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Abstract. Automatic berthing has been known as one of the most challenging problems in ship control. During

port approach and berthing maneuvers, the ship master takes into account many factors before any maneuver

action, i.e. ship speed, wind speed, wind direction, current water direction, available power, heading angle, and ship

response. Many methods related to automatic berthing were developed by recent research, such as Artificial Neural

Network, Adaptive Backstepping, Nonlinear Programming, and Proportional-Integral-Derivative. However, most

of these researches adopted a simplified dynamic model that reduces the validity of the optimal solution and may

lead to dynamics that do not express real-time conditions. In this paper, a feed-forward controller using a non

simplified mathematical model is developed. Numerical simulations were performed to verify the effectiveness of

the proposed controller and test its ability to control the ship safely to reach the goal points of the berthing plan.

The agreement between the ANN model results and experimental data is impressive.

Keywords: automatic ship berthing; maneuver action; mathematical modeling; artificial neural network; feed-

forward controller.
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1. INTRODUCTION

Despite the development of the marine industry in our present, automatic ship berthing is still

one of the most challenging problems in ship control, since large ship maneuvering in harbor

areas is still done manually with the assistance of tugboats in order to ensure a safe operation.

When the ship moves from open seas into confined waters, the ship engine must be set to

dead slow, which characterizes the berthing operation by the following: significant reduction

of controllability, complicated and nonlinear differential equations of motion and high effect of

environmental disturbances. Therefore, during port approach and berthing maneuvers, many

factors must be taken into consideration before any maneuvering action, such as ship speed,

available power, heading angle and ship response, wind speed and direction, water current speed

and direction as well as the condition of tugboats [14].

For these reasons, the automatic berthing operation has attracted the attention of many re-

searchers since late 1980s. Given the difficulties in determining the exact modeling of the

system and the unsatisfying results of the traditional control algorithms (feedback control, lin-

ear and non linear control), it is not surprising that recent research efforts have focused on

developing intelligent control strategies (Neural Networks, Bayesian probability, fuzzy logic,

genetic algorithms, etc.) independent of the dynamic model. Among them, Artificial Neural

Networks (ANN) has proved to be one of the most effective and attractive options for automatic

ship berthing [2], [1], since it is developed to mimic the actions of the human brain by mathe-

matically modeling its neurophysiological structure [13]. Artificial Neural Networks was first

applied, by Yamato et al. [24], as the main controller for ship berthing where its inputs included

ship position, ship heading, ship velocities, and beam distances. This work, although showing

excellent results, was replaced later by an expert system proposed by Yamato et al. [12]. J. Y.

park et al. designed an adaptive controller adopting backstepping method [7]. Using the neural

network theory, Hasegawa [18], [19], [21] developed auto-berthing controllers that consider the

nonlinear characteristics of the ship motion at low speed. Later, Im and Hasegawa [15], [16],

[5] proposed a parallel hidden layer neural network controller to obtain better results comparing

to the centralized neural network. Thereafter, Im et al. [1],[2] developed an application of ANN

for ship berthing using selective controller and considering that the ship can start from any point
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around the berthing areas. On the other hand, Nguyen et al. [3] developed two ANN controllers

using an adaptive interaction learning technique and a predetermined berthing route to control

the ship heading and ship speed simultaneously.

However, many issues have reduced the effectiveness of these solutions. Firstly, the simpli-

fied dynamic model used in most of the previous researches does not express the real conditions

of the berthing operation. Many simulation techniques sometimes give inaccurate estimations

of the hydrodynamic coefficients for mathematical models of ship motion, since one technique

used for a model may not be applicable for other models in general. To avoid this, we used

the MMG method proposed by the Japanese Mathematical Modeling Group (JMMG) [8]. This

method can fulfill the requirements better than the simplified dynamic model because each com-

ponent of the ship, such as the hull, rudder, propeller, and engines, is considered as a separate

module that can be developed and tested separately. Therefore, changing the parameters of one

component does not alter other modules, e.g. a change in rudder size or propeller geometry

could be done without having to change other modules [6]. Secondly, using a linear program-

ming calculation to solve a problem involving some degree of non-linearity may cause errors

that reduce the validity of the optimal solution and may lead to dynamics that do not express

real time conditions [10].

This paper is organized as follows: First, we propose a mathematical model for ship ma-

neuvering that expresses real time conditions of the berthing operation. Next, we introduce

the automatic ship berthing concept, then we present the research goals and objectives. Then,

we present the numerical simulations and results that verify the effectiveness of the proposed

mathematical model. Next, we introduce the ANN concept and architecture used in this re-

search. Then, numerical simulations were carried out to demonstrate the effectiveness of the

proposed ANN controller. After that, we discuss all the research results, then we introduce a

new perspective that will be the focus of our future work. Finally, we conclude this paper.

2. SHIP DYNAMIC MOTION

In this study, the kinematic equations of the ship motion can be expressed using two coor-

dinate systems: the space-fixed coordinate system O-xyz and the body-fixed coordinate system

G-xbybzb. The origin G is located at the center of gravity of the ship, as described in Fig. 1,
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FIGURE 1. Coordinate systems for ship dynamic motion

and xb-axis, yb-axis point towards the ship’s bow and towards the starboard, respectively. The

zb-axis is positive downward and all angles are positive in the clockwise direction. In most ma-

neuvering studies, the ship motions in the three vertical degrees of freedom of heave, roll and

pitch are assumed to be negligible. Therefore, the transformation between these two coordinate

systems is expressed by Eq. 1 as follows:

(1)


.
x
.
y
.

ψ

= J(ψ)


u

v

r

 , where J(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 .

J(ψ) is the rotation matrix that translates the body-fixed coordinate system into the space-fixed

coordinate system. u and v are, respectively, the surge and sway velocities defined in the body-

fixed coordinates, r is the yaw rate. ψ is the heading angle defined between the directions of

y-axis and x-axis.

Using the Newtonian approach [9], the kinematic equations of the motion in the horizontal

degrees of freedom of surge, sway, and yaw, described with respect to the selected reference

system, in which the total hydrodynamic forces and angular moment are split into separate

parts, are formulated as follows [4]:



ARTIFICIAL NEURAL NETWORK AND MATHEMATICAL MODELING OF AUTOMATIC SHIP BERTHING 5

(2)


m(

.
u− vGr) = Fx

m(
.
vG +ur) = Fy

Iz
.
r = Mz

Here, Fx, Fy and Mz are expressed as follows:

(3)


Fx =−mx

.
u+myvr+X

Fy =−my
.
v−mxur+Y

Mz =−Jz
.
r+N − xGFy

,

where X and Y are the external forces in the xb and yb direction, respectively. N is the moment

about zb-axis through the center of gravity of ship.

Given that lateral velocity component at the center of gravity vG is expressed as vG = v+xGr,

the following equations are obtained:

(4)


(m+mx)

.
u− (m+my)vr− xGmr2 = X

(m+my)
.
v+(m+mx)ur+ xGm

.
r = Y

(Iz + x2
Gm+ Jz)

.
r+ xGm(

.
v+ur) = N

.

Eq. 4 is the motion equations to be solved.

For better numerical simulations, the MMG method proposed by the Japanese Mathematical

Modeling Group (JMMG) has been adopted. This method can fulfill the requirements better

than the simplified dynamic model because it seperates the forces experienced by the hull,

propeller, and rudder and also includes the interaction effects between the components of the

ship that could be developed and tested seperately. Therefore, the terms on the right-hand side

of Eq. 4 represent the external forces acting on the ship which are expressed as follows:

(5)


X = XH +XR +XP

Y = YH +YR

N = NH +NR

.

Subscripts H, R, and P denote hull, rudder, and propeller, respectively.

In these motion equations, the state variables are x,y,ψ,u,v,r. The external forces and mo-

ment on the right-hand side of Eq. 4 depend functionally on the state variables u,v,r, their
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derivatives
.
u,

.
v,

.
r, and the control variables η ,δ . The control η (propeller revolution) converts

engine horsepower into thrust by accelerating air and creating a low-pressure differential in

front of the propeller and these forces are what helps move the propeller forward, thus moving

the ship. The control δ associated with rudders that are hydrofoils which are pivoting on a ver-

tical axis and produce a transverse force and steering moment about the ship centre of gravity

[22].

In ship maneuvering, normalization is usually used to estimate the hydrodynamic coefficients

in the mathematical model of ship motion [17]. Since the dimensions of the port area (longitude

and latitude) and the length of the ship are reduced in numerical simulations, the port area

and ship length must be normalized into a non-dimensional form by dividing the latitude and

longitude by the length of ship (L) [23]. In addition, in trajectory optimization computation, it

is convenient to normalize the kinematic equations [20]. Using the normalization factors, all

variables become dimensionless. Of course, normalization is not really needed for quantities

which are inherently dimensionless such as the yaw angle ψ .

For numerical simulations, a ship called SAE NURI of Mokpo National Maritime University

was selected as training ship. The principal particulars of the training ship are given in Table 1.

Using all these data, the equations of the developped MMG model were solved.

TABLE 1. Principal particulars of the model ship.

Type Training ship

Length overall 103 [m]

Length between perpendicular 94 [m]

Breadth 15.6 [m]

Draft 5.4 [m]

Thruster (Bow) 49000 [N]

Tranverse projected area 183.3 [m2]

Lateral projected area 1053.7 [m2]
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3. AUTOMATIC SHIP BERTHING CONCEPT AND GOALS

3.1. Berthing plan. To control the ship into berth safely, the whole berthing operation is

specifically divided into three basic elementary maneuvers that are course changing, step decel-

eration and engine stopping. Therefore, the berthing plan concept can be described as shown

in Fig. 2. Firstly, the berthing master will guide the ship from any giving starting point to

the first goal point G1 in which the ship will be aligned to a berthing approach line known as

imaginary line. In most researches on berthing control, for simulation purposes, the imaginary

line was chosen to form an angle of 30 deg with the berth direction. Secondly, after merging

to the imaginary line, the ship will keep its path and reduce its speed until the engine resumes

its idling speed to stop the ship at the second goal point G2. Finally, the ship will be controlled

step by step to the last goal point G3, alongside the quay and ready for safe mooring operation.

In the meantime, it is difficult to control the position of the ship only by means of rudder and

main engine. In case of a large ship with speed of fewer than 2–3 knots, its position cannot

be controlled by adjusting the rudder and main engine. In this case, it is necessary to use the

equipment such as tugboats and thrusters to assist the ship maneuvering.

In this research, the supposed berthing final goal is assumed to be at some interval distance

before the berth direction instead of approaching the pier board to board. In most cases, this

distance between the ship and the pier is 1.5 times of ship length.

FIGURE 2. Berthing plan concept
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FIGURE 3. Control strategy of automatic ship berthing using neural controller

3.2. Basic facts and assumptions. To reduce the complexity of the procedure, some basic

facts and assumptions, needed to be made before describing automatic ship berthing using

ANN, are summarized as follows:

(1) Automatic ship berthing was performed using a computer simulation. Then, parameters

such as the ship position, ship heading, and the ship velocities were calculated with

respect to time using Eq. 1 and Eq. 4. These parameters were used as inputs for the

ANN controller as shown in Fig. (3). Nowadays, the development of high technologies

in navigation equipment provides us with various kinds of navigation aids such as a

gyro-compass, ECDIS, AIS, GPS and RADAR. This makes navigators easily acquire

more accurate ship states.

(2) The port area was assumed to contain sufficient water depth and no obstacles to ensure

the ship dynamics and the ship motion are not affected by these factors.

3.3. Research goals and objectives. The primary goal of this research is to validate the effec-

tiveness of our proposed mathematical model of ship motion by using a non linear programming

calculation in order to express real time berthing operation of the ship. Once the effectiveness

of the proposed mathematical model is verified, it will be used as the basic model in future

works in which the environment conditions will be included. In Addition, a feed-forward neu-

ral network controller will be implemented with the proposed mathematical model. Once the

effectiveness of the proposed controller is validated by the numerical simulations, the controller

will be a part of a comparative analysis of methods related to automatic ship berthing.
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4. NUMERICAL SIMULATIONS AND RESULTS OF THE PROPOSED MATHEMATICAL

MODEL

FIGURE 4. Control strategy of automatic ship berthing using neural controller

In order to validate the effectiveness of the proposed mathematical model of ship motion, the

trajectory resulted from the numerical simulation is compared with the ship master performance,

as shown in Fig. 4. Generally, the proposed mathematical model is believed to have the ability

to control the ship safely to reach the goal point G2 due to its dynamics that are based on MMG

method, the non-use of hypotheses that may simplify the model and the nonlinear resolution

of the equation system. All these points lead the model to have the ability to express real time

conditions [11]. In particular, the numerical simulation results presented in Fig. 5 demonstrated

the effectiveness of the proposed model. The first spans of the simulation describe the course-

changing maneuver as it was the first course taken for the ship berthing in this case. And as

we took the deceleration course, the ship was controlled to the berth within 0.25m/s and with

a heading that is parallel to the berth as possible.

The little variations, existing between the experiment trajectory and the trajectory performed

by the ship master, are explained by the presence of wind disturbances. In case of no obstacles,

during the course deceleration along the imaginary line, no rudder angle is taken. But in case

of the presence of obstacles such as environmental disturbances, the ship may deviate from the
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imaginary line. Thus the necessity of some sophisticated controller that can deal with the ship

deviation.

FIGURE 5. Control strategy of automatic ship berthing using neural controller
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5. ARTIFICIAL NEURAL NETWORK CONCEPT

5.1. Teaching data creation. In this section, numerical simulations were carried out to prove

the above berthing plan and concept. The teaching data used to train the proposed ANN con-

trollers is obtained from a real ship berthing performance that is manually controlled by the

ship master. It is known that ship berthing is performed by skilled local captains who have the

experience in manually maneuvering a ship into a berth and also who better know the port con-

ditions. Therefore, due to their skills and experience, the teaching data is supposed to contain

a set of time series of successful berthing maneuvering process that is able to control the ship

from a starting point and reach the goal point G2 within 0.2 m/s of speed and 250-270 deg of

the true heading angle.

In this research, the teaching data is constructed without taking in consideration the

disturbances. In case of environmental disturbances such as wind and current, new teaching

data must be created by a new ship berthing maneuvering process in which the environmental

disturbances are included. Fig. 6 shows the time history of the teaching data used in this

research, while Fig. 7 and Fig. 8 show, respectively, the propeller values and rudder values for

ship automatic berthing best performance.

FIGURE 6. Time history of the teaching data.



12 ABDELALI KAMIL, YOUSRA MELHAOUI, KHALIFA MANSOURI, MOSTAFA RACHIK

FIGURE 7. Propeller values for ship automatic berthing best performance.

FIGURE 8. Rudder values for ship automatic berthing best performance.

5.2. Artificial neural network architecture. In this research, a feed-forward neural network,

also known as deep feed-forward network or multi-layer perceptrons, is used instead of Cen-

tralized Neural Networks (CNN) as its effectiveness has already been proved in many previous

researches and in which it is based on the fact that the hidden layer has a strong learning ability.

In order to design well-trained network, we first need to choose an appropriate number of

hidden layers as well as the corresponding number of neurons in each hidden layer. Though
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there is no real concept or interpretation of how many hidden layer to use in the neural

network model, yet, using one or two hidden layers show good results in previous automatic

ship berthing studies. In addition, determining the appropriate number of neurons in the

hidden layer is considered one of the greatest issues in designing NN model. The fewer the

neurons in a network, the fewer the number of operations required and this proved to be

the less time-consuming part in the implementation of the controller. In the case of too few

hidden neurons, the controller will not be capable of modeling complex data. Conversely,

in case of too many hidden neurons, the model will over fit the data. Therefore, our pro-

posed controller presented in Fig. 9 is built by a three-layer feed-forward neural network

(input layer, output layer and hidden layer). The input layer has 6 variables: ship position

(x, y), surge u, sway v, yaw rate r, and ship heading ψ . The output layer has two variables:

propeller revolution η and rudder angle δ , while in the hidden layer 21 neurons are constructed.

FIGURE 9. The structure of neural network controller.

5.3. Artificial neural network design. In machine learning, Back-Propagation (BP) algo-

rithm is one of the most popular algorithms for training feed-forward neural networks. It aims

to evaluate the outputs of the network against the desired outputs of the teaching data. In other
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words, if the results are not satisfactory, the back-propagation is used to compute the neces-

sary corrections in order to modify the connection (weights) between layers. The process is

repeated again and again until the value of the error function has become sufficiently small.

The algorithm is decomposed in the following four steps:

(1) Feed-forward computation

(2) Back-propagation to the output layer

(3) Back-propagation to the hidden layer

(4) Weight updates

where the last step is happening through out the algorithm.

The feed-forward computation is decomposed in two steps. The first step consists of calcu-

lating the values of the hidden layer by the following equation:

(6) H j = f1(net j) = f1

( i

∑
i=1

WjiIi

)
,

where, H j is the j-th node at the hidden layer, f1 the transfer function at the hidden layer, net j

the input of the j-th node of the hidden layer, i the number of nodes in the input layer, j the

number of nodes in the hidden layer, Wji the weights or the connections between the node j and

node i, and Ii is the value of the input of the node i of the input layer.

As a transfer function of the network at the hidden layer, sigmoid function was found very

suitable and is given as:

(7) f1(x) =
1

1+ e−x =
ex

ex +1
.

Similarly, the p-th node at the output layer is determined as in the following equation:

(8) Ok = f2(netk) = f2

( j

∑
j=1

Wk jH j

)
,

where, Ok is the k-th node at the hidden layer, f2 the transfer function at the output layer, netk

the input of the k-th node of the hidden layer, j the number of nodes in the hidden layer, k the
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number of nodes in the output layer, Wk j the weights or the connections between the node k and

node j, and H j is the value of the node j of the hidden layer.

The transfer function of the network at the output layer was chosen as a satlins function and

expressed as in the following equation. The selection of a satlins function to activate the output

layer of the network both creates a network with sufficient capacity to fit the teaching data and

saves time in training the network.

(9) f2(netk) =

{ −1, if (netk)≤−1

netk, if −1 ≤ (netk)≤+1

+1, if (netk)≥+1

.

Back-propagation and weights adjustment step consists of calculating the error of the nodes

of the output layer. In this study, we used the Mean Squared Error (MSE) (or Mean Squared

Deviation (MSD)). It measures the average of the squares of the errors between the output values

of the trained network and the desired output. Depending on the calculated Mean Squared Error

value (MSE), the performance of the trained ANN is evaluated.

Assuming for each target output T of the network, there is a corresponding desired output O,

then the MSE is computed as follows:

(10) MSE =
1
n

n

∑
i=1

e(i)2 =
1
n

n

∑
i=1

(T(i)−O(i))2.

The calculated mean squared error will be used for backward propagation and weights adjust-

ment.

First, the error is propagated from output layer to the hidden layer. This is where learning rate

and momentum are brought to equation. Before weights can be updated, rate of change needs to

be found for each connection between the output layer and the hidden layer and it is calculated

by multiplying the learning rate, error value and the value of the j-th node of the hidden layer.

The process is repeated from hidden layer down to the input layer.

This paper has no ambition to explain the mathematical process step by step but concen-

trates on the concept of berthing and its results that are displayed by simulation procedures

implemented in MATLAB.
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During the training process of the neural network, the big challenge was to choose the number

of the nodes in the hidden layer. This procedure is very important to guarantee that learning

error converges to zero in the shortest time, which means it ensures that the outputs of the

network always follow up the outputs of the teaching data. The parameters of the proposed

ANN controller are listed in Table 2 and Table 3.

TABLE 2. The parameter of weights linked input layer to hidden layer (Wji).

1 2 3 4 5 6

-2.4358 -1.0040 1.4569 0.7489 2.4569 2.8788

-2.8597 -0.2008 0.0089 -0.2500 -2.1255 -1.4089

-1.3066 -1.4059 -2.8788 -1.5455 2.5044 1.9528

-0.8001 0.7458 1.4587 2.4578 3.4785 2.5478

-1.8856 -0.4522 -0.5787 2.4545 1.9878 3.2544

-1.2545 -0.7800 1.2111 -2.0087 1.3005 2.1805

-1.0203 0.2545 -02005 -2.2121 0.4000 2.7588

2.3500 0.9455 -0.7810 -2.1205 2.0055 -2.0244

-1.5455 -0.6777 1.1345 -1.5455 1.0450 2.2240

0.4550 1.8789 2.0048 -1.4458 2.4540 1.0005

0.6788 -3.0055 2.6788 2.3445 1.9880 -0.7815

1.8880 -3.0227 -0.0545 0.2440 -0.4577 2.4578

-24608 0.9800 -3.0400 1.2455 2.4003 1.8313

3.0320 -4.0529 0.2332 -1.6873 -0.3240 -1.4320

-0.8627 -1.2754 -3.1900 -2.7070 -2.1950 -07895

-0.5537 -1.8054 -0.0274 0.2874 -1.7845 2.4563

-2.6012 -1.0458 1.2487 0.2345 2.7531 2.1458

1.7842 -3.2748 -0.4520 0.2009 -0.3128 2.4859

-2.1547 0.1247 -1.24r9 3.0058 1.2405 0.5482

-0.5142 -0.3258 1.0081 0.2385 2.7151 0.1478

0.9163 0.8452 -0.4520 -0.4753 2.4578 0.5426
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6. ANN NUMERICAL SIMULATIONS AND RESULTS

The numerical simulation results of the trained network presented in Fig. 10, after being

trained by back-propagation and weights adjustment processes, demonstrated the effectiveness

and the accuracy of the proposed ANN controller. Using the same teaching data constructed

from the berthing ship performance of the ship master used in previous sections, the trajectory

resulted from the numerical simulation is almost the same as the trajectory performed by the

ship master.

FIGURE 10. Control strategy of automatic ship berthing using neural controller

These numerical simulation results validated the learning ability of our proposed ANN con-

troller. It is believed to be a very useful tool when faced with a situation that mimics that of

a trained one. As presented in Fig. 10, having the same initial conditions at the starting time

as those of in the teaching data, the numerical simulation results show that the proposed ANN

controller is believed to have the ability to perform successful actions for controlling the ship

safely to reach the goal point G2 within 0.25m/s and with a heading that is parallel to the berth.

7. DISCUSSION AND PERSPECTIVES

In this study, we used the MMG method proposed by the Japanese Mathematical Modeling

Group (JMMG) that consists of developing and testing each component of the ship separately.

This technique can give accurate estimations of the hydrodynamic coefficients for the mathe-

matical model of the ship. The resulted mathematical model can express real conditions of the
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berthing operation better than the simplified dynamic model used in previous researches. In

addition, the use of nonlinear programming calculation for the proposed mathematical model

prevents us from errors that reduce the validity of the optimal solution and may lead to dynam-

ics that do not express real time conditions. Therefore, the proposed mathematical model of

the ship motion, as presented in the numerical simulation results, is believed to have the abil-

ity to provide us with accurate ship parameters such as ship position, ship heading, and ship

velocities, that were used as inputs for the proposed ANN controller.

The ship model represented in the study is under condition of calm and deep water conditions,

in the actual navigational situation, there are many kinds of environmental forces such as wind,

wave and current. It will be proper in the future to investigate the mathematical formulas of

such forces and add them as additional modules.

TABLE 3. The parameter of weights linked hidden layer to output layer (Wk j)

1 2 1 2 1 2

-0.1231 -0.1294 1.2345 0.9485 -0.8107 -1.2874

0.4586 1.2389 -0.5458 -1.3777 -0.5527 -1.1554

-2.5447 1.2223 0.4250 2.1245 -2.6212 -2.0478

-0.2455 -0.5963 0.6588 -0.0855 2.7542 -3.2648

-2.1009 0.1200 1.8580 -3.2057 -0.5647 1.1487

-0.1254 1.2350 -24608 1.1200 -0.5142 -2.3998

2.4578 -0.1214 3.0120 -4.0529 1.9143 -1.8452

8. CONCLUSION

Even though the marine industry knew an important development, automatic ship berthing is

still one of the most challenging problems in ship control. Many researches have been carried

out to solve this problem. This study proposed a feed-forward neural network which its inputs

are generated by a proposed mathematical model for ship maneuvering. The numerical simula-

tion results showed that the ship could automatically reach the designated goal point in a safe

distance and heading angle. The conclusions of this study can be summarized as follows:
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(1) To express real time conditions of the berthing operation of the ship, MMG analysis

method is adopted for determining the hydrodynamic force coefficients that used to

create the proposed mathematical model for ship maneuvering simulations.

(2) To increase the validity of the optimal solution, the proposed mathematical model is

solved using a nonlinear programming calculation with less hypotheses.

(3) To validate the effectiveness of the proposed mathematical model, the trajectory resulted

from the numerical simulation is compared with the trajectory performed by the ship

master. The comparison results are found quite satisfactory.

(4) The little variations, existing between the experiment trajectory and the trajectory per-

formed by the ship master, are explained by the presence of environmental disturbances

such as the wind.

(5) The outputs of the proposed mathematical model are used as inputs for the proposed

feed-forward neural network that is adopted instead of centralized neural networks as

its effectiveness has already proved in many previous researches and in which it is based

on the fact that the hidden layer has a strong learning ability.

(6) Numerical simulations result demonstrated that the proposed neural network controller

built for the proposed berthing system verified its effectiveness.

(7) In our future work, new controllers will be proposed to carry out a comparative analysis

of methods related to automatic ship berthing. Adding the environmental disturbances

modules into consideration in the berthing operation modeling will contribute to the

enhancement of maritime safety.
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