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Abstract: Using a mathematical model to simulate the interaction between prey and predator was suggested and 

researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator 

population, while the prey population would experience predation fear and need for a predator-dependent refuge. This 

study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. 

The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and 

stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium 

points' overall stability. The system's persistence requirements were specified. The circumstances of local bifurcation 

that could take place close to the equilibrium points were discovered. Numerical simulations were run to validate the 

model's obtained long-term behavior and comprehend the effects of the model's key parameters in order to confirm 

our analytical conclusions. It has been observed that the system may have numerous coexistence equilibrium points, 

leading to bi-stable behavior. The fear rate reduces the multiplicity of the equilibrium point and converts the bi-stable 
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situation into a stable case, which stabilizes the system (1) up to the top particular value. 

Keywords: prey-predator; predator cannibalism; a refuge; fear; stability; bifurcation. 
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1. INTRODUCTION 

Many different species interact with one another. Direct encounters do occur. However, a large 

number of exchanges are indirect and so less noticeable. The fact that changes in one species, such 

as changes in its population size, health, or geographic distribution, will almost surely have an 

impact on other species and other elements of the Earth system is a result of the direct and indirect 

interactions between species. Prey-predator interactions, which are the most frequent interactions 

in the environment, occur when two creatures of different species engage and one of them behaves 

as a predator, catching and eating the other organism that is the prey. Predation is a method of 

population control in ecology. Therefore, more prey should be present when there are fewer 

predators. The predators would therefore be able to multiply more and perhaps alter their hunting 

strategies. The number of prey decreases as the number of predators increases. This causes food 

shortages for predators, which may ultimately result in the demise of numerous predators. 

Since the groundbreaking work of the Lotka-Volterra model, prey-predator relationships have 

become a crucial field for scientists because of their widespread existence. The dynamical behavior 

of the prey-predator systems has been the subject of numerous studies that have been published in 

order to understand and study it, see for example [1-4]. Prey refuge is one of the most crucial 

element influencing the dynamic behavior of the prey-predator system. In order to evade predators, 

the prey seeks refuge. In various dynamic systems, the usage of refuge by prey in response to a 

predator attack is observed. The dynamics of prey-predator systems with prey refuge are studied 

using a variety of mathematical models [5–13]. 

The practice of eating another member of the same species as food is known as cannibalism. In 

the animal kingdom, cannibalism is a frequent ecological interaction that has been seen in more 

than 1500 species [14]. Because animal turn to their fellow species as a second source of 

sustenance in circumstances with inadequate nutrition, the rate of cannibalism rises. Cannibalism 
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controls population growth by reducing possible competition for resources like food, shelter, and 

territory, which makes them more accessible. It has been demonstrated that the prevalence of 

cannibalism lowers the predicted survival rate of the entire group and raises the chance of 

consuming a relative, despite the fact that it may benefit the individual. As the frequency of 

encounters between hosts rises, there may be additional detrimental impacts, such as an increased 

risk of disease transmission. However, contrary to what was long believed, cannibalism can occur 

in a range of species in their natural habitats, not just in situations where there is a severe lack of 

food or under artificial or unnatural conditions. Consequently, researchers have looked at a number 

of mathematical models of cannibalism or intraspecific predation [15-22]. Since many species in 

nature exhibit cannibalistic behaviors, especially in aquatic environments, a prey-predator model 

containing cannibalism is interesting to research.  

On the other hand, the indirect impact of predation on the life and reproduction of the prey owing 

to the fear of predation is equal to or greater than the direct impact caused by the predators' actual 

death of the prey. The influence of fear on prey populations must be taken into account since there 

are instances when the presence of fear leads to antipredator behavior that negatively affects the 

predator population and forces prey to temporarily leave their habitat or foraging area [23]. Several 

mathematical models considered the impact of fear on the prey-predator interaction, see for 

example [12, 13, 24-30]. Additionally, Diz-Pita and Otero-Espinar [31] provide additional research 

on prey-predator systems incorporating several biological variables. 

Rayungsari et al. [32] recently created and investigated a mathematical model to describe the 

interaction between predator and prey that incorporates predator cannibalism and refuge using the 

Holling type II functional response to describe the predation processes. The Beddington-

DeAngelis type of functional response was used by Jamil and Naji [13] to propose and investigate 

the impacts of fear, quadratic fixed effort harvesting, and predator-dependent refuge on a modified 

Leslie-Gower prey-predator model. However, in this study, a Holling type II prey-predator system 

is created by combining predator cannibalism, predation fear, constant predator refuge, and 

predator-dependent refuge. 
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2. MODEL FORMULATION 

This section proposes a mathematical model of prey-predator incorporating fear, predator-

dependent refuge, and cannibalism depending on the following assumptions. 

In the absence of the predator, it is thought that the prey multiplies logistically while the predator 

species degenerates exponentially without food. The functional response of type II of Holling 

describes the transition of food from the prey to the predator. The predator's ability to cannibalize 

weaker predator species provides them with a second supply of food. The prey also hides in a 

variety of shelters that rely on their contact with the predator species, and their fear of predation 

affects how they give birth. According to these assumptions the dynamic system of such a prey-

predator system can be represented by the following two equations: 

𝑑𝑋

𝑑𝑡
= 𝑋 (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
) = 𝐺1(𝑋, 𝑌) = 𝑋𝑔1(𝑋, 𝑌),         

𝑑𝑌

𝑑𝑡
= 𝑌 (

𝑎2𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
) = 𝐺2(𝑋, 𝑌) = 𝑌𝑔2(𝑋, 𝑌),

            (1) 

where all the coefficients are positive constants and can be described in table (1). 

Table 1: parameters description. 

Parameter Description 

𝑟 The prey birth rate 

𝑑1 The prey’s natural death rate 

b The prey intraspecific competition 

𝑓 The prey’s fear level, which is involved in the fear function 
1

1+𝑓𝑌
. 

𝑎1 The attack rate 

𝐾1 The half-saturation constant. 

𝑐 ∈ [0,1] 
The prey’s refuge rate; hence the refuge amount is 𝑐𝑋𝑌, which leaves 𝑋(1 −

𝑐𝑌) of the prey available to be hunted by the predator 

𝑎2 The conversion rate of prey biomass into predator birth 

𝑎3 The conversion rate of cannibalism into predator birth 

𝑑2 The predator’s natural death rate 

𝑚 ∈ [0,1] 
The predator refuge rate; hence (1 − 𝑚)𝑌 of predator is available for 

cannibalism. 

𝑒 The cannibalism rate in predators. 

𝐾2 The half-saturation constant of cannibalism 



5 

MODELING AND ANALYSIS OF A PREY-PREDATOR SYSTEM 

3. PRELIMINARIES RESULTS 

From the form of interaction functions 𝐺1(𝑋, 𝑌) , and 𝐺2(𝑋, 𝑌)  given in system (1), they are 

continuous and have continuous partial derivatives on the region Ω = {(𝑋, 𝑌) ∈ ℝ+
2 : 𝑋 ≥ 0, 𝑌 ≥

0} . eence these functions are locally Lipschit  on Ω . Conseuuently, using the fundamental 

existence and uniuueness theorem [33], we obtain that for the system (1) with any non-negative 

initial condition 𝑋(0) ≥ 0, and 𝑌(0) ≥ 0 there exists 𝑇 > 0 so that the system (1) has a uniuue 

solution defined in Ω.  

Note that the solution of system (1) must be non-negative because the variables in the system 

indicate population densities. Then the following theorem ensures that the solution of system (1) 

is non-negative. 

Theorem 1: All system (1) solutions with initial values (𝑋(0), 𝑌(0)) belonging to Ω are non-

negative. 

Proof: By solving the euuations in the system (1), using the given initial value yields that: 

 𝑋(𝑡) = 𝑋(0)𝑒
∫ (

𝑟

1+𝑓𝑌(𝑢)
−𝑑1−𝑏𝑋(𝑢)−

𝑎1(1−𝑐𝑌(𝑢))𝑌(𝑢)

𝐾1+𝑋(𝑢)(1−𝑐𝑌(𝑢))
)𝑑𝑢

𝑡
0  

Similarly, 

 𝑌(𝑡) = 𝑌(0)𝑒
∫ (

𝑎2𝑋(𝑢)(1−𝑐𝑌(𝑢))

𝐾1+𝑋(𝑢)(1−𝑐𝑌(𝑢))
+𝑎3−𝑑2−

𝑒(1−𝑚)𝑌(𝑢)

𝐾2+(1−𝑚)𝑌(𝑢)
)

𝑡
0 𝑑𝑢

 

Therefore, if 𝑋(0) = 0 , and 𝑌(0) = 0  then it is obtained that 𝑋(𝑡) = 𝑌(𝑡) = 0  all the time. 

Otherwise, 𝑋(𝑡) ≥ 0, and 𝑌(𝑡) ≥ 0 indefinitely due to the positivity of the exponential function 

in the above two euuations. 

On the other hand, the populations in system (1) must be limited due to the limited resources in 

the environment. 

Theorem 2: All solutions of system (1) with initial values (𝑋(0), 𝑌(0))  belonging to Ω  are 

uniformly bounded. 

Proof: From the first euuation of the system (1), it is obtained that 

𝑑𝑋

𝑑𝑡
≤ (𝑟 − 𝑑1)𝑋 − 𝑏𝑋

2 = 𝛿𝑋 − 𝑏𝑋2, 

where 𝛿 = (𝑟 − 𝑑1) > 0, represents the prey survival condition. Therefore, for 𝑡 → ∞, it was 



6 

AHMED SAMI ABDULGHAFOUR, RAID KAMEL NAJI 

obtained that 𝑋(𝑡) ≤
𝛿

𝑏
= 𝜎1. 

Let 𝑊(𝑡) = 𝑋(𝑡) + 𝑌(𝑡), then by derivative, the following is obtained: 

𝑑𝑊

𝑑𝑡
=

𝑑𝑋

𝑑𝑡
+
𝑑𝑌

𝑑𝑡
≤ (𝑟 − 𝑑1)𝑋 + (𝑎3 − 𝑑2)𝑌 = 𝛿𝑋 − 𝛽𝑌, 

where 𝛽 = 𝑑2 − 𝑎3 > 0. Further simplifications yields that 

 
𝑑𝑊

𝑑𝑡
+ 𝛽𝑊 ≤ (𝛿 + 𝛽)𝜎1. 

Accordingly, it is easy to verify that the solution of the above first-order differential ineuuality 

satisfies that: 

 𝑊(𝑡) ≤
(𝛿+𝛽)𝜎1

𝛽
+ (𝑊(0) −

(𝛿+𝛽)𝜎1

𝛽
) 𝑒−𝛽𝑡. 

Since lim
𝑡→∞

𝑒−𝛽𝑡 = 0 , hence for 𝑡 → ∞ , it is obtained that 𝑊(𝑡) ≤
(𝛿+𝛽)𝜎1

𝛽
= 𝜎2 , which shows 

that all the solutions are uniformly bounded. 

 

4. STABILITY ANALYSIS 

System (1) has the following set of euuilibrium points, which is obtained by euuating the system 

to  ero. 

The vanishing euuilibrium point (VEP) that is given by 𝐸1 = (0,0), always exists.  

The first axial euuilibrium point (FAEP) is written as 𝐸2 = (ℎ1, 0) , where ℎ1 =
𝑟−𝑑1

𝑏
  exists 

provided that  

𝑟 − 𝑑1 > 0.                                                   (2) 

The second axial euuilibrium point (SAEP) is written as 𝐸3 = (0, ℎ2), where ℎ2 =
(𝑑2−𝑎3)𝐾2

[𝑎3−𝑑2−𝑒](1−𝑚)
 

exists provided that 

𝑑2 < 𝑎3 < 𝑑2 + 𝑒                                             (3) 

In the event that the conversion rate of cannibalism into predator birth is higher than their natural 

death rate and lower than the total cannibalism rate in predators and their natural death rate, the 

predator will continue to exist even if the prey is extinct. 

The coexistence euuilibrium point (COEP) is given by 𝐸4 = (𝑋∗, 𝑌∗), where 
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𝑋∗ =
𝐾1[𝑒(1−𝑚)𝑌

∗−(𝑎3−𝑑2)(𝐾2+(1−𝑚)𝑌
∗)]

(1−𝑐𝑌∗)[(𝑎2+𝑎3−𝑑2)(𝐾2+(1−𝑚)𝑌∗)−𝑒(1−𝑚)𝑌∗]
,                          (4) 

while 𝑌∗ is a positive root of the following six-order euuation. 

 ∆1𝑌
6 + ∆2𝑌

5 + ∆3𝑌
4 + ∆4𝑌

3 + ∆5𝑌
2 + ∆6𝑌 + ∆7= 0 ,                       (5)  

where 

∆1= −[(𝑒 − 𝑎2) − (𝑎3 − 𝑑2)]
2𝑐2𝑓(1 − 𝑚)2𝑎1 < 0. 

∆7= [(𝑎2 + 𝑎3 − 𝑑2)(𝑟 − 𝑑1) + 𝑏𝐾1(𝑎3 − 𝑑2)]𝑎2𝐾1𝐾2
2 > 0, 

while the other coefficients are determined and given in appendix A. 

The COEP exists in the interior of the state-space Ω provided that: 

𝑒(1−𝑚)𝑌∗

(𝑎2+𝑎3−𝑑2)
< (𝐾2 + (1 −𝑚)𝑌

∗) <
𝑒(1−𝑚)𝑌∗

(𝑎3−𝑑2)
.                              (6) 

With one set of the following sets of conditions. 

 

∆2< 0, ∆3< 0, ∆4< 0, ∆5< 0, ∆6< 0,
∆2> 0, ∆3> 0, ∆4> 0, ∆5> 0, ∆6> 0,
∆2< 0, ∆3< 0, ∆4≠ 0, ∆5> 0, ∆6> 0,
∆2< 0, ∆3< 0, ∆4< 0, ∆5< 0, ∆6> 0,
∆2< 0, ∆3> 0, ∆4> 0, ∆5> 0, ∆6> 0}

 
 

 
 

                                  (7) 

Now, the local stability analysis is carried out by computing the Jacobian matrix (JM) of the system 

(1) and determining their eigenvalues at each of the above-determined EPs. Consider the JM at the 

point (𝑋, 𝑌) that can be written as: 

𝐽 = [
𝑗11 𝑗12
𝑗21 𝑗22

]                                             (8) 

where: 

𝑗11 = 𝑋 [
𝑎1𝑌(1−𝑐𝑌)

2

[𝐾1+𝑋(1−𝑐𝑌)]2
− 𝑏] + 𝑔1(𝑋, 𝑌); 

𝑗12 = −𝑋 [
𝐾1𝑎1(1−2𝑐𝑌)+𝑎1𝑋(1−𝑐𝑌)

2

[𝐾1+𝑋(1−𝑐𝑌)]2
+

𝑟𝑓

(1+𝑓𝑌)2
], 

𝑗21 = Y [
𝐾1𝑎2(1−𝑐𝑌)

[𝐾1+𝑋(1−𝑐𝑌)]2
], 

𝑗22 = −𝑌 [
𝐾1𝑎2𝑐𝑋

[𝐾1+𝑋(1−𝑐𝑌)]2
+

𝐾2𝑒(1−𝑚)

[𝐾2+(1−𝑚)𝑌]2
] + 𝑔2(𝑋, 𝑌). 

Conseuuently, the JM at the VEP can be written as: 

𝐽𝐸1 = [
𝑟 − 𝑑1 0
0 𝑎3 − 𝑑2

].                                      (9) 
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eence the eigenvalues are 𝜇11 = 𝑟 − 𝑑1 , and 𝜇12 = 𝑎3 − 𝑑2 , therefore the VEP is locally 

asymptotically stable (LAS) provided that the following conditions are met. 

 𝑟 < 𝑑1                                               (10) 

𝑎3 < 𝑑2                                               (11) 

The JM at the FAEP can be represented by: 

 𝐽𝐸2= [
−𝑏ℎ1 −ℎ1 (

𝑎1

𝐾1+ℎ1
+ 𝑟𝑓)

0
𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3 − 𝑑2

].                                  (12) 

eence the eigenvalues are 𝜇21 = −𝑏ℎ1 < 0 , and 𝜇22 =
𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3 − 𝑑2 , therefore the FAEP 

will be LAS provided that the following condition holds. 

 
𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3 < 𝑑2.                                      (13) 

The JM of the system (1) at the SAEP can be written in the form:  

𝐽𝐸3 = [

𝑟

1+𝑓ℎ2
− 𝑑1 −

𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
0

ℎ2
𝑎2(1−𝑐ℎ2)

𝐾1
−

𝐾2𝑒(1−𝑚)ℎ2

[𝐾2+(1−𝑚)ℎ2]2

].                    (14) 

Accordingly, the eigenvalue can be determined as 𝜇31 =
𝑟

1+𝑓ℎ2
− 𝑑1 −

𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
 , and 𝜇32 =

−
𝐾2𝑒(1−𝑚)ℎ2

[𝐾2+(1−𝑚)ℎ2]2
< 0, hence the SAEP will be LAS provided that 

 
𝑟

1+𝑓ℎ2
< 𝑑1 +

𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
.                             (15) 

The JM at the COEP will be written as follows: 

 𝐽𝐸4= [
𝑎11 𝑎12
𝑎21 𝑎22

],                                     (16) 

where: 

𝑎11 = 𝑋∗ [
𝑎1𝑌

∗(1−𝑐𝑌∗)2

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
− 𝑏], 

𝑎12 = −𝑋∗ [
𝐾1𝑎1(1−2𝑐𝑌

∗)+𝑎1𝑋
∗(1−𝑐𝑌∗)2

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
+

𝑟𝑓

(1+𝑓𝑌∗)2
] < 0, 

𝑎21 = 𝑌
∗ [

𝐾1𝑎2(1−𝑐𝑌
∗)

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
] > 0, 

𝑎22 = −𝑌
∗ [

𝐾1𝑎2𝑐𝑋
∗

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
+

𝐾2𝑒(1−𝑚)

[𝐾2+(1−𝑚)𝑌∗]2
] < 0. 
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Straightforward computation shows that the characteristic euuation of 𝐽𝐸4  will be written as: 

𝜇2 − 𝑇𝑟𝐸4𝜇 + 𝐷𝑒𝑡𝐸4 = 0;                                   (17) 

where 𝑇𝑟𝐸4 = 𝑎11 + 𝑎22, and 𝐷𝑒𝑡𝐸4 = 𝑎11𝑎22 − 𝑎12𝑎21. 

Clearly, euuation (17) has the following roots (eigenvalues): 

𝜇41 =
𝑇𝑟𝐸4+

√(𝑇𝑟𝐸4)
2
−4𝐷𝑒𝑡𝐸4

2
 , 𝜇42 =

𝑇𝑟𝐸4−
√(𝑇𝑟𝐸4)

2
−4𝐷𝑒𝑡𝐸4

2
                        (18) 

According to the Routh eurwit  criterion, the two roots 𝜇41 and 𝜇42 have negative real parts if 

and only if 𝑇𝑟𝐸4 < 0 , and 𝐷𝑒𝑡𝐸4 > 0 . Therefore, the COEP will be LAS if and only if the 

following condition holds: 

𝑎1𝑌
∗(1−𝑐𝑌∗)2

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
< 𝑏.                                    (19) 

The global dynamic of the system (1) is investigated as shown in the following theorems, by 

computing the basin of attraction using the method of the Lyapunov function, and the Dulac 

function with the Poincare-Bendixson theorem. 

Theorem 3: If the VEP is LAS then it is a globally asymptotically stable. 

Proof: Define the function 𝐿1 = 𝑋 +
𝑎1

𝑎2
𝑌, which is real valued function defined on the state-space 

Ω, so that 𝐿1(0,0) = 0 while 𝐿1(𝑋, 𝑌) > 0 for all (𝑋, 𝑌) ∈ Ω and (𝑋, 𝑌) ≠ (0,0), hence it is a 

positive definite function.  

 
𝑑𝐿1

𝑑𝑡
=

𝑑𝑋

𝑑𝑡
+
𝑎1

𝑎2

𝑑𝑌

𝑑𝑡
=

𝑟𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑏𝑋

2 +
𝑎1𝑎3

𝑎2
𝑌 −

𝑎1𝑑2

𝑎2
𝑌 −

𝑎1

𝑎2

𝑒(1−𝑚)𝑌2

𝐾2+(1−𝑚)𝑌
. 

Therefore, after some calculation it is obtained that: 

 
𝑑𝐿1

𝑑𝑡
≤ −(𝑑1 − 𝑟)𝑋 −

𝑎1

𝑎2
(𝑑2 − 𝑎3)𝑌. 

Clearly, under the LAS conditions,  
𝑑𝐿1

𝑑𝑡
 is negative definite function. eence the VEP is a GAS. 

Theorem 4: If the FAEP is a LAS then it is a GAS provided that the following sufficient condition 

is met: 

 
(𝑟𝑓𝐾1+𝑎1)

𝐾1
ℎ1 <

𝑎1

𝑎2
(𝑑2 − 𝑎3).                            (20) 

Proof: Define the function 𝐿2 = 𝑋 − ℎ1 − ℎ1  ln
𝑋

ℎ1
+
𝑎1

𝑎2
𝑌, which is a real valued function defined 



10 

AHMED SAMI ABDULGHAFOUR, RAID KAMEL NAJI 

on the Ω1 = {(𝑋, 𝑌) ∈ ℝ+
2 : 𝑋 > 0, 𝑌 ≥ 0} , so that 𝐿2(ℎ1, 0) = 0  while 𝐿2(𝑋, 𝑌) > 0  for all 

(𝑋, 𝑌) ∈ Ω1 and (𝑋, 𝑌) ≠ (ℎ1, 0), hence it is a positive definite function.  

The derivative of 𝐿2 with respect to time can be written as: 

 
𝑑𝐿2

𝑑𝑡
≤ −𝑏(𝑋 − ℎ1)

2 − [
𝑎1

𝑎2
(𝑑2 − 𝑎3) −

(𝑟𝑓𝐾1+𝑎1)

𝐾1
ℎ1] 𝑌. 

Clearly, under the condition (20), 
𝑑𝐿2

𝑑𝑡
 is negative definite function. eence the FAEP is a GAS. 

Theorem 5: If the SAEP is a LAS then it is a GAS provided that the sufficient condition (10) is 

met 

Proof: Define the function 𝐿3 =
𝑎2

𝑎1
𝑋 + 𝑌 − ℎ2 − ℎ2  ln

𝑌

ℎ2
, which is a real valued function defined 

on the Ω2 = {(𝑋, 𝑌) ∈ ℝ+
2 : 𝑋 ≥ 0, 𝑌 > 0} , so that 𝐿3(0, ℎ2) = 0  while 𝐿3(𝑋, 𝑌) > 0  for all 

(𝑋, 𝑌) ∈ Ω2 and (𝑋, 𝑌) ≠ (0, ℎ2), hence it is a positive definite function.  

The derivative of 𝐿3 with respect to time can be written as: 

 
𝑑𝐿3

𝑑𝑡
≤ −

𝑎2

𝑎1
(𝑑1 − 𝑟)𝑋 −

𝑒(1−𝑚)𝐾2(𝑌−ℎ2)
2

[𝐾2+(1−𝑚)𝑌][𝐾2+(1−𝑚)ℎ2]
−
𝑎2𝑋(1−𝑐𝑌)ℎ2

𝐾1+𝑋(1−𝑐𝑌)
 

Since 0 < 1 − 𝑐𝑌 < 1, then it is obtained that 

𝑑𝐿3

𝑑𝑡
≤ −

𝑎2

𝑎1
[𝑑1 − 𝑟]𝑋 −

𝑒(1−𝑚)𝐾2(𝑌−ℎ2)
2

[𝐾2+(1−𝑚)𝑌][𝐾2+(1−𝑚)ℎ2]
.   

Clearly, under the condition (10), 
𝑑𝐿3

𝑑𝑡
 is negative definite function. eence the SAEP is a GAS. 

Theorem 6: If the COEP is a uniuue LAS then it is a GAS 

Proof: Consider a continuously differentiable function 𝑔(𝑋, 𝑌) (known as the Dulac function) 

such that the expression ∆=
𝜕

𝜕𝑋
(𝑔𝐺1) +

𝜕

𝜕𝑌
(𝑔𝐺2) almost everywhere has the same sign (≠ 0) 

in a simply connected region of the plane. Conseuuently, according to the Bendixson–Dulac 

theorem [33], the autonomous dynamical system (1) has no non-constant periodic solutions 

belonging entirely in the region. 

Consider the function 𝑔(𝑋, 𝑌) =
1

𝑋𝑌
 , which is a 𝐶1  in a simply connected region of Ω , then 

simple computation shows that: 

 ∆=
𝜕

𝜕𝑋
(𝑔𝐺1) +

𝜕

𝜕𝑌
(𝑔𝐺2) = [−

𝑏

𝑌
+

𝑎1(1−𝑐𝑌)
2

[𝐾1+𝑋(1−𝑐𝑌)]2
] − [

𝑎2𝑐𝐾1

[𝐾1+𝑋(1−𝑐𝑌)]2
+

𝑒𝐾2(1−𝑚)

𝑋[𝐾2+(1−𝑚)𝑌]2
]. 
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Since, the LAS condition (19) of COEP, is correct for any value of 𝑌∗, then the condition is correct 

for any value of 𝑌. Therefore, it is deduced that, ∆< 0.  

Thus, the system (1) has no periodic dynamics in the interior of Ω. Conseuuently, depending on 

the Poincare-Bendixson theorem the COEP is a GAS. 

5. PERSISTENCE 

The idea of persistence is explored in this section. In biology, persistence refers to the continued 

existence of all populations, regardless of their origins. It follows mathematically that the boundary 

of the non-negative state space does not contain any omega limit points for rigorously positive 

solutions. Conditions guarantee the system's uniform persistence, according to the following 

theorem (1). 

Theorem 7: The system (1) is uniformly persistence under the following conditions 

 
𝑑1 < 𝑟  
𝑑2 < 𝑎3

}.                                       (21) 

 𝑑2 <
𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3.                                 (22) 

 𝑑1 +
𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
<

𝑟

1+𝑓ℎ2
.                                (23) 

Proof: Consider the function 𝑃(𝑋, 𝑌) = 𝑋𝑝𝑌𝑞, where 𝑝, and 𝑞 are positive constants.  

Clearly, 𝑃(𝑋, 𝑌) > 0  for all (𝑋, 𝑌) ∈ Ω , and 𝑃(𝑋, 𝑌) = 0  for all (𝑋, 𝑌) ∈ 𝜕Ω , where 𝜕Ω 

represents the boundary of the state-space Ω. Then, 𝑃(𝑋, 𝑌) is the said to be persistence function 

or named average Lyapunov function in the sense of the Gard approach [34]. Now, the Gard 

approach states that the proof is only conclusive if  Λ(𝑋, 𝑌) =
𝑃′(𝑋,𝑌)

𝑃(𝑋,𝑌)
 is positive for all points 

(𝑋, 𝑌) that belong to the omega limit sets of the system (1) in the 𝜕Ω.  

Since the result of direct computation yields that: 

 
Λ(𝑋, 𝑌) =

𝑝

𝑋

𝑑𝑋

𝑑𝑡
+
𝑞

𝑌

𝑑𝑌

𝑑𝑡
= 𝑝 [

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
]

+𝑞 [
𝑎2𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
]

. 

Moreover, since 𝐸1, 𝐸2, and 𝐸3 are the only possible attracting sets belong to the omega limit 

sets of the system (1) in 𝜕Ω. Then, the direct calculation leads to that:  
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 Λ(𝐸1) = 𝑝(𝑟 − 𝑑1) + 𝑞(𝑎3 − 𝑑2). 

 Λ(𝐸2) = 𝑞 (
𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3 − 𝑑2). 

 Λ(𝐸3) = 𝑝 (
𝑟

1+𝑓ℎ2
− 𝑑1 −

𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
). 

Clearly, under the set of conditions (21) or at least one condition of them with a suitable choice of 

𝑝  and 𝑞 , it is obtained that Λ(𝐸1) > 0 . While Λ(𝐸2) > 0  due to condition (22). eowever, 

condition (23) guarantees that Λ(𝐸3) > 0. eence the proof is done.   

 

6. LOCAL BIFURCATION 

The integral curves of a set of vector fields or the solutions to a set of differential euuations are 

two examples of collections of curves that might undergo changes in their uualitative structure 

according to the bifurcation theory. A bifurcation happens when a small, gradual change in a 

system's parameter values results in a large uualitative shift in the behavior of the system. The 

mathematical analysis of dynamical systems is where it is most freuuently employed. There are 

two types of bifurcation. Both local and global bifurcations can be distinguished by looking for 

changes in the local stability characteristics of euuilibria, periodic orbits, or other invariant sets 

when parameters cross critical thresholds. Global bifurcations take place when the system's larger 

invariant sets interfere with one another or with the system's euuilibria. They can't be discovered 

just by looking at how stable the euuilibria are. This section carries out the detection of the potential 

for local bifurcation. 

Rewrite the system (1) as: 

𝑑𝑊

𝑑𝑡
= 𝐺(𝑊, 𝛼), with 𝑊 = (

𝑋
𝑌
), 𝛼 ∈ ℝ+ and 𝐺(𝑊, 𝛼) = (

𝐺1(𝑋, 𝑌, 𝛼)
𝐺2(𝑋, 𝑌, 𝛼)

).         

eence, the second directional derivative of 𝐺, with 𝑉 = (𝑣1, 𝑣2)
𝑇 be any vector, can be written 

using direct computation as:  

𝐷2𝐺(𝑊, 𝛼). (𝑉, 𝑉) = (
𝑐11
𝑐21
),                               (24)  

where  



13 

MODELING AND ANALYSIS OF A PREY-PREDATOR SYSTEM 

𝑐11 = −2 [𝑏 −
𝑎1𝐾1𝑌(1 − 𝑐𝑌)

2

[𝐾1 + 𝑋(1 − 𝑐𝑌)]3
] 𝑣1

2 + 2𝑋 [
𝑐𝑎1𝐾1(𝐾1 + 𝑋)

[𝐾1 + 𝑋(1 − 𝑐𝑌)]3
+

𝑟𝑓2

(1 + 𝑓𝑌)3
] 𝑣2

2

+2 [𝑎1𝐾1 (
𝑐(2𝐾1 + 𝑋)𝑌 − (𝐾1 + 𝑋)

[𝐾1 + 𝑋(1 − 𝑐𝑌)]3
) −

𝑟𝑓

(1 + 𝑓𝑌)2
] 𝑣1𝑣2,

     

 

  
𝑐21 = −2 [

𝑎2𝐾1𝑐(𝐾1+𝑋)𝑋

[𝐾1+𝑋(1−𝑐𝑌)]3
+

𝑒𝐾2
2(1−𝑚)

[𝐾2+(1−𝑚)𝑦]3
] 𝑣2

2 − 2𝑎2𝐾1 [
Y−2𝑐𝑌2+𝑐2𝑌3

[𝐾1+𝑋(1−𝑐𝑌)]3
] 𝑣1

2

+2𝑎2𝐾1 [
(𝐾1+𝑋)−𝑐(2𝐾1+𝑋)𝑌

[𝐾1+𝑋(1−𝑐𝑌)]3
] 𝑣1𝑣2

. 

While the third directional derivative of 𝐺 can be written as: 

 𝐷3𝐺(𝑊, 𝛼). (𝑉, 𝑉, 𝑉) = (
𝑑11
𝑑21

),                           (25) 

where: 

 

𝑑11 = 
6𝑎1𝐾1𝑌(−1+𝑐𝑌)

3

(𝑋−𝑐𝑋𝑌+𝐾1)4
𝑣1
3 +

6𝑎1𝐾1(1−𝑐𝑌)[𝑋(1−𝑐𝑌)+(1−3𝑐𝑌)𝐾1]

(𝑋−𝑐𝑋𝑌+𝐾1)4
𝑣1
2𝑣2

+[
6𝑎1𝐾1𝑐[𝑋

2(−1+𝑐𝑌)+2𝑐𝑋𝑌𝐾1+𝐾1
2]

(𝑋−𝑐𝑋𝑌+𝐾1)4
+
6𝑓2𝑟(1+𝑓𝑌)

(1+𝑓𝑌)4
] 𝑣1𝑣2

2

+ [−
6𝑓3𝑟𝑋

(1+𝑓𝑌)4
+
6𝑎1𝐾1𝑐

2𝑋2(𝑋+𝐾1)

(𝑋−𝑐𝑋𝑌+𝐾1)4
] 𝑣2

3.

 

 

𝑑21 = [
6𝑒(1−𝑚)2𝐾2

2

((1−𝑚)𝑌+𝐾2)4
−
6𝑎2𝐾1𝑐

2𝑋2(𝑋+𝐾1)

(𝑋−𝑐𝑋𝑌+𝐾1)4
] 𝑣2

3 +
6𝑎2𝐾1𝑌(1−𝑐𝑌)

3

(𝑋−𝑐𝑋𝑌+𝐾1)4
𝑣1
3

−
6𝑎2𝐾1(1−𝑐𝑌)[𝑋(1−𝑐𝑌)+(1−3𝑐𝑌)𝐾1]

(𝑋−𝑐𝑋𝑌+𝐾1)4
𝑣1
2𝑣2

−
6𝑎2𝐾1𝑐[−𝑋

2(1−𝑐𝑌)+2𝑐𝑋𝑌𝐾1+𝐾1
2]

(𝑋−𝑐𝑋𝑌+𝐾1)4
𝑣1𝑣2

2.

 

Theorem 8: Assume that condition (10) holds, then the system (1) possess a transcritical 

bifurcation (TB) at the VEP when the parameter 𝑎3 passes through the value 𝑎3
∗ = 𝑑2.  

Proof: From the JM that is written in euuation (9), it is observed that, for 𝑎3 = 𝑎3
∗  it is becomes 

 𝐽1 = 𝐽𝐸1,𝑎3∗ = [
𝑟 − 𝑑1 0
0 0

]. 

Therefore, the eigenvalues of 𝐽1 are 𝜇11
∗ = 𝑟 − 𝑑1, which is negative under condition (10), and 

𝜇12
∗ = 0. Thus, the VEP becomes a non-hyperbolic point. Let 𝑉1 = (

𝑣11
𝑣21

), and 𝑈1 = (
𝑢11
𝑢21

) be 

the eigenvectors associated with the 𝜇12
∗ = 0 of the 𝐽1 and its transpose respectively. Then, after 

doing simple mathematical steps it is deduced that:  

 𝑉1 = (
0
1
), 𝑈1 = (

0
1
) 

Moreover, direct computation gives that:  
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 𝐺𝑎3(𝑊, 𝑎3) = (
0
𝑌
) ⇒ 𝐺𝑎3(𝐸1, 𝑎3

∗) = (
0
0
). This gives that 𝑈1

Τ𝐺𝑎3(𝐸1, 𝑎3
∗) = 0. 

 𝑈1
Τ[𝐷𝐺𝑎3(𝐸1, 𝑎3

∗)𝑉1] = 1 ≠ 0, 

where 𝐷𝐺𝑎3(𝐸1, 𝑎3
∗) represents the directional derivative of 𝐺𝑎3(𝑊, 𝑎3) at (𝐸1, 𝑎3

∗). 

Moreover, from the euuation (24), the following finding is obtained 

 𝐷2𝐺(𝐸1, 𝑎3
∗). (𝑉1, 𝑉1) = (

0

−2 [
𝑒(1−𝑚)

𝐾2
]). 

eence, it is simple to verify that 𝑈1
Τ[𝐷2𝐺(𝐸1, 𝑎3

∗). (𝑉1, 𝑉1)] = −2 [
𝑒(1−𝑚)

𝐾2
] ≠ 0 . Thus the 

Sotomayor theorem of local bifurcation [33], specifies that the system (1) possess a TB at the 𝐸1, 

and that completes the proof. 

Theorem 9: The system (1) possess a TB at the FAEP when the parameter 𝑑2 passes through the 

value 𝑑2
∗ =

𝑎2ℎ1

𝐾1+ℎ1
+ 𝑎3.  

Proof: From the JM that is written in euuation (12), it is observed that, for 𝑑2 = 𝑑2
∗  it is becomes 

 𝐽2 = 𝐽𝐸2,𝑑2∗= [
−𝑏ℎ1 −ℎ1 (

𝑎1

𝐾1+ℎ1
+ 𝑟𝑓)

0 0
].                     

eence the eigenvalues are 𝜇21
∗ = −𝑏ℎ1 < 0 , and 𝜇22

∗ = 0 . Thus, the FAEP becomes a non-

hyperbolic point. Let 𝑉2 = (
𝑣12
𝑣22

) , and 𝑈2 = (
𝑢12
𝑢22

)  be the eigenvectors associated with the 

𝜇22
∗ = 0 of the 𝐽2 and its transpose respectively. Then, after doing simple mathematical steps it 

is deduced that:  

𝑉2 = (
−
1

𝑏
[

𝑎1

𝐾1+ℎ1
+ 𝑟𝑓]

1
) = (

𝛾1
1
), 𝑈2 = (

0
1
). 

Moreover, direct computation gives that:  

𝐺𝑑2(𝑊, 𝑑2) = (
0
−𝑌

) ⇒ 𝐺𝑑2(𝐸2, 𝑑2
∗) = (

0
0
). This gives that 𝑈2

Τ𝐺𝑑2(𝐸2, 𝑑2
∗) = 0. 

𝑈2
Τ[𝐷𝐺𝑑2(𝐸2, 𝑑2

∗)𝑉2] = −1 ≠ 0, 

where 𝐷𝐺𝑑2(𝐸2, 𝑑2
∗) represents the directional derivative of 𝐺𝑑2(𝑊, 𝑑2) at (𝐸2, 𝑑2

∗). 

Moreover, from the euuation (24), the following finding is obtained 
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 𝐷2𝐺(𝐸2, 𝑑2
∗). (𝑉2, 𝑉2) = (

−2𝑏𝛾1
2 + 2 [

𝑐𝑎1𝐾1ℎ1

[𝐾1+ℎ1]2
+ 𝑟𝑓2ℎ1] − 2 [

𝑎1𝐾1

[𝐾1+ℎ1]2
+ 𝑟𝑓] 𝛾1

−2 [
𝑎2𝐾1𝑐ℎ1

[𝐾1+ℎ1]2
+
𝑒(1−𝑚)

𝐾2
] + 2 [

𝑎2𝐾1

[𝐾1+ℎ1]2
] 𝛾1

). 

eence, due to that 𝛾1 < 0, it is simple to verify that: 

 𝑈2
Τ[𝐷2𝐺(𝐸2, 𝑑2

∗). (𝑉2, 𝑉2)] = −2 [
𝑎2𝐾1𝑐ℎ1

[𝐾1+ℎ1]2
+
𝑒(1−𝑚)

𝐾2
] + 2 [

𝑎2𝐾1

[𝐾1+ℎ1]2
] 𝛾1 < 0.  

Thus the Sotomayor theorem of local bifurcation, specifies that the system (1) possess a TB at the 

𝐸2, and that completes the proof. 

Theorem 10: The system (1) possess a TB at the SAEP when the parameter 𝑟 passes through the 

value 𝑟∗ = (1 + 𝑓ℎ2) [𝑑1 +
𝑎1(1−𝑐ℎ2)ℎ2

𝐾1
], provided that the following condition is satisfied: 

 −2 [𝑏 −
𝑎1ℎ2(1−𝑐ℎ2)

2

𝐾1
2 ] − 2 [𝑎1

(1−2𝑐ℎ2)

𝐾1
+

𝑟∗𝑓

(1+𝑓ℎ2)2
] 𝛾2 ≠ 0.              (26) 

Otherwise, there is a pitchfork bifurcation (PB). 

 − 
6𝑎1ℎ2(1−𝑐ℎ2)

3

𝐾1
3 +

6𝑎1(1−𝑐ℎ2)(1−3𝑐ℎ2)

𝐾1
2 𝛾2 + [

6𝑎1𝑐

𝐾1
+

6𝑓2𝑟

(1+𝑓ℎ2)3
] 𝛾2

2 ≠ 0.             (27) 

where all the new symbols are given in the proof. 

Proof: From the JM that is written in euuation (12), it is observed that, for 𝑑2 = 𝑑2
∗  it is becomes 

𝐽3 = 𝐽𝐸3,𝑟∗ = [
0 0

ℎ2
𝑎2(1−𝑐ℎ2)

𝐾1
−

𝐾2𝑒(1−𝑚)ℎ2

[𝐾2+(1−𝑚)ℎ2]2
].         

eence the eigenvalues are 𝜇31
∗ = 0, and 𝜇32

∗ = −
𝐾2𝑒(1−𝑚)ℎ2

[𝐾2+(1−𝑚)ℎ2]2
. Thus, the SAEP becomes a non-

hyperbolic point. Let 𝑉3 = (
𝑣13
𝑣23

) , and 𝑈3 = (
𝑢13
𝑢23

)  be the eigenvectors associated with the 

𝜇31
∗ = 0 of the 𝐽3 and its transpose respectively. Then, after doing simple mathematical steps it 

is deduced that:  

 𝑉3 = (
1

𝑎2(1−𝑐ℎ2)[𝐾2+(1−𝑚)ℎ2]
2

𝐾1𝐾2𝑒(1−𝑚)

) = (
1
𝛾2
), 𝑈3 = (

1
0
). 

Moreover, direct computation gives that:  

 𝐺𝑟(𝑊, 𝑟) = (
𝑋

1+𝑓𝑌

0
) ⇒ 𝐺𝑟(𝐸3, 𝑟

∗) = (
0
0
). This gives that 𝑈3

Τ𝐺𝑟(𝐸3, 𝑟
∗) = 0. 
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 𝑈3
Τ[𝐷𝐺𝑟(𝐸3, 𝑟

∗)𝑉3] =
1

1+𝑓ℎ2
≠ 0, 

where 𝐷𝐺𝑟(𝐸3, 𝑟
∗) represents the directional derivative of 𝐺𝑟(𝑊, 𝑟) at (𝐸3, 𝑟

∗). 

Moreover, from the euuation (24), the following finding is obtained 

 𝐷2𝐺(𝐸3, 𝑟
∗). (𝑉3, 𝑉3) = (

𝑐11(𝐸3, 𝑟
∗)

𝑐21(𝐸3, 𝑟
∗)
), 

where 

 𝑐11(𝐸3, 𝑟
∗) = −2 [𝑏 −

𝑎1ℎ2(1−𝑐ℎ2)
2

𝐾1
2 ] − 2 [𝑎1

(1−2𝑐ℎ2)

𝐾1
+

𝑟∗𝑓

(1+𝑓ℎ2)2
] 𝛾2. 

 𝑐21(𝐸3, 𝑟
∗) = −2 [

𝑒𝐾2
2(1−𝑚)

[𝐾2+(1−𝑚)ℎ2]3
] 𝛾2

2 − 2𝑎2ℎ2 [
(𝑐ℎ2−1)

2

𝐾1
2 ] + 2𝑎2 [

1−2𝑐ℎ2

𝐾1
] 𝛾2. 

eence, due to condition (26), it is simple to verify that: 

 𝑈3
Τ[𝐷2𝐺(𝐸3, 𝑟

∗). (𝑉3, 𝑉3)] = −2 [𝑏 −
𝑎1ℎ2(1−𝑐ℎ2)

2

𝐾1
2 ] − 2 [𝑎1

(1−2𝑐ℎ2)

𝐾1
+

𝑟∗𝑓

(1+𝑓ℎ2)2
] 𝛾2 ≠ 0.  

Thus the Sotomayor theorem of local bifurcation, specifies that the system (1) possess a TB at the 

𝐸3. Now, if condition (26) is violated then by using euuation (25) it is obtained that: 

 𝐷3𝐺(𝐸3, 𝑟
∗). (𝑉3, 𝑉3, 𝑉3) = (

𝑑11(𝐸3, 𝑟
∗)

𝑑21(𝐸3, 𝑟
∗)
), 

where 

 𝑑11 = − 
6𝑎1ℎ2(1−𝑐ℎ2)

3

𝐾1
3 +

6𝑎1(1−𝑐ℎ2)(1−3𝑐ℎ2)

𝐾1
2 𝛾2 + [

6𝑎1𝑐

𝐾1
+

6𝑓2𝑟

(1+𝑓ℎ2)3
] 𝛾2

2. 

 𝑑21 = [
6𝑒(1−𝑚)2𝐾2

2

(𝐾2+(1−𝑚)ℎ2)4
] 𝛾2

3 +
6𝑎2ℎ2(1−𝑐ℎ2)

3

𝐾1
3 −

6𝑎2(1−𝑐ℎ2)(1−3𝑐ℎ2)

𝐾1
2 𝛾2 −

6𝑎2𝑐

𝐾1
𝛾2
2. 

eence, due to condition (27), it is simple to verify that: 

 
𝑈3

Τ[𝐷3𝐺(𝐸3, 𝑟
∗). (𝑉3, 𝑉3, 𝑉3)] = − 

6𝑎1ℎ2(1−𝑐ℎ2)
3

𝐾1
3 +

6𝑎1(1−𝑐ℎ2)(1−3𝑐ℎ2)

𝐾1
2 𝛾2

+ [
6𝑎1𝑐

𝐾1
+

6𝑓2𝑟

(1+𝑓ℎ2)3
] 𝛾2

2 ≠ 0.
. 

 Thus the system (1) possess a PB at the 𝐸3, and that completes the proof.  

Theorem 11: The system (1) possess a saddle-node bifurcation (SNB) at COEP when the 

parameter 𝑎2 passes through the value 𝑎2
∗ =

[𝐾1+𝑋
∗(1−𝑐𝑌∗)]2

𝐾1𝑌∗(1−𝑐𝑌∗)

𝑎11𝑎22

𝑎12
, if the following reuuirements 

are met. 

 𝑏 <
𝑎1𝑌

∗(1−𝑐𝑌∗)2

[𝐾1+𝑋∗(1−𝑐𝑌∗)]2
,                                (28) 
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 𝑐11(𝐸4, 𝑎2
∗)𝛾4 + 𝑐21(𝐸4, 𝑎2

∗) ≠ 0,                        (29) 

where all the new symbols are given in the proof. 

Proof: From the JM that is written in euuation (16), it is observed that, for 𝑎2 = 𝑎2
∗  it is becomes 

𝐽4 = 𝐽𝐸4,𝑎2∗ = [𝑎𝑖𝑗
∗ ],                 

where 𝑎11
∗ = 𝑎11, 𝑎12

∗ = 𝑎12, 𝑎21
∗ = 𝑎21(𝑎2

∗), and 𝑎22
∗ = 𝑎22(𝑎2

∗). Straightforward computation 

shows that the determinant of 𝐽4 at 𝑎2 = 𝑎2
∗  (i.e. 𝐷𝑒𝑡𝐸4 ,𝑎2∗ ) is  ero. Then 𝐽4 has  ero eigenvalue 

(𝜇41
∗ = 0) with the second eigenvalue 𝜇42

∗ = 𝑇𝑟𝐸4,𝑎2∗ . Thus, the COEP is a non-hyperbolic point 

when 𝑎2 = 𝑎2
∗ . 

Let 𝑉4 = (
𝑣14
𝑣24

) , and 𝑈4 = (
𝑢14
𝑢24

)  be the eigenvectors associated with 𝜇41
∗ = 0  of the 𝐽4  and 

their transpose respectively. Then, direct calculation gives that:  

 𝑉4 = (
−
𝑎12
∗

𝑎11
∗

1
) = (

𝛾3
1
), 𝑈4 = (

−
𝑎21
∗

𝑎11
∗

1
) = (

𝛾4
1
). 

According to the elements of 𝐽4 and the condition (26), it is observed that 𝛾3 > 0, and 𝛾4 < 0. 

Moreover, simple computation gives that: 

 𝐺𝑎2(𝑊, 𝑎2) = (
0

𝑋𝑌(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)

) ⇒ 𝐺𝑎2(𝐸4, 𝑎2
∗) = (

0
𝑋∗𝑌∗(1−𝑐𝑌∗)

𝐾1+𝑋∗(1−𝑐𝑌∗)

).  

This gives that 𝑈4
Τ𝐺𝑎2(𝐸4, 𝑎2

∗) =
𝑋∗𝑌∗(1−𝑐𝑌∗)

𝐾1+𝑋∗(1−𝑐𝑌∗)
> 0 . Moreover, from the euuation (24), the 

following finding is obtained 

 𝐷2𝐺(𝐸4, 𝑎2
∗). (𝑉4, 𝑉4) = (

𝑐11(𝐸4, 𝑎2
∗)

𝑐21(𝐸4, 𝑎2
∗)
), 

where 

𝑐11(𝐸4, 𝑎2
∗) = −2 [𝑏 −

𝑎1𝐾1𝑌
∗(1 − 𝑐𝑌∗)2

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
] 𝛾3

2                                             

+2 [
𝑐𝑎1𝐾1(𝐾1 + 𝑋

∗)𝑋∗

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
+

𝑟𝑓2𝑋∗

(1 + 𝑓𝑌∗)3
]

     +2 [
𝑎1𝐾1𝑐(2𝐾1 + 𝑋

∗)𝑌∗ − 𝑎1𝐾1(𝐾1 + 𝑋
∗)

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
−

𝑟𝑓

(1 + 𝑓𝑌∗)2
] 𝛾3,
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𝑐21(𝐸4, 𝑎2
∗) = −2 [

𝑎2𝐾1𝑐(𝐾1 + 𝑋
∗)𝑋∗

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
+

𝑒𝐾2
2(1 − 𝑚)

[𝐾2 + (1 −𝑚)𝑌∗]3
]                  

−2 [
𝑎2𝐾1𝑌

∗(1 − 𝑐𝑌∗)2

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
] 𝛾3

2

+2 [
𝑎2𝐾1(𝐾1 + 𝑋

∗) − 𝑎2𝐾1𝑐(2𝐾1 + 𝑋
∗)𝑌∗

[𝐾1 + 𝑋∗(1 − 𝑐𝑌∗)]3
] 𝛾3.

 

eence, by using the condition (27), it is simple to verify that: 

 𝑈4
Τ[𝐷2𝐺(𝐸4, 𝑎2

∗). (𝑉4, 𝑉4)] = 𝑐11(𝐸4, 𝑎2
∗)𝛾4 + 𝑐21(𝐸4, 𝑎2

∗) ≠ 0.  

Thus the Sotomayor theorem of local bifurcation, specifies that the system (1) possess a SNB at 

the 𝐸4, and that completes the proof. 

 

7. NUMERICAL SIMULATION 

A numerical simulation for system (1) is carried out in this part. The goal is to specify the influence 

of parameter values on the dynamical behavior of the system (1) and to confirm the analytical 

result that was obtained. There were two kinds of software used. Mathematica version 12 was used 

to obtain the system's (1) direction field, while Matlab version R2013a was used to obtain the 

phase portrait. 

The following hypothetical biologically feasible Dataset is used for doing the simulation. 

 

𝑟 = 2, 𝑓 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.1, 𝑎1 = 0.5,
𝑐 = 0.4, 𝐾1 = 1,𝐾2 = 1, 𝑎2 = 0.25, 𝑎3 = 0.1,

𝑒 = 0.4,𝑚 = 0.8, 𝑑2 = 0.15.
                    (30) 

In the event of a bi-stable situation, the system's (1) trajectories are described using both the blue 

and green colors; in all other cases, just the blue color is utili ed. The euuilibrium points are shown 

by the red balls. eowever, the system's (1) trajectories are described by the motion's direction using 

the arrows in the direction field. 

It is observed that, the system (1) approaches a uniuue COEP using the Dataset (2), while as the 

value of 𝑟 belongs the range 𝑟 ≥ 4.5 the system (1) has at least three COEPs in the interior of 

positive octant two of them are Nodal sink while the other is saddle point and the system undergoes 

a bi-stable case, see figures 1 and 2 respectively. 
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Figure 1: Trajectories of the system (1) utili ing Dataset (30). (a) Phase portrait approaches a 

COEP. (b) Direction field. 

 

 

Figure 2: Trajectories of the system (1) utili ing Dataset (30). (a) Phase portrait exhibit bi-stable 

case between two different COEPs. (b) Direction field. 

 

The influence of the parameter 𝑓 is shown in figures 3 and 4 using Dataset (30) with 𝑟 = 2 and 

𝑟 = 4.5 respectively. 
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Figure 3: The direction field of the system (1) utili ing the Dataset (30) with different values of 

𝑓. (a) For 𝑓 = 0, three COEPs are there and the system (1) exhibits a bi-stable case. (b) For 𝑓 =

0.1, the system (1) approaches a COEP. (c) For 𝑓 = 5, the system (1) approaches a COEP. (d) For 

𝑓 = 20, the system (1) approaches a COEP.   



21 

MODELING AND ANALYSIS OF A PREY-PREDATOR SYSTEM 

 

 

Figure 4: The direction field of the system (1) utili ing the Dataset (30) with 𝑟 = 4.5  and 

different values of 𝑓. (a) For 𝑓 = 0, three COEPs are there and the system (1) exhibits a bi-stable 

case. (b) For 𝑓 = 0.1, three COEPs are there and the system (1) exhibits a bi-stable case. (c) For 

𝑓 = 0.2, three COEPs are there and the system (1) exhibits a bi-stable case.  (d) For 𝑓 = 0.3, 

the system (1) approaches a COEP.   

 

According to figures 3 and 4, it is observed that 𝑓 has a vital influence on stabili ing the system 

(1) up to the upper specific value due to reducing the multiplicity of the euuilibrium point and 

transferring the bi-stable case to a stable case. The influence of the parameter 𝑏 on the system’s 

(1) dynamic is presented in the figure 5. 
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Figure 5: The direction field of the system (1) utili ing the Dataset (30) with different values of 

𝑏. (a) For 𝑏 = 0.04, three COEPs are there and the system (1) exhibits a bi-stable case. (b) For 

𝑏 = 0.05, the system (1) approaches a COEP. (c) For 𝑏 = 0.5, the system (1) approaches a COEP. 

(d) For 𝑏 = 0.9, the system (1) approaches a COEP.   

It is clear from Figure (5) that parameter 𝑏 reduces the COEP multiplicity. Furthermore, COEP 

and FAEP gradually converge to the origin, which means that the population si e of both prey and 

predator decreases simultaneously.  

It is observed that the influence of the parameters 𝑑1, 𝑎1, and 𝐾1 on the dynamic of the system 

(1) is similar to the influence of 𝑏. Now, the influence of the parameter 𝑐 on the dynamic of the 

system (1) is shown the figure 6 and 7 using Dataset (30) with 𝑟 = 2 and 𝑟 = 4.5 respectively. 
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Figure 6: Trajectories of the system (1) utili ing Dataset (30). (a) Phase portrait approaches a 

COEP when 𝑐 = 0.02. (b) Direction field for 𝑐 = 0.02. (c) Phase portrait approaches a COEP 

when 𝑐 = 0.5. (d) Direction field for 𝑐 = 0.5. (e) Phase portrait approaches a COEP when 𝑐 =

0.99. (f) Direction field for 𝑐 = 0.99. 
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Figure 7: Trajectories of the system (1) utili ing Dataset (30) with 𝑟 = 4.5. (a) Phase portrait 

exhibit bi-stable case between two different COEPs when 𝑐 = 0.5. (b) Direction field for 𝑐 = 0.5. 

(c) Phase portrait approaches a COEP when 𝑐 = 0.2. (d) Direction field for 𝑐 = 0.2.  

 

According to Figures 6 and 7, parameter c has a destabili ing influence on the system’s (1) 

dynamics either due to the gradually convergent of a uniuue COEP to the FAEP, which leads to 

depletion or extinction in predators or due to the birth of multiple COEPs and bi-stable case occurs. 

Now, the influence of the parameter 𝑎2 on the dynamic of the system (1) is shown the figure 8 

and 9 using Dataset (30) with 𝑟 = 2 and 𝑟 = 4.5 respectively. 



25 

MODELING AND ANALYSIS OF A PREY-PREDATOR SYSTEM 

 

Figure 8: Trajectories of the system (1) utili ing Dataset (30). (a) Phase portrait approaches FAEP 

when 𝑎2 = 0.03. (b) Direction field for 𝑎2 = 0.03. (c) Phase portrait approaches a COEP when 

𝑎2 = 0.5. (d) Direction field for 𝑎2 = 0.5.  
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Figure 9: Trajectories of the system (1) utili ing Dataset (30) with 𝑟 = 4.5. (a) Phase portrait 

approaches FAEP when 𝑎2 = 0.03. (b) Direction field for 𝑎2 = 0.03. (c) Phase portrait exhibit a 

bi-stable case between one of the COEPs and the FAEP when 𝑎2 = 0.04. (d) Direction field for 

𝑎2 = 0.04. (e) Phase portrait approaches a COEP when 𝑎2 = 0.26. (d) Direction field for 𝑎2 =

0.26.  
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According to figures 8 and 9, the parameter 𝑎2 positively influences the system's persistence (1) 

and stability. Furthermore, the influence of the parameter  𝑎3 on the dynamic of the system (1) 

was also studied and explored in figures 10 and 11 using the Dataset (30) with  𝑟 = 2 and 𝑟 =

4.5 respectively. 

 

 

Figure 10: The direction field of the system (1) utili ing the Dataset (30) with different values of 

𝑎3. (a) For 𝑎3 = 0.2, the system (1) approaches a COEP; the VEP is a nodal source; FAEP and 

SAEP are saddle points. (b) For 𝑎3 = 0.4, the system (1) approaches a COEP; the VEP is a nodal 

source; FAEP and SAEP are saddle points. (c) For 𝑎3 = 0.6, the system (1) approaches a COEP; 

the VEP is a nodal source; FAEP are saddle points.   
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Figure 11: The direction field of the system (1) utili ing the Dataset (30) with 𝑟 = 4.5  and 

different values of 𝑎3. (a) For 𝑎3 = 0.08, three COEPs are there and the system (1) exhibits a bi-

stable case; the VEP is a nodal source; FAEP is a saddle point. (b) For 𝑎3 = 0.2, the system (1) 

approaches a COEP; the VEP is a nodal source; FAEP and SAEP are saddle points. (c) For 𝑎3 =

0.6, the system (1) approaches a COEP; the VEP is a nodal source; FAEP is a saddle point.   

From figures 10 and 11, the SAEP appears when condition (3) is verified and behaves as a saddle 

point, while it disappears otherwise. Also, these figures show clearly that, the parameter 𝑎3 

positively influences the system's persistence (1) and stability. 

Figures 12 and 13 show the influence of the parameter 𝑑2 on the dynamic of the system (1) using 

the Dataset (30) with  𝑟 = 2 and 𝑟 = 4.5 respectively. 
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Figure 12: Trajectories of the system (1) utili ing Dataset (30). (a) For 𝑑2 = 0.05, phase portrait 

contains asymptotic stable COEP; Nodal source VEP; FAEP and SAEP are saddle points. (b) 

Direction field for 𝑑2 = 0.05. (c) For 𝑑2 = 0.2, phase portrait contains asymptotic stable COEP; 

VEP and FAEP are saddle points. (d) Direction field for 𝑑2 = 0.2 . (e) For 𝑑2 = 0.34 , phase 

portrait contains asymptotic stable FAEP; VEP is a saddle point. (d) Direction field for 𝑑2 = 0.34. 
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Figure 13: Trajectories of the system (1) utili ing Dataset (30) with 𝑟 = 4.5. (a) For 𝑑2 = 0.05, 

phase portrait contains asymptotic stable COEP; Nodal source VEP; FAEP and SAEP are saddle 

points. (b) Direction field for 𝑑2 = 0.05. (c) For 𝑑2 = 0.2, phase portrait contains a bi-stable case 

between two of the COEPs; VEP, FAEP, and the third COEP are saddle points. (d) Direction field 

for 𝑑2 = 0.2 . (e) For 𝑑2 = 0.4 , phase portrait contains bi-stable case between bi-stable case 
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between one of the COEPs and the FAEP; VEP, and the second COEP are saddle points. (d) 

Direction field for 𝑑2 = 0.4.  

 

Figures 12 and 13 exhibit destabili ing influence for the parameter 𝑑2 , either through the 

extinction of the predator or else exhibiting a bi-stable behavior. 

Finally, our simulation investigation shows that the parameter 𝑒  has a similar impact on the 

system’s (1) dynamic as that explored with varying 𝑐. eowever, the impact of the parameters 𝑚 

and 𝐾2 is similar to that obtained with varying the parameter 𝑎2.  

 

8. DISCUSSION 

Using a combination of predator cannibalism, predation fear, constant predator refuge, and 

predator-dependent refuge, a eolling type II prey-predator system is developed in this work. The 

discussion covers every solution property. Both locally and globally, long-term stability behavior 

is carried out. The system has either a single COEP or multiple points, with a maximum of three 

boundary euuilibrium points. The system is seen to approach the COEP globally if it is uniuue, but 

when there are several points, the system exhibits a bi-stable instance. System (1) was also shown 

to be conditionally persistent; under some circumstances, it experiences TB at the VEP and FAEP, 

on the other hand, it experiences either TB or PB at the SAEP, depending on the circumstances. 

Finally, if certain conditions are met, it has an SNB at the COEP. Numerous numerical simulations 

have been run to illustrate the system's overall dynamics and make it clear how each parameter 

value affects the dynamics of the suggested system. 

 

9. CONCLUSION 

According to the above theoretical and numerical study, the following main conclusions can be 

reached. There may be several coexistence euuilibrium points in the system, which would result 

in bi-stable behavior. The number of euuilibria is decreased when there is a fear rate. The system 

is stabili ed (1) up to the top critical value; after that value, the system faces extinction from 

predators. It changes the bi-stable state into a stable situation. The intraspecific competition of the 

prey population, the mortality rate of prey, the maximum attack rate of the predator, and the 
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predator's half-saturation constant all have an adverse effect on the persistence of the populations 

throughout the entire system. The dynamics of the system are destabili ed by the prey's rate of 

refuge and the predator's rate of cannibalism. The system's persistence (1) and stability have been 

positively impacted by the rates at which prey and cannibalism biomass is converted into predator 

birth. Last but not least, the predator's natural mortality rate destabili es the system (1). 

 

 

 

APPENDIX A 

The coefficients of the polynomial that given in euuation (5) are determined using Mathmatica as: 

∆2= 𝑐(1 − 𝑚)𝑎1[−c𝑒
2(1 − 𝑚) + 2𝑒2𝑓(1 − 𝑚) + 2𝑐𝑒(1 − 𝑚)𝑎2 − 4𝑒𝑓(1 − 𝑚)𝑎2 − c(1 − 𝑚)𝑎2

2

+2𝑓(1 − 𝑚)𝑎2
2 + 2c𝑒(1 − 𝑚)𝑎3 − 4𝑒𝑓(1 − 𝑚)𝑎3 − 2c(1 − 𝑚)𝑎2𝑎3 + 4𝑓(1 − 𝑚)𝑎2𝑎3

−c(1 − 𝑚)𝑎3
2 + 2𝑓(1 − 𝑚)𝑎3

2 − 2c𝑒(1 −𝑚)𝑑2 + 4𝑒𝑓(1 − 𝑚)𝑑2 + 2c(1 −𝑚)𝑎2𝑑2
−4𝑓(1 − 𝑚)𝑎2𝑑2 + 2c(1 − 𝑚)𝑎3𝑑2 − 4𝑓(1 − 𝑚)𝑎3𝑑2 − c(1 − 𝑚)𝑑2

2 ++2𝑓(1 − 𝑚)𝑑2
2

+2c𝑒𝑓𝑎2𝐾2 − 2c𝑓𝑎2
2𝐾2 + 2c𝑒𝑓𝑎3𝐾2 − 4c𝑓𝑎2𝑎3𝐾2 − 2c𝑓𝑎3

2𝐾2
−2c𝑒𝑓𝑑2𝐾2 + 4𝑐

2𝑓𝑎2𝑑2𝐾2 + 4𝑐𝑓𝑎3𝑑2𝐾2 − 2c𝑓𝑑2
2𝐾2]

 

 

∆3= −𝑒
2(1 − 𝑚)2𝑎1 + 2𝑒(1 − 𝑚)

2𝑎1𝑎2 − (1 −𝑚)
2𝑎1𝑎2

2 + 2𝑒(1 −𝑚)2𝑎1𝑎3           

−2(1 − 𝑚)2𝑎1𝑎2𝑎3 − (1 −𝑚)
2𝑎1𝑎3

2 − 2𝑒(1 − 𝑚)2𝑎1𝑑2 + 2(1 − 𝑚)
2𝑎1𝑎2𝑑2

+2(1 − 𝑚)2𝑎1𝑎3𝑑2 − (1 −𝑚)
2𝑎1𝑑2

2 + 𝑐𝑒(1 − 𝑚)2𝑟𝑎2𝐾1 − 𝑐(1 − 𝑚)
2𝑟𝑎2

2𝐾1
−𝑐(1 − 𝑚)2𝑟𝑎2𝑎3𝐾1 − 𝑐𝑒(1 − 𝑚)

2𝑎2𝑑1𝐾1 + 𝑒𝑓(1 − 𝑚)
2𝑎2𝑑1𝐾1

+𝑐(1 − 𝑚)2𝑎2
2𝑑1𝐾1 − 𝑓(1 − 𝑚)

2𝑎2
2𝑑1𝐾1 + 𝑐(1 − 𝑚)

2𝑎2𝑎3𝑑1𝐾1
−𝑓(1 − 𝑚)2𝑎2𝑎3𝑑1𝐾1 + 𝑐(1 − 𝑚)

2𝑟𝑎2𝑑2𝐾1 − 𝑐(1 − 𝑚)
2𝑎2𝑑1𝑑2𝐾1

+𝑓(1 − 𝑚)2𝑎2𝑑1𝑑2𝐾1 − 𝑏𝑒𝑓(1 −𝑚)
2𝑎2𝐾1

2 + 𝑏𝑓(1 − 𝑚)2𝑎2𝑎3𝐾1
2

−𝑏𝑓(1 − 𝑚)2𝑎2𝑑2𝐾1
2 − 4𝑐𝑒(1 − 𝑚)𝑎1𝑎2𝐾2 + 2𝑒𝑓(1 − 𝑚)𝑎1𝑎2𝐾2

+4𝑐(1 − 𝑚)𝑎1𝑎2
2𝐾2 − 2𝑓(1 − 𝑚)𝑎1𝑎2

2𝐾2 − 4𝑐𝑒(1 − 𝑚)𝑎1𝑎3𝐾2
+2𝑒𝑓(1 − 𝑚)𝑎1𝑎3𝐾2 + 8𝑐(1 − 𝑚)𝑎1𝑎2𝑎3𝐾2 − 4𝑓(1 − 𝑚)𝑎1𝑎2𝑎3𝐾2
+4𝑐(1 − 𝑚)𝑎1𝑎3

2𝐾2 − 2𝑓(1 − 𝑚)𝑎1𝑎3
2𝐾2 + 4𝑐𝑒(1 − 𝑚)𝑎1𝑑2𝐾2

−2𝑒𝑓(1 −𝑚)𝑎1𝑑2𝐾2 − 8𝑐(1 − 𝑚)𝑎1𝑎2𝑑2𝐾2 + 4𝑓(1 − 𝑚)𝑎1𝑎2𝑑2𝐾2
−8𝑐(1 − 𝑚)𝑎1𝑎3𝑑2𝐾2 + 4𝑓(1 − 𝑚)𝑎1𝑎3𝑑2𝐾2 + 4𝑐(1 − 𝑚)𝑎1𝑑2

2𝐾2
−2𝑓(1 − 𝑚)𝑎1𝑑2

2𝐾2 − 𝑐𝑒𝑓(1 − 𝑚)𝑎2𝑑1𝐾1𝐾2 + 2𝑐𝑓(1 − 𝑚)𝑎2
2𝑑1𝐾1𝐾2

+2𝑐𝑓(1 − 𝑚)𝑎2𝑎3𝑑1𝐾1𝐾2 − 2𝑐𝑓(1 − 𝑚)𝑎2𝑑1𝑑2𝐾1𝐾2 − 𝑐
2𝑎1𝑎2

2𝐾2
2

+2𝑐𝑓𝑎1𝑎2
2𝐾2

2 − 2𝑐2𝑎1𝑎2𝑎3𝐾2
2 + 4𝑐𝑓𝑎1𝑎2𝑎3𝐾2

2 − 𝑐2𝑎1𝑎3
2𝐾2

2 + 2𝑐𝑓𝑎1𝑎3
2𝐾2

2

+2𝑐2𝑎1𝑎2𝑑2𝐾2
2 − 4𝑐𝑓𝑎1𝑎2𝑑2𝐾2

2 + 2𝑐2𝑎1𝑎3𝑑2𝐾2
2

−4𝑐𝑓𝑎1𝑎3𝑑2𝐾2
2 − 𝑐2𝑎1𝑑2

2𝐾2
2 + 2𝑐𝑓𝑎1𝑑2

2𝐾2
2
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∆4= 2𝑐𝑒
2(1 − 𝑚)2𝑎1 − 𝑒

2𝑓(1 − 𝑚)2𝑎1 − 4𝑐𝑒(1 − 𝑚)
2𝑎1𝑎2 + 2𝑒𝑓(1 − 𝑚)

2𝑎1𝑎2      

+2𝑐(1 − 𝑚)2𝑎1𝑎2
2 − 𝑓(1 − 𝑚)2𝑎1𝑎2

2 − 4𝑐𝑒(1 − 𝑚)2𝑎1𝑎3 + 2𝑒𝑓(1 − 𝑚)
2𝑎1𝑎3

+4𝑐(1 − 𝑚)2𝑎1𝑎2𝑎3 − 2𝑓(1 − 𝑚)
2𝑎1𝑎2𝑎3 + 2𝑐(1 − 𝑚)

2𝑎1𝑎3
2

−𝑓(1 − 𝑚)2𝑎1𝑎3
2 + 4𝑐𝑒(1 − 𝑚)2𝑎1𝑑2 − 2𝑒𝑓(1 − 𝑚)

2𝑎1𝑑2
−4𝑐(1 − 𝑚)2𝑎1𝑎2𝑑2 + 2𝑓(1 − 𝑚)

2𝑎1𝑎2𝑑2 − 4𝑐(1 − 𝑚)
2𝑎1𝑎3𝑑2

+2𝑓(1 − 𝑚)2𝑎1𝑎3𝑑2 + 2𝑐(1 − 𝑚)
2𝑎1𝑑2

2 − 𝑓(1 − 𝑚)2𝑎1𝑑2
2

−𝑐𝑒𝑓(1 − 𝑚)2𝑎2𝑑1𝐾1 + 𝑐𝑓(1 − 𝑚)
2𝑎2

2𝑑1𝐾1 + 𝑐𝑓(1 − 𝑚)
2𝑎2𝑎3𝑑1𝐾1

−𝑐𝑓(1 − 𝑚)2𝑎2𝑑1𝑑2𝐾1 + 2𝑐
2𝑒(1 − 𝑚)𝑎1𝑎2𝐾2 − 4𝑐𝑒𝑓(1 − 𝑚)𝑎1𝑎2𝐾2

−2𝑐2(1 − 𝑚)𝑎1𝑎2
2𝐾2 + 4𝑐𝑓(1 − 𝑚)𝑎1𝑎2

2𝐾2 + 2𝑐
2𝑒(1 − 𝑚)𝑎1𝑎3𝐾2

−4𝑐𝑒𝑓(1 − 𝑚)𝑎1𝑎3𝐾2 − 4𝑐
2(1 − 𝑚)𝑎1𝑎2𝑎3𝐾2 + 8𝑐𝑓(1 − 𝑚)𝑎1𝑎2𝑎3𝐾2

−2𝑐2(1 − 𝑚)𝑎1𝑎3
2𝐾2 + 4𝑐𝑓(1 −𝑚)𝑎1𝑎3

2𝐾2 − 2𝑐
2𝑒(1 − 𝑚)𝑎1𝑑2𝐾2

+4𝑐𝑒𝑓(1 − 𝑚)𝑎1𝑑2𝐾2 + 4𝑐
2(1 − 𝑚)𝑎1𝑎2𝑑2𝐾2 − 8𝑐𝑓(1 − 𝑚)𝑎1𝑎2𝑑2𝐾2

+4𝑐2(1 − 𝑚)𝑎1𝑎3𝑑2𝐾2 − 8𝑐𝑓(1 − 𝑚)𝑎1𝑎3𝑑2𝐾2 − 2𝑐
2(1 − 𝑚)𝑎1𝑑2

2𝐾2
+4𝑐𝑓(1 − 𝑚)𝑎1𝑑2

2𝐾2 − 𝑐
2𝑓𝑎1𝑎2

2𝐾2
2 − 2𝑐2𝑓𝑎1𝑎2𝑎3𝐾2

2 − 𝑐2𝑓𝑎1𝑎3
2𝐾2

2

+2𝑐2𝑓𝑎1𝑎2𝑑2𝐾2
2 + 2𝑐2𝑓𝑎1𝑎3𝑑2𝐾2

2 − 𝑐2𝑓𝑎1𝑑2
2𝐾2

2.

. 

∆5= −𝑒(1 − 𝑚)
2𝑟𝑎2𝐾1 + (1 −𝑚)

2𝑟𝑎2
2𝐾1 + (1 −𝑚)

2𝑟𝑎2𝑎3𝐾1 + 𝑒(1 − 𝑚)
2𝑎2𝑑1𝐾1    

−(1 − 𝑚)2𝑎2
2𝑑1𝐾1 − (1 −𝑚)

2𝑎2𝑎3𝑑1𝐾1 − (1 −𝑚)
2𝑟𝑎2𝑑2𝐾1 + (1 −𝑚)

2𝑎2𝑑1𝑑2𝐾1
−𝑏𝑒(1 − 𝑚)2𝑎2𝐾1

2 + 𝑏(1 −𝑚)2𝑎2𝑎3𝐾1
2 − 𝑏(1 − 𝑚)2𝑎2𝑑2𝐾1

2 + 2𝑒(1 − 𝑚)𝑎1𝑎2𝐾2
−2(1 − 𝑚)𝑎1𝑎2

2𝐾2 + 2𝑒(1 − 𝑚)𝑎1𝑎3𝐾2 − 4(1 − 𝑚)𝑎1𝑎2𝑎3𝐾2 − 2(1 − 𝑚)𝑎1𝑎3
2𝐾2

−2𝑒(1 − 𝑚)𝑎1𝑑2𝐾2 + 4(1 − 𝑚)𝑎1𝑎2𝑑2𝐾2 + 4(1 − 𝑚)𝑎1𝑎3𝑑2𝐾2 − 2(1 − 𝑚)𝑎1𝑑2
2𝐾2

+𝑐𝑒(1 − 𝑚)𝑟𝑎2𝐾1𝐾2 − 2𝑐(1 − 𝑚)𝑟𝑎2
2𝐾1𝐾2 − 2𝑐(1 − 𝑚)𝑟𝑎2𝑎3𝐾1𝐾2

−𝑐𝑒(1 − 𝑚)𝑎2𝑑1𝐾1𝐾2 + 𝑒𝑓(1 − 𝑚)𝑎2𝑑1𝐾1𝐾2 + 2𝑐(1 − 𝑚)𝑎2
2𝑑1𝐾1𝐾2

−2𝑓(1 − 𝑚)𝑎2
2𝑑1𝐾1𝐾2 + 2𝑐(1 − 𝑚)𝑎2𝑎3𝑑1𝐾1𝐾2 − 2𝑓(1 − 𝑚)𝑎2𝑎3𝑑1𝐾1𝐾2

+2𝑐(1 − 𝑚)𝑟𝑎2𝑑2𝐾1𝐾2 − 2𝑐(1 − 𝑚)𝑎2𝑑1𝑑2𝐾1𝐾2 + 2𝑓(1 − 𝑚)𝑎2𝑑1𝑑2𝐾1𝐾2
−𝑏𝑒𝑓(1 − 𝑚)𝑎2𝐾1

2𝐾2 + 2𝑏𝑓(1 − 𝑚)𝑎2𝑎3𝐾1
2𝐾2 − 2𝑏𝑓(1 − 𝑚)𝑎2𝑑2𝐾1

2𝐾2
+2𝑐𝑎1𝑎2

2𝐾2
2 − 𝑓𝑎1𝑎2

2𝐾2
2 + 4𝑐𝑎1𝑎2𝑎3𝐾2

2 − 2𝑓𝑎1𝑎2𝑎3𝐾2
2 + 2𝑐𝑎1𝑎3

2𝐾2
2

−𝑓𝑎1𝑎3
2𝐾2

2 − 4𝑐𝑎1𝑎2𝑑2𝐾2
2 + 2𝑓𝑎1𝑎2𝑑2𝐾2

2 − 4𝑐𝑎1𝑎3𝑑2𝐾2
2 + 2𝑓𝑎1𝑎3𝑑2𝐾2

2

+2𝑐𝑎1𝑑2
2𝐾2

2 − 𝑓𝑎1𝑑2
2𝐾2

2 + 𝑐𝑓𝑎2
2𝑑1𝐾1𝐾2

2 + 𝑐𝑓𝑎2𝑎3𝑑1𝐾1𝐾2
2 − 𝑐𝑓𝑎2𝑑1𝑑2𝐾1𝐾2

2

. 

 

∆6= −𝑒(1 − 𝑚)𝑟𝑎2𝐾1𝐾2 + 2(1 −𝑚)𝑟𝑎2
2𝐾1𝐾2 + 2(1 − 𝑚)𝑟𝑎2𝑎3𝐾1𝐾2            

+𝑒(1 − 𝑚)𝑎2𝑑1𝐾1𝐾2 − 2(1 −𝑚)𝑎2
2𝑑1𝐾1𝐾2 − 2(1 − 𝑚)𝑎2𝑎3𝑑1𝐾1𝐾2

−2(1 − 𝑚)𝑟𝑎2𝑑2𝐾1𝐾2 + 2(1 − 𝑚)𝑎2𝑑1𝑑2𝐾1𝐾2 − 𝑏𝑒(1 − 𝑚)𝑎2𝐾1
2𝐾2

+2𝑏(1 − 𝑚)𝑎2𝑎3𝐾1
2𝐾2 − 2𝑏(1 − 𝑚)𝑎2𝑑2𝐾1

2𝐾2 − 𝑎1𝑎2
2𝐾2

2 − 2𝑎1𝑎2𝑎3𝐾2
2

−𝑎1𝑎3
2𝐾2

2 + 2𝑎1𝑎2𝑑2𝐾2
2 + 2𝑎1𝑎3𝑑2𝐾2

2 − 𝑎1𝑑2
2𝐾2

2 − 𝑐𝑟𝑎2
2𝐾1𝐾2

2 − 𝑐𝑟𝑎2𝑎3𝐾1𝐾2
2

+𝑐𝑎2
2𝑑1𝐾1𝐾2

2 − 𝑓𝑎2
2𝑑1𝐾1𝐾2

2 + 𝑐𝑎2𝑎3𝑑1𝐾1𝐾2
2 − 𝑓𝑎2𝑎3𝑑1𝐾1𝐾2

2 + 𝑐𝑟𝑎2𝑑2𝐾1𝐾2
2

−𝑐𝑎2𝑑1𝑑2𝐾1𝐾2
2 + 𝑓𝑎2𝑑1𝑑2𝐾1𝐾2

2 + 𝑏𝑓𝑎2𝑎3𝐾1
2𝐾2

2 − 𝑏𝑓𝑎2𝑑2𝐾1
2𝐾2

2

. 
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