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Abstract. Infectious disease and competition play important roles in the dynamics of a population due to their

capability to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single

species population are studied by considering the existence of the infectious disease, intraspecific competition,

and interspecific competition. The fractional-order derivative with a power-law kernel is utilized to involve the

impact of the memory effect. The population is divided into two compartments namely the susceptible class and

the infected class. The existence, uniqueness, non-negativity, and boundedness of the solution are investigated

to confirm the biological validity. Three types of feasible equilibrium points are identified namely the origin,

the disease-free, and the endemic points. All biological conditions which present the local and global stability

are investigated. The global sensitivity analysis is given to investigate the most influential parameter to the basic

reproduction number and the density of each class. Some numerical simulations including bifurcation diagrams

and time series are also portrayed to explore more the dynamical behaviors.
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1. INTRODUCTION

The spread of infectious disease still becomes a fundamental issue not only because of the

existence of the population but also to maintain the balance of biological systems. Several sci-

entific methods are developed to discover better ways to suppress and control the rate of disease

infection [1]. The preferred ways for the last decades for this epidemiological problems are

given by mathematical approach using a deterministic model which is considered efficacious to

understand the mechanisms of disease transmission and evaluate the appropriate control strate-

gies [2, 3, 4]. The fundamental one which has become the basis of epidemiological modeling

is given by [5] which develops the continuous-time deterministic model using first-order de-

rivative as the operator. This model is successfully developed in couple of ways such as the

continuous-time single species epidemiological modeling with first-order derivative [6, 7, 8, 9],

the discrete-time single species epidemiological modeling [10, 11, 12], the stochastic single-

species epidemiological modeling [13, 14], and the continuous-time eco-epidemiological mod-

eling [15, 16, 17].

Apart from those operators, several researchers prefer to use the fractional-order derivative

to accomplish their problems the biological modeling. See [18, 19, 20] and references therein

for some examples in epidemiological modeling. The fractional-order derivative is chosen by

considering the capability of this operator to describe the current state of the biological object

as the impact of all of its previous conditions which are known as the memory effect [21, 22]. In

the epidemiological model, the transmission of disease may slow down and be forestalled by the

susceptible population as the impact of the memory [23]. Some fractional-order derivative has

been developed and successfully applied in epidemiological modeling such as the Riemann-

Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu [24, 25, 26, 27]. From all of the

given operators, the Caputo fractional-order derivative has the complete tools for dynamical

analysis such as the existence and uniqueness, non-negativity and boundedness, local dynamics,

global dynamics, and some bifurcation analysis. Consequently, the Caputo operator will be used

in this paper where defined later in the next section.
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In this work, we develop the epidemiological model based on the SIR model given by [5]. For

single-species conditions, this model is only popular for the infectious diseases that appeared

in the human population. In facts, infectious diseases also threaten the existence of the animal

population which disturbs the balance of the ecosystem. For examples, the infectious diseases

in endemic species such as Orangutans [28], Tarsius [29], Sumatran Tiger [30], and Komodo

dragon [31]. Moreover, the natural behaviors of animals that endanger the existence of their

populations are the intraspecific competition among them to preserve their food sources [32,

33, 34]. For these reasons, developing and investigating the dynamics of the epidemiological

model by considering the impact of intraspecific competition and the memory effect are critical

issues that become the novelty of our research.

The whole of this paper is organized in the following procedure: In Section 2, the math-

ematical modeling consists of model formulation, existence, uniqueness, non-negativity, and

boundedness are given. The analytical results including the existence of equilibrium points and

their local and global dynamics are completely investigated in Section 3. To show the most in-

fluential parameter of the model, the global sensitivity analysis is provided by Section 4. Some

numerical simulations as well as bifurcation diagrams and time-series are presented in Sec-

tion 5 to explore more about the dynamical behaviors of the model. This work ends by giving a

conclusion in Section 6.

2. MATHEMATICAL MODELING

This section studies about mathematical modeling consisting of the model formulation, ex-

istence, uniqueness, non-negativity, and boundedness of solution. The mathematical model is

constructed by a deterministic approach using a differential equation. We first give some as-

sumptions to restrain the model so it does not get too complicated. We next interpret the giving

assumptions to the mathematical formula using the first-order derivative as the operator. A di-

agram is presented to show the impact of each assumption on the flow of population density

for each compartment. To involve the impact of the memory effect, the Caputo fractional-order

derivative is applied to the model. For the mathematical model’s validity, we show that the

solution of the model always exists, unique, non-negative, and bounded.



4 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

2.1. Model Formulation. In this work, the model is constructed from a single population

growth model. We first assume there exists a population in a habitat that grows proportionally

to its density and bounded due to the intraspecific competition. Let N(t) be the population

at time t, r is the birth rate, µ is the natural death rate, and ω is the death rate as a result of

competition. Thus, we have a first-order differential equation as follows.

(1)
dN
dt

= (r−µ)N−ωN2.

Next, we assume that the population is exposed by infectious disease. The population N is

divided into two compartments namely the susceptible class (S) and infected class (I) where

N = S+ I. The susceptible class is infected by disease bilinearly with infection rate β . The

competition is divided into two cases namely the intraspecific competition for each susceptible

and infected class, and the interspecific competition between susceptible and infected classes.

As result, the following model is received.

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI,

dI
dt

= (β −ω4)SI−ω3I2−µI,
(2)

where ωi, i = 1,2 respectively denote the death rate of the susceptible population as the results

of intraspecific and interspecific competitions between susceptible and susceptible classes, and

susceptible and infected classes. The parameters ωi, i= 3,4 denote the death rate of the infected

population as the result of competition between infected and infected classes, and susceptible

and infected classes. In our works, we also assume that each organism has the capability to

survive the disease. Thus, we define η as the recovery rate. Since each organism that survives

from the disease has a chance to be re-infected, this type of population will be again susceptible.

Finally, we have a mathematical model as follows.

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

dI
dt

= (β −ω4)SI−ω3I2− (η +µ)I.
(3)

All of the given assumptions and their mathematical modeling are described in Figure 1.

Now, the Caputo fractional-order derivative will be applied in order to conduct the impact

of the memory effect on the population growth rate. The similar procedure is adopted from
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FIGURE 1. Compartment diagram of model (3)

[35]. The first-order derivatives on the left-hand side of model (3) are replaced by the Caputo

fractional-order derivative defined as follows.

Definition 1. [36] Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined

by

(4) CDα
t f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,

where t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function.

Applying Definition 1 to eq. (3), the following model is obtained.

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I.

(5)

Since the given process above makes the dimension of time at the left-hand side become tα ,

some parameters need to be rescaled so that there are no differences between the time’s dimen-

sions at the left-hand side with the right-hand side of model (5). By applying time rescale to

some parameters, we have the model as follows.

CDα
t S = (rα −µ

α)S−ω
α
1 S2− (ωα

2 +β
α)SI +η

α I,

CDα
t I = (β α −ω

α
4 )SI−ω

α
3 I2− (ηα +µ

α)I.
(6)

Let rα = r̂, µα = µ̂ , ωα
1 = ω̂1, ωα

2 = ω̂2, ωα
3 = ω̂3, ωα

4 = ω̂4, β α = β̂ , and ηα = η̂ . Thus, we

acquire

CDα
t S = (r̂− µ̂)S− ω̂1S2− (ω̂2 + β̂ )SI + η̂I,

CDα
t I = (β̂ − ω̂4)SI− ω̂3I2− (η̂ + µ̂)I.

(7)
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For simplicity, by dropping .̂ for each parameter, we obtain the final model as follows.

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI = F1(N(t)),

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I = F2(N(t)).

(8)

Equation (8) is the final proposed model in this paper. Although model (8) seems classic and

simple, this model will be powerful to solve and investigate the existence of a closed population

in a certain area without any outside intervention. Our literature review also shows that the

model (8) has heretofore never been studied. Now, the basic properties of model (8) such as the

existence uniqueness, non-negativity, and boundedness are investigated to confirm its biological

validity.

2.2. Existence and Uniqueness. In this subsection, we will show that the model (8) has a

unique solution. A similar manner given by [37] is used. Thus, the following theorem is

presented to show the existence and uniqueness of the solution of model (8).

Theorem 1. The model (8) with initial condition S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 has a unique

solution.

Proof. Consider model (8) with positive initial condition with F : [0,∞)→ R2 where F(N) =

(F1(N),F2(N)), N ≡ N(t) and θ ≡
{
(S, I) ∈ R2

+ : max{|S| , |I|} ≤M
}

for sufficiently large M.

Then, for any N = (S, I) and N̄ = (S̄, Ī), N, N̄ ∈ θ , we have

‖F(N)−F(N̄)‖

= |F1(N)−F1(N̄)|+ |F2(N)−F2(N̄)|

=
∣∣[(r−µ)S−ω1S2− (ω2 +β )SI +ηI

]
−
[
(r−µ)S̄−ω1S̄2− (ω2 +β )S̄Ī +η Ī

]∣∣+∣∣[(β −ω4)SI−ω3I2− (η +µ)I
]
−
[
(β −ω4)S̄Ī−ω3Ī2− (η +µ)Ī

]∣∣
≤ (r+µ)

∣∣S− S̄
∣∣+ω1

∣∣S2− S̄2∣∣+(ω2 +β )
∣∣SI− S̄Ī

∣∣+η |I− Ī|+(β +ω4)
∣∣SI− S̄Ī

∣∣
+ω3

∣∣I2− Ī2∣∣+(η +µ) |I− Ī|

= (r+µ)
∣∣S− S̄

∣∣+ω1
∣∣(S+ S̄)(S− S̄)

∣∣+(ω2 +ω4 +2β )
∣∣I(S− S̄)+ S̄(I− Ī)

∣∣
+(2η +µ) |I− Ī|+ω3 |(I + Ī)(I− Ī)|
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≤ (r+µ)
∣∣S− S̄

∣∣+2ω1M
∣∣S− S̄

∣∣+(ω2 +ω4 +2β )M
∣∣S− S̄

∣∣
+(ω2 +ω4 +2β )M |I− Ī|+(2η +µ) |I− Ī|+2ω3M |I− Ī|

= [(r+µ)+2ω1M+(ω2 +ω4 +2β )M]
∣∣S− S̄

∣∣
+[(ω2 +ω4 +2β )M+(2η +µ)+2ω3M] |I− Ī|

≤ L‖N− N̄‖ ,

where L = (ω2 +ω4 +2β )M+µ+max{r+2ω1M,2(η +ω3M)}. Therefore, F(N) stisfies the

Lipschitz condition. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial

condition has a unique solution. �

2.3. Non-negativity and Boundedness. The non-negativity and boundedness properties of

the solutions of the model (8) are given in the following theorem.

Theorem 2. All solution of the model (8), which start in R2
+ :={

(S, I) |S≥ 0, I ≥ 0,(S, I) ∈ R2} are uniformly bounded and non-negative.

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38]

is adopted. Let consider the function N = S+ I. Then,

CDα
t N = CDα

t S+CDα
t I

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI +(β −ω4)SI−ω3I2− (η +µ)I

= (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI.

Hence, for each µ > 0,

CDα
t N +µN = (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI +µS+µI

= rS−ω1S2− (ω2 +ω4)SI−ω3I2

= −ω1

(
S− r

2ω1

)2

+
r2

4ω1
− (ω2 +ω4)SI−ω3I2

≤ r2

4ω1
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By using the comparison theorem in [39], we obtain N(t) ≤ N(0)Eα(−µtα) +

r2

4ω1
tαEα,α+1(−µtα), where Eα and Eα,α+1 is the Mittag-Leffler function with one and two

parameters. According to Lemma 5 and Corollary 6 in [39], we have N(t) ≤ r2

4µω1
, as t → ∞.

Therefore, all solutions of model (8) starting in R2
+ are uniformly bounded in the region Φ,

where Φ =
{
(S, I) ∈ R2

+ : S+ I ≤ r2

4µω1
+ ε, ε > 0

}
Next, we prove that all solutions of model

(8) are non-negative. By model (8), we have CDα
t S|S=0 = ηI ≥ 0 and CDα

t I|I=0 = 0≥ 0. Based

on Lemmas 5 and 6 in [40], we conclude that the solutions of model (8) are non-negative. �

3. ANALYTICAL RESULTS

In this section, the dynamics of model (8) are shown analytically including the existence of

equilibrium points, and their local and global stability.

3.1. Existence of Equilibrium Points. To find the equilibrium points of model (8), we must

have

[(r−µ)−ω1S− (ω2 +β )I]S+ηI = 0,(9)

[(β −ω4)S−ω3I− (η +µ)]I = 0.(10)

If I = 0 is substituted to (9), we obtain

(11) [(r−µ)−ω1S]S = 0.

From eq. (11), we get S = 0 and S = r−µ

ω1
. Thus, we have two equilibrium points here namely

E0 = (0,0), and EA =
(

r−µ

ω1
,0
)

. The equilibrium point E0 is called the origin point which

represents the extinction of both susceptible and infected populations. Since E0 ∈ R2
+, this

equilibrium point always exists. Furthermore, the equilibrium point EA is called the disease-

free equilibrium point (DFEP) which describes the condition where the infectious disease does

not exist anymore in the population. According to the biological condition, it is natural that the

birth rate r is greater than its death rate µ . By assuming r > µ , the origin point EA ∈ R2
+ also

always exists. By simple calculation, we also obtain the basic reproduction number R0 given

by

(12) R0 =
(r−µ)β

(r−µ)ω4 +(η +µ)ω1
.
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The basic reproduction number is utilized to show the dynamical behavior of each equilibrium

point and to describe whether the infectious disease becomes endemic or not. Since r > µ , the

value of R0 is always positive. Now, let’s concern the eq. (9) and (10). By solving eq. (10), we

attain

(13) S =
ω3I +(η +µ)

β −ω4
.

If we substitute eq. (13) to (9), the following polynomial equation holds.

(14) k1I2 + k2I + k3 = 0,

where

k1 = ((β −ω4)(β +ω2)+ω1ω3)ω3,

k2 = (β −ω4)((β +ω2)µ +(ω2 +ω4)η− (r−µ)ω3)+2(η +µ)ω1ω3,

k3 =
(1−R0)(r−µ)(η +µ)β

R0
.

Therefore, we acquire the endemic point (EEP)

(15) EI =

(
ω3γ̄ +(η +µ)

β −ω4
, γ̄

)
,

where γ̄ is the positive root of polynomial equation (14). From (15), we find that β > ω4 must

be fulfilled so that EI ∈R2
+. Moreover, EEP exists if γ̄ > 0. From eq. (14), we have k1 is always

positive. Thus, the value of the γ̄ depends on k2 and k3. Furthermore, eq. (14) has real number

roots if k2
2 ≥ 4k1k3. By applying simple algebra, if k3 > 0 and k2 < 0 then we have two positive

roots of eq. (14), if k3 > 0 and k2 > 0 then we do not have any positive roots of eq. (14), and if

k3 < 0 then we have a positive root of eq. (14). Finally, we have the following theorem.

Theorem 3. Let β > ω4. The existence of EEP EI is shown by the following statement.

(i) If k2
2 < 4k1k3 then EI does not exist.

(ii) If k2
2 = 4k1k3 and

(ii.i) if k2 > 0 then EI does not exist.

(ii.ii) if k2 < 0 then EI exists and unique.

(iii) If k2
2 > 4k1k3 and
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(iii.i) if k3 > 0 and k2 < 0 then we have a pair of EI .

(iii.ii) if k3 > 0 and k2 > 0 then EI does not exist.

(iii.iii) if k3 < 0 then EI exists and unique.

Denote that k2
2 > 4k1k3 is always satisfied and k3 < 0 for R0 > 1, then the following lemma

holds.

Lemma 4. EEP EI exists and unique if R0 > 1.

3.2. Local Dynamics. The local dynamics of model (8) are obtained by applying the

Matignon condition which is defined as follows.

Theorem 5. [Matignon condition [36]] An equilibrium point~x∗ is locally asymptotically stable

(LAS) if all eigenvalues λ j of the Jacobian matrix J = ∂~f
∂~x at~x∗ satisfy

∣∣arg(λ j)
∣∣> απ

2 . If there

exists at least one eigenvalue satisfy |arg(λk)| > απ

2 while |arg(λl)| < απ

2 , k 6= l, then ~x∗ is a

saddle-point.

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at

the point (S, I) which gives

(16) J (S, I) =

 (r−µ)−2ω1S− (ω2 +β )I −(ω2 +β )S+η

(β −ω4)I (β −ω4)S−2ω3I− (η +µ)

 .
Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each

equilibrium point in the next subsection.

3.3. Dynamical behavior around E0. LAS condition of E0 is obtained by identifying the

eigenvalues of the Jacobian matrix (16) at the point (S, I) = (0,0). We receive

J (S, I)|E0
=

 r−µ η

0 −(η +µ)

 .
Therefore, we have λ1 = r−µ and λ2 =−(η+µ). Since r > µ and λ2 < 0, we have |arg(λ1)|=
0 < απ

2 and |arg(λ2)|= π > απ

2 . According to Theorem 5, the following theorem holds.

Theorem 6. The origin point E0 is always a saddle point.
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3.4. Dynamical behavior around EA. For (x,y) =
(

r−µ

ω1
,0
)

, the Jacobian matrix (16) be-

comes

J (S, I)|EA
=

 −(r−µ) η− (ω2+β )(r−µ)
ω1

0 (R0−1)(r−µ)β
ω1R0

 ,
which gives a pair of eigenvalues λ1 = −(r− µ) and λ2 =

(R0−1)(r−µ)β
ω1R0

. Denote |arg(λ2)| =
π > απ

2 as the impact of λ1 < 0. Hence, the sign of λ2 takes the role in describing local dynamics

around EA. To obtain |arg(λ2)|= π > απ

2 , we need λ2 < 0 which is fulfilled if R0 < 1. If R0 > 1

then |arg(λ2)|= 0 < απ

2 . Following the Matignon condition given in Theorem 5, the following

theorem is successfully attained.

Theorem 7. If R0 < 1 then EA is LAS and a saddle point if R0 > 1.

3.5. Dynamical behavior around EI . To identify the local stability of EI , we first compute

the Jacobian matrix (16) evaluated at EI . We generate

(17) J (S, I)|EI
=

 −[ (ω3γ̄+η+µ)ω1
β−ω4

+ (β−ω4)ηγ̄

ω3γ̄+η+µ

]
− (ω2+β )(ω3γ̄+η+µ)

β−ω4
+η

(β −ω4)γ̄ −ω3γ̄

 .
The eigenvalues of (17) are given by λ1 =

1
2

(
ξ1 +

√
ξ 2

1 −4ξ2

)
and λ2 =

1
2

(
ξ1−

√
ξ 2

1 −4ξ2

)
where

ξ1 = −
[
(ω3γ̄ +η +µ)ω1

β −ω4
+

(β −ω4)ηγ̄

ω3γ̄ +η +µ
+ω3γ̄

]
,

ξ2 =

[(
ω1ω3

β −ω4
+ω2 +β

)
(ω3γ̄ +η +µ)+

(
ω3γ̄

ω3γ̄ +η +µ
+1
)
(β −ω4)η

]
γ̄.

It is easy to proof that ξ1 < 0 and ξ2 > 0 since β > ω4 becomes the existence condition. As the

impact, |arg(λi)| > απ

2 , i = 1,2 and hence the LAS always hold for EEP. Thus, the following

theorem holds.

Theorem 8. EEP EI is always LAS.

3.6. Global Dynamics. In this subsection, the global dynamics of model (8) are studied. The

biological conditions of equilibrium points are investigated so that those points are globally

asymptotically stable (GAS). Since the origin is always a saddle point, we focus on studying

GAS conditions for DFEP and EEP. The next two theorems are given for the global dynamics.
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Theorem 9. DFEP EA is GAS if ω1 >
(ω2+β )r

µ
.

Proof. We define a positive Lyapunov function as follows.

(18) VA(S, I) =
(

S− r−µ

ω1
− r−µ

ω1
ln

ω1S
r−µ

)
+ I.

If we calculate the Caputo fractional derivative of VA(S, I) along the solution of model (8) and

use Lemma 3.1 in [41], we get

CDα
t VA(S, I)

=

(
S− r−µ

ω1

S

)
CDα

t S+CDα
t I

= −ω1

(
S− r−µ

ω1

)2

+
(r−µ)(ω2 +β )I

ω1
− (r−µ)ηI

ω1S
− (ω2 +ω4)SI−ω3I2−µI

≤ −ω1

(
S− r−µ

ω1

)2

−
(

µ− (ω2 +β )r
ω1

)
I

Since ω1 >
(ω2+β )r

µ
, we have CDα

t VA(S, I) ≤ 0 for all (S, I) ∈ R2
+, and CDα

t VA(S, I) = 0 only

when (S, I) =
(

r−µ

ω1
,0
)

. This means that the singleton {EA} is the only invariant set where
CDα

t VA(S, I) = 0. By Lemma 4.6 in [42], we can conclude that every solution of model (8)

tends to DFEP EA.

�

Theorem 10. EEP EI is GAS if ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}.

Proof. We first define ϑ = ω3γ̄+(η+µ)
β−ω4

and hence EI =(ϑ , γ̄). Now, a positive Lyapunov function

is presented as follows.

(19) VI(S, I) =
(

S−ϑ −ϑ ln
S
ϕ

)
+

(
I− γ̄− γ̄ ln

S
γ̄

)
Following Lemma 3.1 in [41], we reach

CDα
t VI(S, I)

=

(
S−ϑ

S

)
CDα

t S+
(

I− γ̄

I

)
CDα

t I

= (S−S∗)
(
(r−µ)−ω1S− (ω2 +β )I +

ηI
S

)
+(I− γ̄)((β −ω4)S−ω3I− (η +µ))
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= −ω1 (S−ϑ)2−ω3 (I− γ̄)2− (ω2 +ω4)(S−S∗)(I− γ̄)

≤ −
(

ω1−
(

ω2

2
+

ω4

2
+

η

2ϑ

))
(S−ϑ)2−

(
ω3−

(
ω2

2
+

ω4

2
+

η

2ϑ

))
(I− γ̄)2

Denote that CDα
t VI(S, I)≤ 0 for all (S, I) ∈R2

+ as a result of ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}. We

also have that CDα
t VI(S, I) = 0 only when (S, I) = (ϑ , γ̄). Therefore, the singleton {EI} is the

only invariant set where CDα
t VI(S, I) = 0. Obeying Lemma 4.6 in [42], every solution of model

(8) tends to EEP EI . �
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FIGURE 2. PRCC results for the parameters of R0
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FIGURE 4. PRCC results for the parameters of I(t)

TABLE 1. PRCC results in respect to the population density of infected class

Parameter Description PRCC Rank Relationship with I(t)

ω1 The death rate of susceptible population due to the

intraspecific competition

-0.00851 6 Negative relationship

ω2 The death rate of susceptible population due to the

interspecific competition

-0.01938 5 Negative relationship

ω3 The death rate of infected population due to the in-

traspecific competition

-0.01990 4 Negative relationship

ω4 The death rate of infected population due to the inter-

specific competition

-0.54635 1 Negative relationship

β The infection rate 0.54631 2 Positive relationship

η The recovery rate -0.43606 3 Negative relationship
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infection rate (β ) with parameter values given by eq. (20)
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4. GLOBAL SENSITIVITY ANALYSIS

In this section, the global sensitivity analysis is studied to investigate the most influential

parameters of model (8). Global sensitivity analysis is calculated using Partial Rank Coefficient

Correlation (PRCC) [43], where the random data processed in PRCC is generated using Saltelli

sampling [44]. Two biological components become the objective function for the PRCC namely

the basic reproduction number (R0) and the population density of infected class (I(t)). We

first investigate the most influential parameter to the basic reproduction number (R0). From

eq. (12), we acquire that only r, µ , ω1, ω4, and η have the influence on the value of R0. The

birth rate and the natural death rate also can be fixed since some cases in the epidemiological

model has the values of these parameters. Thus, only β , η , ω1, and ω4 will be computed for

PRCC. The Figure 2 is given for the results. We have β = 0.763, ω1 = −0.352, ω4 = −0.33,

and η =−0.277 as the coefficient correlation such that the infection rate (β ) becomes the most

influential parameter to R0 and followed by ω1, ω4, and η , respectively. It shows that the

infection rate (β ) as the most influential parameter has a positive relationship with the basic

reproduction number (R0) which means that R0 will significantly increases when β increases.

The rest ω1, ω4, and η have a negative relationship with R0 which means that by reducing

the value of those parameters, the basic reproduction number (R0) will increases. To show the

impact of these parameters on R0, the contour plots are also portrayed in Figure 3.

Next, we identify the most influential parameter to the population density of infected class

(I(t)). Quite similar to previous work, the value of r and µ are fixed but the rest of the pa-

rameters are involved to compute PRCC. PRCC values are computed for 0 ≤ t ≤ 50 which

is considered sufficient enough to see the convergence for each parameter through the PRCC.

We portray the PRCC results in Figure 4 while the PRCC values, ranks, and the relationship

between each parameter and I(t) are given in Table 1. From those simulations, we conclude

that the death rate of infected population due to interspecific competition between susceptible

and infected classes (ω4) become the most influential parameter to the population density (I(t))

followed respectively by β , η , ω3, ω2, and ω1. In the next section, the numerical simulations

including bifurcation diagram and time-series are presented to show the impact of the infection
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rate (β ), recovery rate (η), intraspecific competition (ω1 and ω3), and interspecific competition

(ω2 and ω4) to the dynamical behaviors of model (8).

5. NUMERICAL SIMULATIONS

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-

series are studied numerically. To obtain the bifurcation diagram and the corresponding time-

series of model (8), the predictor-corrector scheme developed by Diethelm et al. is employed

[45]. Since the model does not investigate a specific epidemiological case, we use hypothetical

parameters for all numerical simulations. we set the parameter values as follows.

(20)

r = 0.6, µ = 0.1, ω1 = 0.1, ω2 = 0.1, ω3 = 0.1, ω4 = 0.1, β = 0.4, η = 0.2, and α = 0.9

We start our work by investigating the impact of infection rate (β ) on the dynamics of model

(8). The value of β is varied in the interval 0 ≤ β ≤ 1 and we then compute the numerical

solutions. To obtain the bifurcation diagram, we plot the tail of solutions for each β together

with the LAS condition of EA. As result, we obtain a bifurcation diagram as in Figure 5a. When

0 ≤ β < β ∗, β ∗ = 0.16, the EEP EI does not exist and Theorem 7 is satisfied which means

that DFE EA is LAS. The solution is convergent to EA which indicates the population free from

disease. When β passes through β ∗, EA losses its stability, and unique LAS EEP EI occurs

in the interior. The infectious disease becomes endemic in the population and still exists for

all t→ ∞. From the concatenation of those biological circumstances, we conclude that forward

bifurcation occurs around EA where β is the bifurcation parameter and β = β ∗ is the bifurcation

point. It is easy to examine that the bifurcation point β = β ∗ is equal to R0 = 1. The dynamical

behaviors are maintained for β ∗ < β ≤ 1. To support these conditions, some time series are

given in Figure 5b to show the convergence of solutions for different values of β .

Next, the impact of recover rate (η) is studied. A similar numerical scheme as the previous

way is applied. To depicts the bifurcation diagram, the parameter is fixed as in eq. (20) and the

recovery rate (η) is varied in interval 0≤η ≤ 1. We have Figure 6a as the result. Denote that the

bifurcation does not exist for this interval. Both DFEP and EEP exist with distinct stability. The

DFEP EA is a saddle point while the EEP EI is LAS which confirm the validity of Theorems 6
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and 7. We also confirm that the EEP EI attains GAS which means that all initial conditions

will go right to the EEP and the infectious disease will exist all the time. Although the disease

becomes endemic, the numerical simulation shows that the value of η is directly proportional

to S(t) and inversely proportional to I(t), see Figure 6b. This means the population density of

the infected class can be reduced by increasing the recovery rate (η).

For the next simulation, the impact of intraspecific competition is investigated. The death

rate parameters caused by intraspecific competition on susceptible and infected classes (ω1 and

ω3) are varied in interval [0,1]. It is found that forward bifurcation occurs when ω1 is driven

where the bifurcation point is given by ω∗1 = 0.5, see Figure 7a. The population density of

both susceptible and infected classes reduces when the death rate of S(t) due to intraspecific

competition increases as given by Figure 7b. Particularly, Figure 8a shows that bifurcation does

not exists in interval 0≤ ω1 ≤ 1 when ω1 is varied but the dynamical behaviors show that S(t)

increases and I(t) decrease when ω1 increase. We confirm this condition by giving time-series

in Figure 8b.

Now, we study the impact of interspecific competition on the dynamical behaviors of model

(8). Both susceptible and infected classes have died due to the existence of interspecific com-

petition given by parameters ω2 and ω4. By varying ω2 and ω4 in interval [0,1], we obtain

Figures 9a and 10a as the bifurcation diagram. We find forward bifurcation driven by ω4 which

does not exist when varying ω1. This means, the EEP still exists and LAS for 0 ≤< ω2 ≤ 1.

The EEP will disappear via forward bifurcation and the saddle DFEP becomes LAS when ω4

crosses ω∗4 = 0.34. This guarantees that the infectious disease may eliminate the disease in pop-

ulation when the death rate of the infected population due to interspecific competition increases

as shown in Figure 10b. Although the disease does not disappear when ω2 is driven, we also can

see in Figure 9b that by increasing ω2, the population density of the infected class will reduce

and the susceptible class will increase.

Finally, the impact of memory effect (α) is investigated. The numerical simulation is given

by Figure 11. For α = 0.7,0.8,0.9,1 and similar initial values, all solution converge to single

equilibrium point given by EI ≈ (1.3465,1.0395), see Figure 11(a,b). We then plot the local

amplification to show the difference of solutions when α is varied. We find that the difference
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lies in the convergence rate where for larger values of α , the convergence rate increase and

vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d) we show that when α

decrease, the population density of the infected class reduce. From a biological point of view,

we can say that biological memory has an impact on the density of both susceptible and infected

classes.

6. CONCLUSION

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific

competition have been studied. The validity of the model has been confirmed analytically by

showing the existence, uniqueness, non-negativity, and boundedness of solutions. Three equi-

librium points have been obtained namely the origin, the disease-free equilibrium point, and

the endemic equilibrium point. Both origin and disease-free equilibrium points always exist

while the endemic equilibrium point conditionally exists. The basic reproduction number R0

has been given which has a relationship with the local stability of the model. If R0 < 1 then the

disease-free equilibrium point is locally asymptotically stable and if R0 > 1 then the disease-

free equilibrium point losses its stability along with the existence of a locally asymptotically

stable endemic equilibrium point. The global stability conditions of equilibrium points also

have been found. The PRCC has been worked to investigate the most influential parameter.

We have successfully shown that the infection rate and the death rate of the infected population

due to interspecific competition becomes the most influential parameter for basic reproduction

number and the population density of the infected class. We then investigate the impact of sev-

eral parameters using numerical simulations including the infection rate, the recovery rate, the

intraspecific competition, the interspecific competition, and the memory effect on the dynamics

of the model. Bifurcation diagrams and time series have been given which show the existence

of forward bifurcation, the decrease of susceptible and infected classes, and the decrease of

convergence rate caused by the memory effect.

ACKNOWLEDGEMENTS

This research is funded by LPPM-UNG via PNBP-Universitas Negeri Gorontalo according to

DIPA-UNG No. 023.17.2.677521/2021, under contract No. B/125/UN47.DI/PT.01.03/2022.



26 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] H. Cao, H. Wu, X. Wang, Bifurcation analysis of a discrete SIR epidemic model with constant recovery, Adv.

Differ. Equ. 2020 (2020), 49. https://doi.org/10.1186/s13662-020-2510-9.

[2] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (2000), 599–653. https://doi.org/10.1

137/s0036144500371907.

[3] F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model. 2 (2017), 113–127.

https://doi.org/10.1016/j.idm.2017.02.001.

[4] R. Sanft, A. Walter, Exploring mathematical modeling in biology through case studies and experimental

activities, Academic Press, London, 2020.

[5] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc.

Lond. A. 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118.

[6] M. Liu, X. Fu, D. Zhao, Dynamical analysis of an SIS epidemic model with migration and residence time,

Int. J. Biomath. 14 (2021), 2150023. https://doi.org/10.1142/s1793524521500236.

[7] X. Liu, K. Zhao, J. Wang, et al. Stability analysis of a SEIQRS epidemic model on the finite scale-free

network, Fractals. 30 (2022), 2240054. https://doi.org/10.1142/s0218348x22400540.

[8] M.M. Ojo, O.J. Peter, E.F.D. Goufo, et al. Mathematical model for control of tuberculosis epidemiology, J.

Appl. Math. Comput. (2022). https://doi.org/10.1007/s12190-022-01734-x.

[9] I. Darti, A. Suryanto, H. S. Panigoro, et al. Forecasting COVID-19 epidemic in Spain and Italy using a

generalized Richards model with quantified uncertainty, Commun. Biomath. Sci. 3 (2022), 90–100. https:

//doi.org/10.5614/cbms.2020.3.2.1.

[10] M. Lu, C. Xiang, J. Huang, Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized

nonmonotone incidence rate, Discr. Contin. Dyn. Syst. - S. 13 (2020), 3125–3138. https://doi.org/10.3934/

dcdss.2020115.

[11] B. Li, C. Qin, X. Wang, Analysis of an SIRS epidemic model with nonlinear incidence and vaccination,

Commun. Math. Biol. Neurosci., 2020 (2020), 2. https://doi.org/10.28919/cmbn/4262.

[12] F.F. Eshmatov, U.U. Jamilov, Kh.O. Khudoyberdiev, Discrete time dynamics of a SIRD reinfection model,

Int. J. Biomath. (2022). https://doi.org/10.1142/s1793524522501042.

[13] A. Miao, X. Wang, T. Zhang, et al. Dynamical analysis of a stochastic SIS epidemic model with nonlinear

incidence rate and double epidemic hypothesis, Adv. Differ. Equ. 2017 (2017), 226. https://doi.org/10.1186/

s13662-017-1289-9.

https://doi.org/10.1137/s0036144500371907
https://doi.org/10.1137/s0036144500371907
https://doi.org/10.1016/j.idm.2017.02.001
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1142/s1793524521500236
https://doi.org/10.1142/s0218348x22400540
https://doi.org/10.1007/s12190-022-01734-x
https://doi.org/10.5614/cbms.2020.3.2.1
https://doi.org/10.5614/cbms.2020.3.2.1
https://doi.org/10.3934/dcdss.2020115
https://doi.org/10.3934/dcdss.2020115
https://doi.org/10.28919/cmbn/4262
https://doi.org/10.1142/s1793524522501042
https://doi.org/10.1186/s13662-017-1289-9
https://doi.org/10.1186/s13662-017-1289-9


DYNAMICS OF SIS–EPIDEMIC MODEL 27

[14] D. Zhao, S. Yuan, H. Liu, Random periodic solution for a stochastic SIS epidemic model with constant

population size, Adv. Differ. Equ. 2018 (2018), 64. https://doi.org/10.1186/s13662-018-1511-4.

[15] J. Liu, B. Liu, P. Lv, et al. An eco-epidemiological model with fear effect and hunting cooperation, Chaos

Solitons Fractals. 142 (2021), 110494. https://doi.org/10.1016/j.chaos.2020.110494.

[16] S. Kumar, H. Kharbanda, Sensitivity and chaotic dynamics of an eco-epidemiological system with vaccina-

tion and migration in prey, Braz. J. Phys. 51 (2021), 986–1006. https://doi.org/10.1007/s13538-021-00862-2.

[17] D. Bhattacharjee, A.J. Kashyap, H.K. Sarmah, et al. Dynamics in a ratio-dependent eco-epidemiological

predator-prey model having cross species disease transmission, Commun. Math. Biol. Neurosci. 2021 (2021),

15. https://doi.org/10.28919/cmbn/5302.

[18] S. Jana, M. Mandal, S.K. Nandi, et al. Analysis of a fractional-order SIS epidemic model with saturated

treatment, Int. J. Model. Simul. Sci. Comput. 12 (2020), 2150004. https://doi.org/10.1142/s1793962321500

045.

[19] A. Lahrouz, H. El Mahjour, A. Settati, et al. Bifurcation from an epidemic model in the presence of memory

effects, Int. J. Bifurcation Chaos. 32 (2022), 2250077. https://doi.org/10.1142/s0218127422500778.

[20] E. Bonyah, M.L. Juga, C.W. Chukwu, et al. A fractional order dengue fever model in the context of protected

travelers, Alexandria Eng. J. 61 (2022), 927–936. https://doi.org/10.1016/j.aej.2021.04.070.

[21] C. Maji, Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge

and nonlinear incident rate, Model. Earth Syst. Environ. 8 (2021), 47–57. https://doi.org/10.1007/s40808-0

20-01061-9.

[22] H.S. Panigoro, A. Suryanto, W.M. Kusumawinahyu, et al. A Rosenzweig–MacArthur model with continuous

threshold harvesting in predator involving fractional derivatives with power law and Mittag–Leffler kernel,

Axioms. 9 (2020), 122. https://doi.org/10.3390/axioms9040122.

[23] S. Majee, S. Adak, S. Jana, et al. Complex dynamics of a fractional-order SIR system in the context of

COVID-19, J. Appl. Math. Comput. (2022). https://doi.org/10.1007/s12190-021-01681-z.

[24] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential

equations, to methods of their solution and some of their applications, Academic Press, San Diego CA, 1999.

[25] M. Caputo, Linear models of dissipation whose q is almost frequency independent–II, Geophys. J. Int. 13

(1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x.

[26] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress Fract.

Differ. Appl. 1 (2015), 73–85.

[27] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and

application to heat transfer model, Therm. Sci. 20 (2016), 763–769. https://doi.org/10.2298/TSCI16011101

8A.

https://doi.org/10.1186/s13662-018-1511-4
https://doi.org/10.1016/j.chaos.2020.110494
https://doi.org/10.1007/s13538-021-00862-2
https://doi.org/10.28919/cmbn/5302
https://doi.org/10.1142/s1793962321500045
https://doi.org/10.1142/s1793962321500045
https://doi.org/10.1142/s0218127422500778
https://doi.org/10.1016/j.aej.2021.04.070
https://doi.org/10.1007/s40808-020-01061-9
https://doi.org/10.1007/s40808-020-01061-9
https://doi.org/10.3390/axioms9040122
https://doi.org/10.1007/s12190-021-01681-z
https://doi.org/10.1111/j.1365-246x.1967.tb02303.x
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.2298/TSCI160111018A


28 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

[28] J. Philippa, R. Dench, Infectious diseases of orangutans in their home ranges and in zoos, in: Fowler’s Zoo

and Wild Animal Medicine Current Therapy, Volume 9, Elsevier, 2019: pp. 565–573. https://doi.org/10.101

6/B978-0-323-55228-8.00080-1.

[29] A. Aswad, A. Katzourakis, The first endogenous herpesvirus, identified in the tarsier genome, and novel

sequences from primate rhadinoviruses and lymphocryptoviruses, PLoS Genet. 10 (2014), e1004332. https:

//doi.org/10.1371/journal.pgen.1004332.

[30] B.H. Mulia, S. Mariya, J. Bodgener, et al. Exposure of wild sumatran tiger (panthera tigris sumatrae) to

canine distemper virus, J. Wildlife Dis. 57 (2021), 464–466. https://doi.org/10.7589/jwd-d-20-00144.

[31] M. Skoric, V. Mrlik, J. Svobodova, et al. Infection in a female Komodo dragon (Varanus komodoensis) caused

by Mycobacterium intracellulare: A case report, Vet. Med. 57 (2012), 163–168.

[32] D. Mukherjee, Role of fear in predator–prey system with intraspecific competition, Math. Computers Simul.

177 (2020), 263–275. https://doi.org/10.1016/j.matcom.2020.04.025.

[33] C. Arancibia-Ibarra, P. Aguirre, J. Flores, et al. Bifurcation analysis of a predator-prey model with predator

intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput. 402 (2021), 126152.

https://doi.org/10.1016/j.amc.2021.126152.

[34] E. Bodine, A. Yust, Predator-prey Dynamics with Intraspecific Competition and an Allee Effect in the Preda-

tor Population, Lett. Biomath. 4 (2017), 23–38. https://doi.org/10.30707/lib4.1bodine.

[35] M. Moustafa, M.H. Mohd, A.I. Ismail, et al. Dynamical analysis of a fractional order eco-epidemiological

model with nonlinear incidence rate and prey refuge, J. Appl. Math. Comput. 65 (2020), 623–650. https:

//doi.org/10.1007/s12190-020-01408-6.

[36] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer London, Higher

Education Press, Beijing, 2011.

[37] H.S. Panigoro, A. Suryanto, W.M. Kusumahwinahyu, et al. Dynamics of a fractional-order predator-prey

model with infectious diseases in prey, Commun. Biomath. Sci. 2 (2019), 105-117. https://doi.org/10.5614/

cbms.2019.2.2.4.

[38] H.L. Li, L. Zhang, C. Hu, et al. Dynamical analysis of a fractional-order predator-prey model incorporating

a prey refuge, J. Appl. Math. Comput. 54 (2016), 435–449. https://doi.org/10.1007/s12190-016-1017-8.

[39] S.K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal. 2014

(2014), 631419. https://doi.org/10.1155/2014/631419.

[40] A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order hiv infection model with specific

functional response and cure rate, Int. J. Differ. Equ. 2017 (2017), 8372140. https://doi.org/10.1155/2017/8

372140.

[41] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Non-

linear Sci. Numer. Simul. 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013.

https://doi.org/10.1016/B978-0-323-55228-8.00080-1
https://doi.org/10.1016/B978-0-323-55228-8.00080-1
https://doi.org/10.1371/journal.pgen.1004332
https://doi.org/10.1371/journal.pgen.1004332
https://doi.org/10.7589/jwd-d-20-00144
https://doi.org/10.1016/j.matcom.2020.04.025
https://doi.org/10.1016/j.amc.2021.126152
https://doi.org/10.30707/lib4.1bodine
https://doi.org/10.1007/s12190-020-01408-6
https://doi.org/10.1007/s12190-020-01408-6
https://doi.org/10.5614/cbms.2019.2.2.4
https://doi.org/10.5614/cbms.2019.2.2.4
https://doi.org/10.1007/s12190-016-1017-8
https://doi.org/10.1155/2014/631419
https://doi.org/10.1155/2017/8372140
https://doi.org/10.1155/2017/8372140
https://doi.org/10.1016/j.cnsns.2014.12.013


DYNAMICS OF SIS–EPIDEMIC MODEL 29

[42] J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model,

Nonlinear Anal.: Real World Appl. 26 (2015), 289–305. https://doi.org/10.1016/j.nonrwa.2015.05.014.

[43] S. Marino, I.B. Hogue, C.J. Ray, et al. A methodology for performing global uncertainty and sensitivity

analysis in systems biology, J. Theor. Biol. 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011.

[44] A. Saltelli, P. Annoni, I. Azzini, et al. Variance based sensitivity analysis of model output. Design and esti-

mator for the total sensitivity index, Computer Phys. Commun. 181 (2010), 259–270. https://doi.org/10.101

6/j.cpc.2009.09.018.

[45] K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional

differential equations, Nonlinear Dyn. 29 (2002), 3–22. https://doi.org/10.1023/a:1016592219341.

https://doi.org/10.1016/j.nonrwa.2015.05.014
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1023/a:1016592219341

	1. Introduction
	2. Mathematical Modeling
	2.1. Model Formulation
	2.2. Existence and Uniqueness
	2.3. Non-negativity and Boundedness

	3. Analytical Results
	3.1. Existence of Equilibrium Points
	3.2. Local Dynamics
	3.3. Dynamical behavior around E0
	3.4. Dynamical behavior around EA
	3.5. Dynamical behavior around EI
	3.6. Global Dynamics

	4. Global Sensitivity Analysis 
	5. Numerical Simulations
	6. Conclusion
	Acknowledgements
	Conflict of Interests
	References

