abstract: Solar Dryer Dome (SDD), which is an agriculture facility for preserving and drying agriculture products, 

needs an intelligent system for predicting future indoor climate conditions, including temperature and humidity. An 

accurate indoor climate prediction can help to control its indoor climate conditions by efficiently scheduling its 

actuators, which include fans, heaters, and dehumidifiers that consume a lot of electricity. This research implemented 

deep learning architectures to predict future indoor climate conditions such as indoor temperature and indoor humidity 

using a dataset generated from the SDD facility in Sumedang, Indonesia. This research compared adapted sequenced 

baseline architectures with sequence-to-sequence (seq2seq) or encoder-decoder architectures in predicting sequence 

time series data as the input and output of both architecture models which are built based on Recurrent Neural Network 

(RNN) layers such as Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM). The result shows that the 

adapted sequence baseline model using GRU is the best model, whereas seq2seq models yield bigger Mean Absolute 
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Error (MAE) values by almost ten times. Overall, all the proposed deep learning models are categorized as extremely 

strong with 𝑅2 ≥ 0.99. 

Keywords: deep learning; solar dryer dome; sequence-to-sequence prediction; indoor climate prediction. 

2010 AMS Subject Classification: 68T05, 62H20, 97R40, 97R30. 

 

1. INTRODUCTION 

Indonesia has implemented the Indonesia Agriculture 4.0 programs, which means that the 

agriculture system should consist of Artificial Intelligence (AI) or Machine Learning (ML), the 

Internet of Things (IoT), and cyber-physical systems. One of those programs is Smart Dome 4.0, 

a low-cost, eco-friendly, and sophisticated program to support Indonesian farmers in saving their 

agricultural products [1]. The purpose of building a Solar Dryer Dome (SDD) is for food 

preservation and maintaining the product’s nutritional content because agricultural products 

require a long time to process before they are delivered to consumers [2]. SDD overcomes the 

many shortcomings of traditional drying methods under the sun in the outdoors, such as longer 

drying processes, potential rain, dust impact, bird and other flying animal droppings, the growth 

of fungi, inappropriate humidity, and color change. 

One weakness of SDD is the need for a power source for running the system continuously to 

provide suitable indoor environmental conditions with a constant supply of electricity for operating 

the actuators such as fans, heating systems, and dehumidifiers [1] [3] [4]. SDD uses green energy 

by collecting solar energy using a solar panel during the day and storing it in a battery for use at 

night. Indonesia, a country with two seasons, has various solar radiation distributions, so it can 

become a problem for SDD for solar energy absorption [5]. When the weather is dark and rainy 

throughout the day, it also becomes a problem. In a mountain area, dramatic weather changes also 

affect indoor SDD significantly. Another study on SDD concludes that controlling indoor climate 

by increasing indoor temperature and decreasing indoor humidity consumes the most power [6]. 

It makes predicting environmental parameters for scheduling the actuators an important thing for 

SDD. The application of the actuator scheduling can reduce SSD power consumption by using 
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energy sparingly. 

Predicting indoor climate for controlling SDD environmental conditions in order to achieve 

power consumption efficiency and the best quality of dried agricultural products is one of the most 

important and difficult tasks to perform for SDD [7]. Deep learning (DL), a method that learns the 

distribution of the data to be modeled automatically, can be applied to address these challenges in 

the agriculture sector, especially DL with RNN [8] [9]. Many reports show how amazing RNN can 

solve various challenges where the data is sequential [10] [11]. RNN can learn historical 

information in time series data with the aim of predicting future results [12]. Later, special 

improved RNNs such as LSTM and GRU appear, which are intended for long-term learning. [13]. 

Sequence-to-sequence (seq2seq) or encoder-decoder is one of the deep learning architectures 

which is popularly implemented in Natural Language Processing (NLP), which can output 

sequence data with sequence data input [14]. Since the input and output data are sequence, this 

research compared both the adapted sequence baseline architecture and the seq2seq architecture, 

which applied RNN layers on it, so the proposed 4 models are adapted sequence baseline with 

stacked GRU, adapted sequence baseline with stacked LSTM, seq2seq with GRU, and seq2seq 

with LSTM. 

 

2. RELATED WORKS 

For many years, DL has been a major improvement in ML research, solving high-dimensional 

data problems. [15]. DL is used in many domains of science, business, and government. The most 

popular deep learning methods which are used for predicting indoor climate problems are Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), a simplified LSTM. 

There is also some research which used deep learning to predict indoor climate problems. The 

closest work to our research is the research done by Gunawan et al. [16]. They developed four 

deep learning models for predicting indoor temperature and humidity, such as LSTM, GRU, 

Transformer, and Transformer with learnable positional encoding. Their datasets contained indoor 

temperature, indoor humidity, and 2 lighting variables in 3 different places. Their results show that 
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the GRU model was superior for all humidity predictions, and the LSTM model was superior for 

2 of 3 temperature predictions. 

Another related research was about predicting indoor climate parameters such as temperature, 

humidity, and carbon dioxide concentration inside a greenhouse for tomato plants by Ali and 

Hassanein [17]. They used the LSTM model as their prediction model. Similarly to Ali and 

Hassanein, Jung et al. predicted indoor climate such as temperature, humidity, and carbon dioxide 

concentration inside a greenhouse, but they compared three different models such as ANN-

Backpropagation, Nonlinear Autoregressive Exogenous model (NARX), and LSTM with datasets 

obtained from Davis wireless vantage Pro2 (Davis instruments, California, USA) weather station, 

and HMP 35 Probe (Vasaila, Helsinki, Finland). [18]. The result concluded that LSTM was 

superior to ANN-Backpropagation and NARX. 

Another indoor climate prediction research was done by Liu et al [19]. Their research 

implemented time sliding window to their LSTM model for learning the change of environment 

climate over short a period of time. Their datasets were tomato, cucumber, and spicy greenhouse 

with indoor temperature and humidity, light intensity, carbon dioxide concentration, soil 

temperature, and soil humidity. Their modified LSTM outperformed the GRU model. 

Elhariri and Taie conducted a similar study to SDD in which they experimented with Heating, 

Ventilation, and Air Conditioning (HVAC), an indoor system similar to SDD [20]. They compared 

LSTM and GRU models to predict the future microclimate inside smart buildings by using UCI 

Machine Learning Repository SML2010 datasets containing indoor temperature and humidity, 

carbon dioxide concentration, and outdoor temperature and humidity. The result showed that the 

GRU model was the best in their case. 

The research that is closest to ours, which implemented the seq2seq architecture as a model 

time series prediction, was done by Fang et al. [21]. They predicted an indoor climate inside the 

GreEn-ER building in the center of Grenoble, France, with the datasets containing indoor 

temperature and carbon dioxide. They proposed 3 seq2seq models, such as LSTM-Dense, LSTM-

LSTM, and LSTM-Dense-LSTM, which outperform the LSTM and GRU baseline models. 
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Inspired by the succession of the seq2seq architecture by Fang et al., this research implemented 

LSTM and GRU in our seq2seq models to be compared with our proposed adapted baseline with 

stacked LSTM and stacked GRU models. 

SDD can accomplish many tasks by accurately predicting future indoor climates, such as 

regulating indoor climatic conditions, attaining ideal agricultural product drying conditions, and 

minimizing energy use[22]. Inspired by Fang et al. and Gunawan et al., this study proposed 4 

models to be compared, such as the adapted GRU-based sequence baseline model, the adapted 

LSTM-based sequence baseline model, seq2seq GRU, and seq2seq LSTM [16] [21]. 

 

3. DATA AND METHODOLOGY 

3.1. Datasets  

The dataset which was used in this experiment was generated from a SDD facility in 

Sumedang, a town in Western Java, Indonesia. The facility can be seen in Figure 1. 

 

FIGURE 1. SDD Facility in Sumedang, Indonesia. 

 

The datasets were generated from two indoor sensors and an outdoor sensor, containing 

temperature and humidity data for each sensor over 12 days of recording. The dataset on the SDD 



6 

SETIAWAN, ELWIREHARDJA, PARDAMEAN 

can be depicted in Figure 2, with temperature represented by a blue line and humidity represented 

by an orange line. 

 

 

FIGURE 2. Datasets Obtained from Sensor. 

 

This research only addressed indoor temperature and indoor humidity, even though all models 

forecasted all six features by using all six features as input and output. Because the two primary 

factors that affect SDD, which need to be monitored and controlled, are indoor temperature and 

indoor humidity. So, the results of the outdoor temperature and the outdoor humidity were ignored. 



7 

DEEP LEARNING MODELS IN PREDICTING INDOOR TEMPERATURE AND HUMIDITY 

3.2. Long Short-Term Memory 

Due to its capacity for memorizing temporal information over a large number of timesteps, 

Long Short-Term Memory (LSTM) is frequently employed in classification and regression tasks 

involving sequential data [23]. LSTM is composed of three gates, which are the input gate, output 

gate, and forget gate. An LSTM was designed well to handle time series predictions and is also a 

solution for problems which require temporal memory [24]. 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑅𝑖𝑦

(𝑡−1) + 𝑝𝑖 ⊙ 𝑐(𝑡−1) + 𝑏𝑖) (1) 

The input gate in equation (1) is denoted as 𝑖(𝑡)  where 𝑥(𝑡) , 𝑐(𝑡−1) , and 𝑦(𝑡−1)  are the 

representations for the input data, last iteration output data, and last iteration cell value respectively 

with 𝑊𝑖, 𝑅𝑖, and 𝑝𝑖 as weight values. The bias vector of input gate in LSTM is indicated by the 

symbol of 𝑏𝑖. The symbol of 𝜎 denotes the sigmoid activation function.  

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑅𝑓𝑦(𝑡−1) + 𝑝𝑓 ⊙ 𝑐(𝑡−1) + 𝑏𝑓) (2) 

The forget gate in equation (2) is denoted as 𝑓(𝑡)  which eliminates the information from 

previous cell state where 𝑊𝑓 , 𝑅𝑓 , and 𝑝𝑓  symbolize the weight values for input data, last 

iteration output data, and last iteration cell value respectively. The bias vector of forget gate in 

LSTM is symbolized as 𝑏𝑓. 

𝑐𝑡 = 𝑧(𝑡) ⊙  𝑖(𝑡) + 𝑐(𝑡−1) ⊙ 𝑓(𝑡) (3) 

The cell value in equation (3) is denoted as 𝑐𝑡 where 𝑧(𝑡) is the block input.  

𝑜(𝑡) =  𝜎(𝑊𝑜𝑥(𝑡) + 𝑅𝑜𝑦(𝑡−1) + 𝑝𝑜 ⊙ 𝑐(𝑡) + 𝑏𝑜) (4) 

The output gate in equation (4) is denoted as 𝑜(𝑡) where 𝑊𝑜, 𝑅𝑜, and 𝑝𝑜 are the weight 

values for input data, last iteration output data, and last iteration cell value respectively.    

𝑦(𝑡) = 𝑔(𝑐(𝑡)) ⊙ 𝑜(𝑡) (5) 

The block output of LSTM in equation (5) is denoted as 𝑦(𝑡) which combine current cell 

value and the output gate in LSTM where 𝑔(𝑥) is hyperbolic tangent function. 

3.3. Gated Recurrent Unit 
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Gated Recurrent Unit (GRU) is a simplified LSTM with 1 less gate [25]. GRU mostly 

outperforms LSTM in many cases [26]. If LSTM has 3 gates, which are input gate, forget gate, 

and output gate, GRU has 2 gates, which are reset gate symbolized as 𝑟𝑡  and update gate 

symbolized as 𝑧𝑡 [27]. 

𝑠�̃� = 𝜙𝑡𝑎𝑛ℎ(𝑊𝑠(𝑟𝑡 ⊙ 𝑠𝑡−1) + 𝑈𝑠𝑥𝑡 + 𝑏𝑠) (6) 

𝑠𝑡 = (1 − 𝑧𝑡) ⊙ 𝑠𝑡−1 +  𝑧𝑡 ⊙ 𝑠�̃� (7) 

𝑟𝑡 =  𝜎𝑠𝑖𝑔(𝑊𝑟𝑠𝑡−1 + 𝑈𝑟𝑥𝑡 + 𝑏𝑟) (8) 

𝑧𝑡 =  𝜎𝑠𝑖𝑔(𝑊𝑧𝑠𝑡−1 + 𝑈𝑧𝑥𝑡 + 𝑏𝑧) (9) 

 where: ⊙ is element-wise multiplier; 𝑊𝑠, 𝑊𝑟, and 𝑊𝑧 are weight value; 𝑥𝑡 is input data; 

𝑠�̃� is candidate state; 𝑠𝑡  is output; 𝑏𝑠, 𝑏𝑟 , 𝑏𝑧  are constants;  𝜎𝑠𝑖𝑔  and 𝜙𝑡𝑎𝑛ℎ  are sigmoid and 

tanh activation function.  

3.4. Prediction Model Architectures 

3.4.1 Adapted Baseline Sequence Models 

This research modified the models implemented by Gunawan et al. to handle sequence inputs 

and sequence outputs [16]. The adapted baseline sequence models consisted of the two most 

popular RNN layers, which are LSTM and GRU, which can be seen in Figure 3. 

 

 

FIGURE 3. Adapted Baseline Architecture with Stacked LSTM (a) and Stacked GRU (b). 
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 Since the datasets in this research were processed as 3-dimensional (3D) data because of the 

sliding window process, the 3D data input as (𝑖, 𝑘, 𝑗) of adapted baseline sequence models were 

reshaped to 2D data (𝑖, 𝑘 × 𝑗) with 𝑖 representing the amount of sliding window process, 𝑘 

representing timestep, and 𝑗  representing the number of features. The reshaping process is 

illustrated in Figure 4. Because the output of adapted baseline models is 2D data (𝑖, 𝑘 × 𝑗), the 

output needed to be reshaped back to 3D data (𝑖, 𝑘, 𝑗). 

 

FIGURE 4. Reshaping Illustration. 

 

The hyperparameters of the adapted baseline models followed the baseline settings by 

Gunawan et al., such as implementing 128 neurons on both LSTM and GRU layers, 64 batch size, 

0.001 learning rate, and 100 epochs with the Adam optimization algorithm [16]. 

3.4.2 Sequence-to-sequence (Seq2seq) or Encoder-Decoder Models 

The encoder-decoder or sequence-to-sequence (seq2seq) is also part of deep learning, which 

originated from machine translation problems, where at the beginning of its appearance, the 

seq2seq architecture could empirically perform well for translation tasks from English to French 

[28]. Seq2seq consists of two Recurrent Neural Networks (RNN) which act as the encoder and 

decoder. The Seq2seq architecture is mostly used for language processing models [29] and has 

rarely been used for indoor climate forecasting [21]. The Seq2seq model also performed well in 

predicting time-series data, like predicting Beijing PM25 datasets, energy consumption in Sceaux, 

highway traffic in the UK, Italian air quality, and California traffic with PeMS-Bays datasets [30].  
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FIGURE 5. Architecture of LSTM Seq2seq. 

 

 

FIGURE 6. Architecture of GRU Seq2seq. 
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This research implemented two simple seq2seq architectures with RNN layers such as LSTM 

and GRU used in the encoder and decoder layers, which can be seen in Figure 5 and 6. Both 

seq2seq architectures implemented batch normalization between encoder and decoder. Batch 

normalization can improve the accuracy and generalization [12], and accelerate the training 

process, which makes it one of the favorite techniques in deep learning [31], because seq2seq is 

more complex than our adapted baseline models.  

To obtain suitable hyperparameter settings for the seq2seq model, this research observed and 

understood the early training with a short run of 10 epochs by doing random search, because by 

doing that, it could be a clue for suitable model settings without consuming time and expensive 

computational resources [32]. The result of random search observation showed that 64 neurons for 

each GRU and LSTM layer and a learning rate with 0.00001 provided the best results. Then this 

research equated to 64 batch size, 100 epochs, and implemented Adam optimization algorithm. 

Adam was chosen because it has advantages over other adaptive learning rate optimization 

algorithms, including the ability to handle non-stationary objectives like RMSProp and manage 

sparse gradients like AdaGrad [33]. 

3.5. Pearson Correlation 

𝑟𝑥𝑦 =
∑(𝑥𝑖 − �̅�) ∑(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2
 √∑(𝑦𝑖 − �̅�)2

 
(10) 

To find out the correlation between each parameter, Pearson Correlation Coefficient (PCC), 

which is denoted as 𝑟𝑥𝑦 was implemented where 𝑥 and 𝑦 are the compared parameters, �̅� and 

�̅� are the mean value of 𝑥 and 𝑦 respectively [34]. The PCC results will be in the range [-1,1] 

where 𝑟𝑥𝑦 = −1  means that the correlation is extremely negative and 𝑟𝑥𝑦 = 1  is conversely 

[35]. 

3.6. Performance Metrics 

The most commonly used performance metrics which are implemented in regression analysis 

cases in machine learning studies are Mean Absolute Error (MAE), Mean Square Error (MSE), 
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and Root Mean Square Error (RMSE) [36]. In fact, each error measurement has different 

disadvantages that can lead to inaccurate evaluation of forecasting results, which makes it not 

recommended to only use one measurement [37]. This research aimed to forecast indoor 

temperature and humidity in the future, which made MAE and RMSE an ideal choice for collecting 

error information in the model. This research also implemented the coefficient of determination 

(𝑅2) because of its potential to compare ground truth elements with predicted data considering its 

distribution [36]. 

𝑀𝐴𝐸 =  
1

𝑚
∑|𝑋𝑖 − 𝑌𝑖|

𝑚

𝑖=1

 (11) 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

 (12) 

𝑅2 = 1 −  
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑚
𝑖=1

∑ (�̅� − 𝑌𝑖)2𝑚
𝑖=1

 (13) 

In MAE, RMSE and 𝑅2 equations, 𝑋𝑖 is the predicted value at 𝑖𝑡ℎ,  𝑌𝑖  is the ground truth 

data at 𝑖𝑡ℎ and �̅�  represent mean of ground truth data. Both MAE and RMSE results must be 

in range [0,∞) with the best value is closer to 0, meanwhile in 𝑅2 result will be in range (-∞, 1] 

with the best value is closer to 1. 

𝑅2  value describes the proportion of variance in a variable which is affected by another 

variable [38]. 𝑅2  can be categorized as strong when 𝑅2 ≥ 0.75  and weak when 𝑅2 ≤ 0.25 

[39]. Meanwhile between both strong and weak, there is moderate 𝑅2 value. 

 

4. EXPERIMENTS 

4.1. Experimental Environments 

In this research, TensorFlow Python version 2.8.2 library and Keras version 2.80 library were 

used to train the model. The operating system was Ubuntu 20.04. The graphics card, used in this 
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research was NVIDIA Quadro RTX 8000 with 127GB of RAM.  

4.2. Features Correlation in Dataset 

Figure 7 depicts that each PCC value among all parameters with temp1, hum1, temp2, and 

hum2 are indoor parameters, whereas temp3 and hum3 are outdoor parameters. The PCC result 

shows that between temperature parameters there are extremely strong positive values with 0.97 

to 1, and so do the humidity parameters. Meanwhile, the correlations between temperature and 

humidity parameters show extremely negative PCC values with less than -0.92. 

 

FIGURE 7. PCC Values among All Dataset Parameters. 

 

4.3. Preprocessing Dataset 

The datasets, contained enormous datasets with appropriate time series data, which made them 

suitable for deep learning models [40] [41], as shown in Figure 2. This study divided the dataset 

into two parts: training data and test data, with a percentage of 80% and 20%, respectively. The 

model presented in this study consumed training data in the training step, with 80% of the training 

data being used to train the model and 20% of the training data being used to validate the model.  

Because extremely high or low data values can trigger the models to overfit, data 

standardization was used in this experiment research to assist the models in learning the data [42]. 

𝑍𝑁(𝑥) =  
𝑥 −  𝜇(𝑥)

𝜎(𝑥)
 

(14) 

In this study, Z-score standardization, designated as 𝑍𝑁(𝑥) with mean (𝜇) and standard 

deviation as (𝜎) and, is used. Figures 8 show the outcomes of applying Z-score standardization to 
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our datasets. 

Figure 8 show how standardized datasets were divided into two parts: training and testing. 

Relative humidity data in orange and temperature data in blue were used to train models, while 

relative humidity data in red and temperature data in green were used to test models. 

 

FIGURE 8. Data Standardization Results. 

 

Accordingly, the data needed to be transformed from 2D data illustrated as (𝑎, 𝑏), where 𝑎 

represents the amount of data and 𝑏 represents a data feature such as indoor temperature 1, indoor 
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humidity 1, indoor temperature 2, indoor humidity 2, outdoor temperature, and outdoor humidity, 

into 3D data illustrated as (𝑐, 𝑑, 𝑏), where c represents the number of smaller pieces of data 

partition and 𝑑 represents the timesteps number of input or output data. This research aims to 

predict data in the future 5 timesteps based on 150 previous data, because five timesteps of 

predicted data should be enough to support SDD operational. Figure 9 illustrates the sliding 

process. 

 

FIGURE 9. Input and Output Data after Sliding Window Process. 

 

4.4. Model Training 

Figure 10 shows that both adapted LSTM and GRU baseline models were better in learning 

datasets containing extremely strong positive and negative PCC. Those adapted baseline sequence 

models can reach a loss value below 0.01 in MAE in both the training and validation processes. 

Meanwhile, both seq2seq LSTM and GRU can only reach a loss value of around 0.05 in MAE in 

both training and validation. The training and validation processes conclude that seq2seq models 

were too complicated to learn the datasets containing only extremely strong PCC and the adapted 
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baseline models were simple enough and suitable to learn these datasets. 

 

 

FIGURE 10. Train and Validation Loss Plot in MAE of All Models.   

 

4.5. Model Results and Comparison 

This research compared all prediction models by using testing data, which was untrained data, 

or a fifth of the original datasets. Untrained data, depicted in Figure 8, as red and green lines on 

the line chart, was fed into the model, yielding predicted data (𝑋𝑖). Then this study compared both 

predicted data (𝑋𝑖) and ground truth data (𝑌𝑖) with MAE, RMSE, and 𝑅2 as performance metrics.  

Since the prediction result was standardized data with Z-score, the results needed to be 

converted back to real ranges. The prediction model results (𝑋𝑖) and ground truth data (𝑌𝑖 ) 

contained 6 features, including indoor temperature and humidity 1, indoor temperature and 

humidity 2, and outdoor temperature and humidity with 5 timesteps. Both sets of data were 

compared with MAE, RMSE, and 𝑅2 as performance metrics. 
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A quick glance at Tables 1 and 2 shows that indoor temperature prediction testing using the 

adapted GRU baseline produced the best results in MAE, RMSE, and 𝑅2 . The results show 

significant differences between adapted sequence baseline models and seq2seq models where the 

adapted LSTM baseline outperformed the seq2seq LSTM model by an average difference in both 

indoor temperature prediction of 0.3473 in MAE, and the adapted GRU baseline outperformed the 

seq2seq GRU model by an average difference in both indoor temperature prediction of 0.3766 in 

MAE. 

TABLE 1. Indoor Temperature 1 Testing Results. 

Time 
Error 

Metrics 

Models 

Adapted Sequence 

Baseline Models 
 

Seq2seq  

Models 

Adapted 

LSTM 

Baseline 

Adapted 

GRU 

Baseline 

Seq2seq 

LSTM 
 

Seq2seq 

GRU 
 

Overall 

MAE 0.064542 0.062371 0.418707 0.422684 

RMSE 0.093637 0.086790 0.626587 0.757507 

𝑅2 0.999916 0.999927 0.996169 0.993926 

t+1 

MAE 0.052800 0.044020 0.398213 0.335650 

RMSE 0.068675 0.057263 0.585514 0.651003 

𝑅2 0.999955 0.999968 0.996666 0.995626 

t+2 

MAE 0.052707 0.048344 0.392174 0.420372 

RMSE 0.076581 0.061438 0.595027 0.748065 

𝑅2 0.999944 0.999964 0.996542 0.994048 

t+3 

MAE 0.061645 0.068161 0.415084 0.455739 

RMSE 0.088463 0.086884 0.618344 0.796650 

𝑅2 0.999925 0.999927 0.996287 0.993199 

t+4 

MAE 0.072228 0.058176 0.437910 0.454064 

RMSE 0.102411 0.090305 0.650243 0.799247 

𝑅2 0.999899 0.999921 0.995878 0.993193 

t+5 

MAE 0.083332 0.093151 0.450155 0.447593 

RMSE 0.122248 0.122087 0.678977 0.782450 

𝑅2 0.999856 0.999855 0.995474 0.993562 
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TABLE 2. Indoor Temperature 2 Testing Results. 

Time 
Error 

Metrics 

Models 

Adapted Sequence 

Baseline Models 
 

Seq2seq 

Models 

Adapted 

LSTM 

Baseline 

Adapted 

GRU 

Baseline 

Seq2seq 

LSTM 
 

Seq2seq 

GRU 
 

Overall 

MAE 0.072104 0.057594 0.412551 0.450679 

RMSE 0.114922 0.080567 0.624098 0.919523 

𝑅2 0.999870 0.999936 0.996158 0.990810 

t+1 

MAE 0.056056 0.035350 0.432378 0.440503 

RMSE 0.088789 0.047310 0.605891 0.870594 

𝑅2 0.999923 0.999978 0.996466 0.991877 

t+2 

MAE 0.059912 0.048755 0.364134 0.456120 

RMSE 0.087589 0.061664 0.565115 0.946860 

𝑅2 0.999925 0.999963 0.996854 0.990186 

t+3 

MAE 0.075596 0.059553 0.403863 0.450419 

RMSE 0.114746 0.077221 0.608699 0.952605 

𝑅2 0.999871 0.999941 0.996352 0.990020 

t+4 

MAE 0.081308 0.070819 0.423658 0.450090 

RMSE 0.125917 0.092996 0.647581 0.928949 

𝑅2 0.991026 0.990744 0.995839 0.990592 

t+5 

MAE 0.087647 0.073492 0.438720 0.456265 

RMSE 0.146487 0.108643 0.686407 0.895954 

𝑅2 0.999790 0.999884 0.995280 0.991377 

 

The results of indoor humidity prediction testing based on Tables 3 and 4 show a similar trend 

with indoor temperature prediction testing results that the seq2seq models outperformed the 

adapted sequence baseline models, where the adapted LSTM baseline model performed better than 

the seq2seq LSTM model with an average MAE difference in both indoor humidity prediction of 

0.9127, and the adapted GRU baseline model performed better than the seq2seq GRU model with 

an average MAE difference in both indoor humidity prediction of 0.6046. 
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TABLE 3. Indoor Humidity 1 Testing Results. 

Time 
Error 

Metrics 

Models 

Adapted Sequence 

Baseline Models 
 

Seq2seq 

Models 

Adapted 

LSTM 

Baseline 

Adapted 

GRU 

Baseline 

Seq2seq 

LSTM 
 

Seq2seq 

GRU 
 

Overall 

MAE 0.087518 0.097254 1.124548 0.724641 

RMSE 0.125062 0.138359 1.356994 1.059923 

𝑅2 0.999965 0.999956 0.996109 0.997472 

t+1 

MAE 0.076289 0.071344 0.977144 0.626122 

RMSE 0.103721 0.095238 1.221450 0.905692 

𝑅2 0.999976 0.999979 0.996823 0.998169 

t+2 

MAE 0.080836 0.089261 1.109321 0.703736 

RMSE 0.108182 0.119016 1.312224 0.998131 

𝑅2 0.999974 0.999968 0.996356 0.997757 

t+3 

MAE 0.086753 0.091218 1.214375 0.718366 

RMSE 0.119617 0.125580 1.428900 1.050451 

𝑅2 0.999968 0.999964 0.995716 0.997503 

t+4 

MAE 0.092664 0.107779 1.199042 0.755174 

RMSE 0.134137 0.154716 1.431309 1.116251 

𝑅2 0.999959 0.999945 0.995691 0.997185 

t+5 

MAE 0.101051 0.126666 1.122856 0.819808 

RMSE 0.153102 0.181035 1.379455 1.204648 

𝑅2 0.999947 0.999925 0.995961 0.996747 

 

In Table 3, an interesting thing happened. The adapted LSTM model outperformed all models 

in predicting indoor humidity 1, while the adapted GRU baseline outperformed all models in 

predicting indoor temperature 1, temperature 2, and humidity 2. 
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TABLE 4. Indoor Humidity 2 Testing Results. 

Time 
Error 

Metrics 

Models 

Adapted Sequence 

Baseline Models 
 

Seq2seq  

Models 

Adapted 

LSTM 

Baseline 

Adapted 

GRU 

Baseline 

Seq2seq 

LSTM 
 

Seq2seq 

GRU 
 

Overall 

MAE 0.098777 0.095241 0.887168 0.677099 

RMSE 0.169456 0.167658 1.157673 0.950485 

𝑅2 0.999938 0.999939 0.997292 0.998072 

t+1 

MAE 0.068244 0.061280 0.917527 0.544288 

RMSE 0.113080 0.111591 1.162305 0.735596 

𝑅2 0.999972 0.999973 0.997284 0.998856 

t+2 

MAE 0.099880 0.079493 0.849962 0.682674 

RMSE 0.154163 0.143332 1.124332 0.898333 

𝑅2 0.999949 0.999955 0.997445 0.998296 

t+3 

MAE 0.089917 0.094333 0.890735 0.678909 

RMSE 0.162347 0.165702 1.153160 0.938349 

𝑅2 0.999943 0.999940 0.997315 0.998118 

t+4 

MAE 0.104501 0.105365 0.898606 0.711925 

RMSE 0.181975 0.183828 1.171240 1.018065 

𝑅2 0.999928 0.999926 0.997226 0.997775 

t+5 

MAE 0.131342 0.135734 0.879009 0.767701 

RMSE 0.218064 0.215172 1.176594 1.118953 

𝑅2 0.999897 0.999899 0.997191 0.997317 

 

The results in Tables 1, 2, 3, and 4 show that in overall prediction, both the adapted baseline 

with LSTM and GRU outperformed the seq2seq model with LSTM and GRU, with the number in 

bold representing the best result. In predicting indoor temperature, the adapted baseline model with 

GRU was the best. Meanwhile, in predicting indoor humidity, both the adapted baseline model 

with GRU and LSTM were comparable. The Seq2seq model, a deep learning model which is 

popular in natural language processing [43], is more complex than the adapted baseline model to 
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handle a dataset containing extremely strong positive PCC values between the same temperature 

parameters or humidity parameters and extremely negative PCC values between temperature 

parameters and humidity parameters. A quick glance at all the testing result tables shows that 

seq2seq models produced ten times higher error than adapted sequence baseline models, but all 

models were still good at predicting indoor climate with an average of 𝑀𝐴𝐸 ≤0.5 for indoor 

temperature prediction and 𝑀𝐴𝐸 ≤ 1.2 for indoor humidity prediction. With coefficient of 

determination, all of the models can be categorized as strong in with 𝑅2 ≥ 0.99 [39]. 

The dataset used in this research contained a large amount of real-time sensor data, which had 

the possibility of containing noise data [44]. So, for future work, the next research will implement 

Kalman filtering to correct the data from noise in order to increase the accuracy of all models. 

 

5. CONCLUSION 

The results show that in processing the dataset, which contained only extremely strong 

positive or extremely strong negative PCC values between each other parameter, both our adapted 

baseline models outperformed both our seq2seq models. All models were good at predicting indoor 

temperature and humidity because they had a relatively small error number in MAE and RMSE. 

The coefficient determination values of all models were also categorized as strong, with 𝑅2 ≥

0.99.  

Based on this research, the curiosity arose because seq2seq models still have the potential to 

be improved, such as by implementing attention layers. In future research, there is a plan to 

improve seq2seq architectures by adding an attention layer and stacking some RNN layers inside 

both the encoder and decoder layers and improving the case to be a more complex problem, such 

as increasing the number of timesteps in both input and output models. Because of the dataset 

containing a large amount of time series data captured by sensors inside SDD, there will be a future 

study on reducing noise from the dataset by using a filtering technique such as Kalman filtering. 
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