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Abstract: Most disease risk mapping models are modeled by using the Bayesian approach. In this approach, the 

posterior distribution is typically estimated by using Markov Chain Monte Carlo (MCMC) method. However, it is 

known that the MCMC method suffers from convergence issues and requires a high demand for computational 

resources. This study aims to identify potential covariates in tuberculosis reduction and to map the relative risk of 

tuberculosis disease in the Java region by using Bayesian Conditional Autoregressive (CAR) with Integrated Nested 

Laplace Approximation (INLA). The posterior distribution of Bayes was estimated analytically using INLA that 

resulting in a more efficient, fast, and accurate inference. The results showed that Besag York Mollié (BYM) has the 

smallest Deviance Information Criterion (DIC) and Mean Absolute Deviance (MAD), so this model gives the best 

prediction. The significant covariates in reducing the number of TB cases in Java are percentages of healthy homes, 

household clean and healthy behavior, non-smokers, and complete tuberculosis treatment. In addition, 52.1% of 

districts/cities in Java were found to have a relative risk greater than one, and most of them were located in West Java. 
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tuberculosis.  

2010 AMS Subject Classification: 62M30, 62H11. 

 

1. INTRODUCTION 

Several endemic diseases are present in Indonesia [1], and tuberculosis (TB) is one of the 

diseases that has been reported with high infection cases. According to the 2019 Global Report on 

Tuberculosis (TB), Indonesia ranks the third-highest of TB burden throughout the globe with a TB 

incidence rate of 391 per 100,000 population [2]. Three provinces of West Java, East Java, and 

Central Java were reported to have the highest cases, which accounts for 44 percent of all TB cases 

in Indonesia [3]. WHO reported that the treatment of TB requires stringent adherence and relies 

on support from the local health authority. The prevention and control efforts of TB cases also play 

important role in reducing the spread of the diseases. 

Disease modeling and mapping can assist in disease prevention through the early detection 

of high-risk locations [4]. A statistical approach to modeling and mapping can be utilized by 

policymakers in formulating actions that can be taken to reduce the spread of disease [5]. Disease 

modeling of several endemic diseases in Indonesia has been carried out, such as malaria [6], [7], 

and [8], and dengue fever [9]. Aisyah et al. [10] developed the spatial model for TB in East Java 

with the percentage of proper sanitation and healthy food processing places as significant 

covariates. Although spatial models can be used to determine the significant covariates, the model 

is limited to generating the estimate of the relative risk of an area. 

The Bayesian approach can be used to model the relative risk of disease in a given area.  

Lee [11] and Lawson [12] proposed the Bayesian hierarchical model. In this model, the relative 

risk of an area was expressed as a set of spatial random effects and potential covariates.  The 

outcome of the Bayesian model includes random effects that could capture unobserved 

heterogeneity or spatial autocorrelation. The conditional autoregressive (CAR) is mostly used to 

model these random effects in order to obtain the relative risk of disease [11]. Variations of model 

formulations for random effects have been proposed in existing studies [13, 14, 15]. Besag et al. 
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[13] proposed an intrinsic conditional autoregressive model (ICAR) and Besag York Mollié (BYM) 

model. In the ICAR model, the spatial effect of a particular region depends on the effects of all 

adjacent areas. Whereas, the BYM model includes an additional unstructured spatial random effect 

to account for region-specific noise.  

Markov Chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampling or Metropolis-

Hastings, are commonly used to sample the posterior distribution of CAR [16]. According to the 

MCMC inference theory, the parameter simulation values will converge to the posterior 

distribution if the number of iterations is carried out an infinite number of times.  In other words, 

it is not known how fast the resulting sample converges to its posterior distribution [17, 18].  

Another method for determining the posterior distribution using integrated nested Laplace 

approximation (INLA) was recently proposed by Rue et.al. [17]. INLA is based on the Gauss latent 

model, which produces more accurate estimators and a shorter computation time than MCMC [19, 

20]. Ferkingstad et al. [21] reported that the computation time of INLA is 250 times faster than 

that of MCMC. 

The goal of this study is to develop a risk mapping of TB diseases in district/city Java. We 

used the Bayesian CAR model with its posterior computation using INLA. The objectives of this 

study are to (1) identify the potential covariates that have a significant effect and (2) to map the 

relative risk of TB disease in Java. 

 

2. BAYESIAN CONDITIONAL AUTOREGRESSIVE 

Suppose the study area is expressed as 𝑺 which consists of n non-overlapping unit areas 

𝑺 = {𝑆1, ⋯ , 𝑆𝑛}  and the corresponding response value vector is expressed as 𝒚 = (𝑦1, ⋯ , 𝑦𝑛)𝑇. 

The spatial pattern of the responses was modeled by the covariate matrix 𝑿 = (𝒙1
𝑇 , ⋯ , 𝒙𝑛

𝑇)  and 

the random effect vector 𝝓 = (𝜙1, ⋯ , 𝜙𝑛). The covariate vector at the location-𝑘 is expressed as 

𝒙𝑘
𝑇 = (1, 𝑥1𝑘, ⋯ , 𝑥𝑝𝑘) . The first term of this expression corresponds to an intercept term. The 

regression parameters are expressed as 𝜷 = (𝛽0, 𝛽1, ⋯ , 𝛽𝑝), and  𝛰𝑘 is offset [21].  The general 

formulation of bayesian CAR is an extension of a generalized linear model and is given by 
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𝑌𝑘|𝜇𝑘~𝑓(𝑦𝑘|𝜇𝑘, 𝜐2)    for 𝑘 = 1, ⋯ , 𝑛   

𝑔(𝜇𝑘) = 𝑿𝑘
𝑇𝜷 + 𝜙𝑘 + 𝛰𝑘 

(1) 

The response 𝑌𝑘  has exponential family distribution 𝑓(𝑦𝑘|𝜇𝑘, 𝜐2) , with expected value  

𝐸(𝑌𝑘) = 𝜇𝑘 and scale parameter 𝜐2. The expected values of the responses are related to the linear 

covariate via an invertible link function 𝑔(. ) [11, 21].  

The prior distribution of each regression parameter 𝛽𝑖 is 𝛽𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑚𝑗  ,  𝑣𝑗) for 𝑗 =

 0, ⋯ , 𝑝 .  The scale parameter 𝜐2  is assigned a uniform prior distribution, that is 

𝜐2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚((0, 𝑀𝜐). The simplest prior of random effects is 

𝜙𝑘~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2) and 𝜎2 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚((0, 𝑀𝜎) (2) 

This specification is appropriate if the covariates included in equation (1) have removed all of the 

spatial structure in the response.  

CAR models commonly used for spatial autocorrelation modeling are Intrinsic CAR (ICAR) 

and BesagYork Mollié (BYM), both proposed by Besag et. al. [13], the Leroux model proposed 

by Leroux et. al. [14], and the Stern-Cressie model proposed by Stern and Cressie [15]. The prior 

of random effect is assumed to have a Gaussian Markov random field (GMRF) and can be written 

as 𝝓~𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝜏2𝑸−1) where 𝑸 is a precision matrix that may be singular (intrinsic model). 

This matrix controls the spatial autocorrelation structure of the random-effects and is based on a 

non-negative symmetric 𝑛 ×  𝑛  neighborhood or weight matrix 𝑾 . This specification forces 

(𝜙𝑗 , 𝜙𝑘) relating to geographically adjacent areas (that is 𝑤𝑘𝑗 =  1) to be correlated, whereas 

random-effects relating to non-contiguous areal units are conditionally independent given the 

values of the remaining random-effects[21]. CAR priors are commonly specified as a set of 𝑛 

univariate full conditional distributions 𝑓(𝜙𝑘| 𝝓−𝑘)  for 𝑘 =  1, ⋯ , 𝑛 , where 𝝓−𝑘 =

(𝜙1, ⋯ , 𝜙𝑘−1, 𝜙𝑘+1, ⋯ , 𝜙𝑛).  

The prior for random-effect of ICAR is given by 

𝜙𝑘|𝝓−𝑘~Normal (
∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

,
𝜏2

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

, ) (3) 

The conditional expectation is the average of the random effects in neighboring areas, while the 
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conditional variance is inversely proportional to the number of neighbors. The prior for variance 

parameters is uniform distribution, 𝜏2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑀𝜏). The limitation of ICAR is that it can 

only represent strong spatial autocorrelation, and produce overly smooth of random [21]. 

BYM or convolution model is a combination of ICAR with one independent random 

component (unstructured spatial). In BYM, 𝜙𝑘 in (1) is replacing with 𝜃𝑘 + 𝜙𝑘, which 𝜃𝑘, is an 

unstructured random component with priors given by 

𝜃𝑘~Normal (0, 𝜎𝜃
2) and 𝜎𝜃

2 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚((0, 𝑀𝜎) (4) 

Leroux et al. [14] and Stern and Cressie [15] proposed alternative CAR priors for modeling varying 

strengths of spatial autocorrelation, using only a single set of random effects. The model by [14] 

is given by 

𝜙𝑘|𝝓−𝑘~Normal (
𝜌 ∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

𝜌 ∑ 𝑤𝑘𝑗
𝑛
𝑗=1 + 1 − 𝜌

,
𝜏2

𝜌 ∑ 𝑤𝑘𝑗
𝑛
𝑗=1 + 1 − 𝜌

) (5) 

while model by [15] is 

𝜙𝑘|𝝓−𝑘~Normal (
𝜌 ∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

∑ 𝑤𝑘𝑗
𝑛
𝑗=1 +

,
𝜏2

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

) (6) 

In Equation (5) and (6),  𝜌 is a spatial autocorrelation parameter, with 𝜌 = 0 corresponding to 

independence, while 𝜌 = 1 corresponds to strong spatial autocorrelation. The prior for 𝜌 and 𝜏2 

are expressed as 

𝜌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1)  and 𝜏2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 𝑀𝜏).  

In both cases when 𝜌 = 1  is obtained  ICAR, while when 𝜌 = 0  the only difference is the 

denominator in the conditional variance. 

 

3. APPLICATION OF BAYESIAN CONDITIONAL AUTOREGRESSIVE WITH INLA 

3.1. Data Source 

The data used in this study is from the publication of Statistics Indonesia and the Health Office 

of Java in Indonesia. The number of TB cases treated and reported in 100,000 population in 

districts/cities in Java in 2019 (TBP) was set as the response variable. Five covariates were set, and 
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they are: i) percentage of households with access to proper sanitation (APS), (ii) percentage of healthy 

homes (HH), (iii) percentage of household clean and healthy behavior (CHB), (iv) percentage of non-

smokers (NS), (v) percentage of complete treatment of Tuberculosis (CTT), (vi) number of public 

health centers per 100,000 population (PHC).  

The motivation behind covariates of APS, HH, CHB, and NS was based on the study by [22]. 

Their study showed that a contaminated household environment, such as smoke inside the house, 

sharing of toilets with other households, and non-use of potable water, increased the risk of 

tuberculosis. The covariates of CTT and PHC were chosen following the research by [23]. Their 

results showed that in endemic countries, diagnosis and treatment of smear-positive cases remain the 

key to tuberculosis control by reducing transmission from infectious cases. 

3.2. Analysis Method 

The data analysis procedure in this study are listed below: 

1. Exploring the data. 

2. Calculating the Moran’s Index for response variable [24]. 

3. Calculating the spatial weighting matrix (𝑾) using queen contiguity, exponential weight, and 

inverse distance weight [25]. 

a. For the queen contiguity,  the weighting is performed using the following formula: 

𝑤𝑖𝑗 = {
1 if 𝑖 and 𝑗 are contiguous
0 if 𝑖 and 𝑗 are not contiguous

 

The value of 𝑤𝑖𝑗 is the value of the element in the adjacency matrix corresponding 

for  the 𝑖-th area and 𝑗-th area. The value of one is given if the 𝑖-th area is adjacent 

to the 𝑗-th area, while a value of null is given if the 𝑖-th area is not adjacent to the 𝑗-

th area.  

b. Formula for the exponential weight is 𝑤𝑖𝑗 = 𝑒𝑥𝑝(−𝑑𝑖𝑗) , where 𝑑𝑖𝑗  is distance 

between  the 𝑖-th area and the 𝑗-th area. 

c. Formula for the inverse distance weight is  𝑤𝑖𝑗 = 𝑑𝑖𝑗
−1

. 

4. Estimating of the Bayesian CAR model using INLA with following steps: 
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i. Determinating the following model: 

a. ICAR model without covariates (M1): 𝑔(𝜇𝑘) = 𝛽0 + 𝜙𝑘 

b. ICAR model with covariates (M2):  𝑔(𝜇𝑘) = 𝛽0 + 𝛽1𝑋1𝑘 + 𝛽2𝑋2𝑘 + 𝛽3𝑋3𝑘 +

𝛽4𝑋4𝑘 + 𝜙𝑘 

c. BYM model without covariates (M3): 𝑔(𝜇𝑘) = 𝛽0 + 𝜙𝑘 + 𝜃𝑘 

d. BYM model with covariates (M4): 𝑔(𝜇𝑘) = 𝛽0 + 𝛽1𝑋1𝑘 + 𝛽2𝑋2𝑘 + 𝛽3𝑋3𝑘 +

𝛽4𝑋4𝑘 + 𝜙𝑘 + 𝜃𝑘  

e. Leroux model without covariates (M5): 𝑔(𝜇𝑘) = 𝛽0 + 𝜙𝑘 

f. Leroux model with covariates (M6): 𝑔(𝜇𝑘) = 𝛽0 + 𝛽1𝑋1𝑘 + 𝛽2𝑋2𝑘 + 𝛽3𝑋3𝑘 +

𝛽4𝑋4𝑘 + 𝜙𝑘 

ii. Determinating the prior for hyperparamer of M1and M2: 

a. Random effect: 𝜙𝑘|𝝓−𝑘~Normal (
∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

,
𝜏2

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

, ) 

b. Variance 𝜙: log 𝜏𝜙 ~ log 𝑔𝑎𝑚𝑚𝑎 (1, 0.0005) 

iii. Determinating the prior for hyperparamer of M3 and M4: 

a. Random effect: 𝜙𝑘|𝝓−𝑘~Normal (
∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

,
𝜏2

∑ 𝑤𝑘𝑗
𝑛
𝑗=1

, ) 

b. Variance 𝜙: log 𝜏𝜙 ~ log 𝑔𝑎𝑚𝑚𝑎 (1, 0.0005) 

c. Unstructured random-effects: 𝜃𝑘~Normal (0, 𝜎𝜃
2) 

d. Variance 𝜃: log 𝜏𝜃 ~ log 𝑔𝑎𝑚𝑚𝑎 (1, 0.0005) 

iv. Determinating the prior for hyperparamer of M5 and M6: 

a. Random effect: 𝜙𝑘|𝝓−𝑘~~Normal (
𝜌 ∑ 𝑤𝑘𝑗𝜙𝑗

𝑛
𝑗=1

𝜌 ∑ 𝑤𝑘𝑗
𝑛
𝑗=1 +1−𝜌

,
𝜏2

𝜌 ∑ 𝑤𝑘𝑗
𝑛
𝑗=1 +1−𝜌

) 

b. Variance 𝜙: log 𝜏𝜙 ~ log 𝑔𝑎𝑚𝑚𝑎 (1, 0.0005)  

c. spatial autocorrelation: 𝜌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) 

v. Estimating the parameter of M1-M6 using INLA 

vi. Identifying the best model based on the following criteria: 

a. Deviance Information Criterion/DIC calculated by the following formula:  
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𝐷𝐼𝐶 = 2�̅�(𝒚, 𝜽) − 𝐷(𝒚, �̅�) or 𝐷𝐼𝐶 = 𝐷(𝒚, �̅�) + 2𝑝𝐷   

where 𝐷(𝒚, 𝜽) = −2 log 𝑝(𝒚|𝜽)  denotes the deviance for data 𝒚  and model 

parameters 𝜽 , 𝐷�̅�(𝒚) = 𝐷(𝒚, �̅�)  denotes the deviance for posterior mean �̅� , 

�̅�(𝒚, 𝜽) = 𝐸(𝐷(𝒚, 𝜽)|𝒚) denotes the posterior mean deviance, and 𝑝𝐷 = �̅�(𝒚, 𝜽) −

𝐷(𝒚, �̅�) denotes the estimate of effective number of parameters [26] 

b. Mean Absolute Deviance (MAD) calculated by the following formula: 

MAD =
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1

𝑛
 

where 𝑦𝑖 denotes the response data at 𝑖-th area, �̂�𝑖 denotes the prediction at 𝑖-th 

area and 𝑛 is the number of the observation area. 

6. Mapping the relative risk obtained the best model at districts/cities in Java. 

3.3. Data Exploration 

The distribution of TBP in the Java region is presented in Figure 1. It was observed that the 

number of TBP in Central Java is higher than that in East Java. For example, in Central Java, the 

districts of Banyumas and Cilacap have a high number of TBP, with 253 and 272 TBP per 100,000 

population, respectively. Pacitan and Trenggalek in East Java, on the other hand, have lower TBP of 

65 and 79 per 100,000 population, respectively. 

 

 

FIGURE 1.  Number of TBP in 100,000 residents in district/city of Java in 2019 (non-scale map) 

indicated by the colormap. The darker region indicates high TBP and vice versa. 
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The result in Figure 1 also indicates a color grouping. The neighboring cities of a location 

that has a high number of TBP tend to have high TBP as well. For example, Bogor with 345 cases 

in 100,000 population, and its neighbor, Sukabumi, with 554 cases in 100,000 population. This 

pattern is also seen in groups of cities with a low number of TBP. Pacitan, for example, has 66 

cases per 100,000 people, while Trenggalek has 80 cases per 100,000 people. This observation 

implies that there may be a spatial dependence in the data of TBP in Java. 

A spatial dependence can be described by calculating Moran’s index. The values of Moran’s 

Index of TBP are summarized in Table 1. Moran's Index with Queen Contiguity is significant at a 

5% significant level, thus the application is relevant for the weight in the CAR models (M1-M6). 

TABLE 1 Moran’s Index of TBP in Java in 2019 

Weighted matrix 
Moran's 

Index 
E(I) Var(I) p-value 

Queen Contiguity 0.18786 -0.00855 0.00362 0.0005 

Exponential Distance -0.00181 -0.00847 0.00018 0.3 

Invers Distance 0.03442 -0.00847 0.0022 0.2 

In order to improve the model, the observed variable of TBP was transformed using 

logarithmic transformation. Table 2 shows the correlation coefficient between variables. The result 

shows that covariates CHB and CTT have the highest correlation with ln(TBP), with correlation 

coefficients of 0.278 and 0.245, respectively. APS and PHC, on the other hand, have the lowest 

correlation coefficients of 0.004 and 0.076, respectively. Therefore, HH, CHB, NS, and CTT were 

selected as the covariates used in the CAR models. Furthermore, Table 2 indicates that there was 

no multicollinearity among covariates because the correlations between covariates are small. 

TABLE 2. Correlation coefficient of variables used 

 ln(TBP) APS HH CHB NS CTT PHC 

ln(TBP) 1.000 0.004 0.194 0.278 0.131 0.245 0.076 

APS 0.004 1.000 0.212 0.330 0.393 0.147 -0.098 

HH 0.194 0.212 1.000 0.300 0.033 -0.162 0.208 

CHB 0.278 0.330 0.300 1.000 0.261 0.048 -0.060 

NS 0.131 0.393 0.033 0.261 1.000 0.026 -0.214 

CTT 0.245 0.147 -0.162 0.048 0.026 1.000 0.039 

PHC 0.076 -0.098 0.208 -0.060 -0.214 0.039 1.000 
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Figure 2 shows the maps of the covariate data used in this study. The map of HH in Figure 

2(a) shows that the majority of districts/cities have an HH of less than 62 %. There were only a 

few cities with HH greater than 75 %. The CHB map in Figure 2(b) indicates that only a few 

districts/cities have a CHB greater than 80 %. It could also be seen that the CHB values in West 

Java are low, which is the opposite of the observation in East Java.  

The NS map in Figure 2(c) shows that East Java has the highest percentage of NS. The 

lowest percentage, on the other hand, was found in half of West Java and half of Central Java. 

When we compare the TB map (Figure 1) to the NS map, we can see that the trends are opposite. 

The CTT map in Figure 2(d) shows that districts/cities in West Java have the highest CTT. This 

map is similar to the Java TBP map (Figure 1), which shows that West Java has a higher proportion 

of TBP than the rest of Java. 

(a) HH (b) CHB 

(c) NS 

 

(d) CTT 

FIGURE 2. Map of covariates ((a) HH, (b) CHB, (c) NS, (d) CTT) used in the study (non-scale 

map), indicated by the colormap. The darker region indicates the high value of covariate and vice 

versa. 

3.4. The Estimating of Bayes CAR  

CAR models without covariates (M1, M3, M5) and with covariates (M2, M4, M6) were used 

in this study. CAR with covariates was used to measure the effect of including a covariate. Table 

3 and Table 4 shows parameter estimates and credible intervals for CAR without and with 

covariates, respectively. The intercept estimates in the ICAR (M1) and BYM (M3), are similar 

because both models have the same basic model. For CAR models with covariates, it was observed 
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that covariant of HH, CHB, and CT are the significant parameters for ICAR (M2) and CAR-Leroux 

(M6). Whereas, the most significant parameters for BYM (M4) are HH, CHB, NS, and CTT. 

TABLE 3. Mean and 95% credible interval of intercept of CAR without covariates 

Notation Model Intercept 

M1 ICAR 
5.12 

(5.11,5.14) 

M3 BYM 
5.12 

(5.04,5.21) 

M5 CAR Leroux 
2.56 

(1.56,3.56) 

TABLE 4. Mean and 95% credible interval of CAR with covariates 

Notation Model Intercept HH CHB NS CTT 

M2 ICAR 
2.829 

(1.252,4.408) 

0.007 

(0,0.007) 

0.01 

(0.004,0.016) 

0.012 

(-0.006,0.029) 

0.007 

(0.001,0.013) 

M4 BYM 
1.757 

(-0.209,3.712) 

0.008 

(0.001,0.016) 

0.008 

(0.001,0.015) 

0.028 

(0,0.057) 

0.009 

(0.003,0.016) 

M6 
CAR 

Leroux 

1.354 

(0.216,2.491) 

0.008 

(0.002,0.014) 

0.01 

(0.004,0.017) 

0.013 

(-0.002,0.029) 

0.006 

(0.001,0.012) 

The DIC and MAD values for each model in Table 5 are nearly identical, ranging from 1067-

1087 and 1.16-2.41, respectively. Among the models with covariates, CAR BYM (M4) has the 

lowest DIC and MAD values of 1068.88 and 1.20, respectively. Similar results occurred in the 

model without covariates, with CAR BYM (M3) having the lowest DIC of 1067.56 and MAD of 

1.16. This finding implies that the CAR BYM (M4) model is the best model for TB disease in Java 

in 2019. The spatially structured random effect proportion was at 34%, indicating that the spatially 

structured random effect improves prediction accuracy. 

TABLE 5. The DIC and MAD of Bayes CAR  

Notation Model DIC MAD 

M1 ICAR without covariates 1087.96 2.41 

M2 ICAR with covariates 1069.89 1.45 

M3 CAR BYM without covariates 1067.56 1.16 

M4 CAR BYM with covariates 1068.03 1.20 

M5 CAR Leroux without covariates 1068.88 1.51 

M6 CAR Leroux with covariates 1069.19 1.54 

 



12 

ANIK DJURAIDAH, ZAKIYAH MAR’AH, RAHMA ANISA 

3.5. Risk Mapping of TB 

Disease mapping is used to determine an area's relative risk (RR). An RR value higher than 

one indicates a higher risk of disease, whereas an RR value less than one indicates a healthy area. 

Figure 3 shows the BYM (M4) model's relative risk in districts/cities in Java. There is 52.1 percent 

of the areas are considered high-risk. West Java has the most districts/cities with high RR values 

when compared to other provinces in Java. West Java has 21.85 percent high-risk districts/cities, 

while East and Center Java has 14.29 percent and 15.97 percent high-risk districts/cities, 

respectively. Figure 1 shows that Lebak and Pandeglang, with 144 cases and 224 cases in 10.000 

population, were classified as low and medium TBP areas, respectively, but Figure 3 shows that 

Lebak and Pandeglang have high RR values of 1.86 and 1.85, respectively. This occurred due to 

the closeness of those areas to Bogor and Sukabumi, both of which are classified as high-risk cities. 

While Pacitan and Trenggalek are considered low-risk districts. 

 

FIGURE 3. Relative risk map of TBP in Java in 2019 (non scale map) with colormap.  The 

darker colors indicating a higher risk, and vice versa 

4. CONCLUSION 

The Besag York Mollié (BYM) with covariate model provides the most accurate prediction of 

TBP in Java in 2019. The percentage of non-smokers as a covariate was an important factor in the 

reduction of tuberculosis in Java. The percentage of districts/cities in Java classified as high-risk 

was 52.1 percent, with the majority of them being in West Java. This relative risk map of TBP can 

be used as a reference for residents as well as by local governments to handle the diseases, 

especially in high-risk areas. 
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