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Abstract. In the present work, we consider a spatio-temporal model to describe the evolution of covid19 in an area

Ω (Ω can be a city, a country,..). Taking into account the financial means of the considered country, we suppose

that the number of available vaccines is destined to a region ω1 ⊆Ω (ω1 can be an industrial city, a university city.

..) and we suppose that the available treatments are dedicated to a region ω2 ⊆ Ω (ω2 can be a military city,..),

it is not excluded that ω1 = ω2. To minimize the number of infection with minimal cost, we apply an optimal

regional control strategy to stop the death of infected individuals in the considered area. Much of this work has

been devoted to mathematical study, where the existence of the optimal controls and the solutions of the state

system are proven, an optimal control characterization in terms of state and adjoint functions are provided, and the

optimality system is solved numerically using a forward-backward sweep method. Our numerical results suggest

that when vaccination and treatment procedures are used together, the control approach becomes more effective in

protecting a specific region from epidemic transmission from neighboring regions.
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1. INTRODUCTION

Mathematical modeling in epidemiology is a pertinent instrument for public health decision

makers. In principle, public policy considerations should be supported by experiments that

can directly measure the impact of public health measures, but for operational purposes, such

experiments are not always feasible. This is where the contribution of mathematical modelling

to the evaluation and anticipation of the effects of public health programs is significant. The first

mathematical models that describe an infectious illness date back to Bernouilli [1, 2] in 1766.

In 1911, Sir Ronald Ross [3] provided the first mathematical model of malaria transmission.

In 1927, W.O. Kermak and A.G. McKendrick applied the ideas of Ronald Ross to the studies

of the transmission dynamics of human infectious diseases. More particularly, Kermack and

Mckendrick applied Ross’ ideas to diseases whose transmission dynamics were dependent on

the frequency and intensity of interactions between susceptible and infectious individuals. Their

results [4], published in 1927, continue to hold a central role in the mathematical analysis

of infectious diseases. Recently, several diseases have been modeled using the SIR model

[5, 6, 7, 8]. Nevertheless, in the last models, it was often assumed that the distribution of

the population was homogeneous in the study space, which does not represent the truth, as

we can see in the cities or countries where we live. This is not the case. There are areas of

low, medium, and high density, so we cannot say that a person living in a low-density area

will have the same number of meetings as a person living in a high-density area, for example.

This observation made it possible to introduce spatial behavior into the SIR epidemiological

model by including the diffusion term in these different compartments, which involves that

the population is dispersed over a spatial region and that it requires time for an infection to

propagate within this region [9, 10].

Nowadays, the whole world is aware of one of the most dangerous pandemics that humanity

has ever witnessed. The Coronavirus, or the so-called COVID-19 pandemic, started in Wuhan,

the Chinese city, in early December 2019. Since its appearance, it has created a state of panic

and terror among all different countries worldwide, and caused the deaths of millions of people

on this planet, triggering global severe social and economic damage, including the largest

global economic recession since the great depression, and the postponement or cancellation



COVID-19 SPATIOTEMPORAL SIR MODEL 3

of sporting, religious, political, and cultural events. Significant shortages of supplies and

equipment were exacerbated by panic buying, and schools, universities, as well as colleges

were closed at national or local levels in 190 countries, affecting about 73.5% of students all

over the world [11, 12, 13]. By direct contact, the virus can be transmitted from an infected

person to others by shaking hands and touching contaminated surfaces. As a consequence,

the infection affects different organs in the human body, such as the eyes, nose, and mouth.

The outbreak appeared first in Wuhan, then spread to all Chinese provinces. Cases have also

been reported in many other Asian and European states, as people move, possibly carrying

Covid-19 to intercontinental destinations and so far from Wuhan to the United States and

Canada, so as to spread around the world at a breakneck speed. In addition, the World Health

Organization (WHO) officially announced on January 30 that the virus outbreak was a public

health emergency of international concern [14] and confirmed that the outbreak turned into a

pandemic on March 11.

The control of epidemics is of increasing importance to governments and public health

officials. Specifically, the goal is to understand the spatial dynamics of the spread of infectious

diseases in order to develop prevention and intervention strategies to reduce their impact on

the population. It is hoped that the interaction of spatial factors in mathematical models of

infectious diseases will lead to a better understanding, prediction, and control of this movement

behavior. Thus, there is no need to justify the critical importance of spatial dynamics in the

description and analysis of infectious diseases. In comparison, few focus on the spatio-temporal

pattern, a related and important concept in mathematical epidemiological models. Because of

the movement of thousands of people from one region to another, the existence of a spatial

component has a remarkable probability. In this case, an epidemic can spread rapidly over a

large area regardless of borders. The geographic scale is therefore central to a multitude of

studies of diseases, which become spatially mobile in different regions by moving from one

area to another.

According to numerous research studies taking into account the spatial aspect of an epidemic

spread [15, 16, 17], we study an extension of the basic SIR model, in which we integrate

the spatial behavior of the population and two terms of control strategies, representing the
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vaccination and the treatment program. The main motivation is to work on the effect of the

treatment and vaccination program on the spread of COVID-19 in a specific area in order to

minimize the number of infected individuals and to reduce the cost of our controls. Therefore,

this work is committed to the mathematical study of the existence and characterization of

spatiotemporal optimal control that minimizes the density of the infected people, the cost of

the treatment, and the vaccination program. It is important to note here that our work is

distinguished from some other associated studies cited in this article, such as [18, 19, 20, 21]

because our work uses two distributional controls that represent the percentage of susceptible

and infected individuals vaccinated and treated respectively for the SIR diffusion reaction

system.

The structure of this work is the following; Section 2 is staunched to the basic mathematical

model and the associated optimal control problem. Section 3, we demonstrate the existence of

a global strong solution for our system. In section 4, we prove the existence of an optimal

solution. Neccesary optimality conditions are confirmed in section 5. As application, the

numerical results related to our control problem are given in section 6. In the end, we conclude

the article in section 7.

2. THE BASIC MATHEMATICAL MODEL

2.1. The model without controls. Most of the work in modeling the dynamics of viral

diseases has used SIR models to understand and predict their spread [22, 23]. In this work, we

formulate an optimal control problem based on a spatiotemporal epidemic model. We presume

that the population habitat is a spatially heterogeneous environment, where the residents show

a tendency to move to regions and their densities will be conditional on space. We give an

extension of these models by introducing the spatial behavior of the population by adding the

term of spatial diffusion. We write S(t,x), I(t,x) and R(t,x) to indicate that the populations

have spatial and temporal behavior for the susceptible population density, infected population

density and removed population density, respectively. The time t belongs to a finite interval

[0,T ], while x varies in a bounded domain Ω ⊆ R2. The population dynamics is given by the

following system
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(1)



∂S
∂t

= Λ+λ∆S−bSI−mS

∂I
∂t

= β∆I +bSI− (g+m+ k) I (t,x) ∈ Q = [0,T ]×Ω

∂R
∂t

= γ∆R+gI−mR

with the homogenous Neumann boundary conditions

(2)
∂S
∂η

=
∂R
∂η

=
∂I
∂η

= 0, (t,x) ∈ Σ = [0,T ]×∂Ω

where
∂

∂η
is the outward normal derivative,Λ is the birth rate, b is the effective contact rate, m is

the natural mortality rate, g is the recovery rate, k is the induced death rate of Covid-19. λ, β and

γ are the self-diffusion coefficients for the susceptible, infected and removed individuals. The

initial distribution of the three populations is supposed to be

(3) S (0,x) = S0 ≥ 0, R(0,x) = R0 ≥ 0 and I (0,x) = I0 ≥ 0

2.2. The model with controls. As a strategy of control, we adopt a regional

treatment program, so into the model (1), we include two controls u(.)χω1(.) and

v(.)χω2(.) where u(.)and v(.) ∈ L2(0,T ;R) and χω is the characteristic function of ω. The

control uχω1represents the percentage of the sensible that is vaccinated per unit of time in the

region ω1 while the controle vχω2represents the percentage of the treated infections per time in

the region ω2. The two controls represent the effect of the therapeutic treatment applied to the

infected and susceptible persons who act in the subdomains ω1,ω2 ⊂ Ω. The dynamic of the

regional controlled system is given by

(4)



∂S
∂t

= Λ+λ∆S−bSI−mS−uχω1(x)S

∂I
∂t

= β∆I +bSI− (g+m+ k) I− vχω2(x)I (t,x) ∈ Q = [0,T ]×Ω

∂R
∂t

= γ∆R+gI−mR+ vχω2(x)I +uχω1(x)S

(5)
∂S
∂η

=
∂R
∂η

=
∂I
∂η

= 0, (t,x) ∈ Σ = [0,T ]×∂Ω
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(6) S (0,x) = S0 ≥ 0, R(0,x) = R0 ≥ 0 and I (0,x) = I0 ≥ 0, x ∈Ω

Our goal is to minimize the density of infected individuals also to maximize the removed ones

in both regions ω1 and ω2, and also to reduce the cost of treatment program. Mathematically,

our problem is to minimize the objective functional

(7) J ((S, I,R) ,u,v) = ‖I‖2
L2(Q)−‖R‖

2
L2(Q)+

ρ

2
(‖u‖2

L2([0,T ]×ω1)
+‖v‖2

L2([0,T ]×ω2)
)

under the control set Uad defined by

(8) Uad =
{
(uχω1,vχω2) ∈ (L2 ([0,T ]×L2(Ω)

)
)2; 0≤ u≤ 1and 0≤ v≤ 1

}
and where ρ is a positive weight associated with the control. Indeed, let’s consider

• W 1,2 ([0,T ] ;H (Ω)) the space of all absolutely continuous functions f : [0,T ] 7−→H (Ω)

having the property that
∂ f
∂t
∈W 1,2 ([0,T ] ;H (Ω)) where H(Ω) =

(
L2 (Ω)

)3.

• L(T,Ω) = L2 (0,T ;H2(Ω)
)
∩L∞

(
0,T ;H1 (Ω)

)
3. EXISTENCE OF GLOBAL SOLUTION

We study in this section the existence of a (global) strong solution, of system (4-6), as

our mathematical model is related to a population evolution, then for biological reasons, the

populations S, I and R should remain non-negative and bounded.

Let c = (c1,c2,c3) = (S, I,R) the solution of the system (4-6) with c0 = (S0, I0,R0) =(
c0

1,c
0
2,c

0
3
)

. Denote by A the linear operator defined as follow

(9)
A : D(A)⊂ H(Ω)−→ H(Ω)

Ac = (λ∆c1,β∆c2,γ∆c3) ∈ D(A) ,∀c ∈ D(A)

(10) D(A) =
{

c ∈
(
H2 (Ω)

)3
,
∂c1

∂η
=

∂c2

∂η
=

∂c3

∂η
= 0,a.e ∈ ∂Ω

}
Theorem 1. Let Ω be a bounded domain from R2, with the boundary of class C2+α,α > 0. As

the rates b,m,g,k > 0, (u,v) ∈Uad, c0 ∈ D(A) and c0
i ≥ 0 on Ω (for i = 1,2,3), the system
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(4–6) has a unique (global) strong solution c ∈W 1,2 ([0,T ] ;H (Ω)) such that

c1,c2,c3 ∈ L(T,Ω)∩L∞ (Q)

In addition, there exists Γ > 0 independent of (u,v) (and of the corresponding solution c ) such

that for a t ∈ [0,T ]

(11)
∥∥∥∥∂ci

∂t

∥∥∥∥
L2(Q)

+‖ci‖L2(0,T,H2(Ω)) +‖ci‖H1(Ω)+‖ci‖L∞(Q) ≤ Γ, for i = 1,2,3

Proof. For the proof of the existence of a (global) strong solution for system (4-6), let

(12)


f1 (c(t)) = Λ−bc1c2−mc1−uχω1(x)c1

f2 (c(t)) = bc1c2− (g+m+ k)c2− vχω2(x)c2 t ∈ [0,T ]

f3 (c(t)) = gc2−mc3 + vχω2(x)c2 +uχω1(x)c1

The nonlinear term in (12) and we consider the function f (c(t)) =

( f1 (c(t)) , f2 (c(t) , f3 (c(t))), then we can be rewritten the system (4-6) in the space

H(Ω) under the form 
∂c
∂t

= Ac+ f (c(t)) , t ∈ [0,T ]

c(0) = c0

As the operator A defined in (9-10) is dissipating and self-adjoint and generates a C0-semigroup

of contractions on H (Ω) see [24] and [25], since |ci| ≤ N f or i = 1,2,3 where N is a constant,

that represents the total population. Thus function f =( f1, f2, f3) becomes Lipschitz continuous

in c = (c1,c2,c3) uniformly with respect to t ∈ [0,T ], problem (4-6) admits a unique strong

solution c = (c1,c2,c3) ∈W 1,2 ([0,T ] ;H(Ω)) (See [26, 27]), with c1,c2,c3 ∈ L2 (0,T ;H2(Ω)
)
.

In order to prove that c ∈ L∞ (Q), we put M = max
{
‖ fi‖L∞(Q) ,

∥∥c0
i

∥∥
L∞(Ω)

f or i = 1,2,3
}

, it

is obvious to see that the function V1 (t,x) = c1−Mt−
∥∥c0

1

∥∥
L∞(Ω)

satisfies the system

∂V1

∂t
(t,x) = λ4V1 + f1(t,c(t))−M t ∈ [0,T ](13)

V1 (0,x) = c0
1−
∥∥c0

1
∥∥

L∞(Ω)

The solution of this system can be written

V1 (t) = S (t)(c0
1−‖c1‖L∞(Ω))+

ˆ t

0
S (t− s)( f1 (c(s))−M)ds,
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with {S (t) , t ≥ 0} is the C0-semi-group generated by the operator Ā : D(B)⊂ L2 (Ω)−→ L2 (Ω)

where Āu = λ∆c1 and D
(
Ā
)
=

{
c1 ∈ H2 (Ω) ,

∂c1

∂η
= 0,a.e∂Ω

}
. Since c0

1−
∥∥c0

1

∥∥
L∞(Ω)

≤ 0 and

f1 (c(s))−M ≤ 0, it follows that V1 (t,x)≤ 0,∀(t,x) ∈ Q .

According to the same manner we can prove that the function V2 (t,x) = c1+Mt+
∥∥c0

1

∥∥
L∞(Ω)

is nonnegative. Then |c1(t,x)| ≤Mt +
∥∥c0

1

∥∥
L∞(Ω)

∀(t,x) ∈ Q and analogously

(14) |ci(t,x)| ≤Mt +
∥∥c0

i
∥∥

L∞(Ω)
∀(t,x) ∈ Q f or i = 2,3

Thus, we have proved that ci ∈ L∞(Ω) ∀(t,x) ∈ Q for i = 1,2,3.

By the first equation of (4) one obtains

´ t
0

´
Ω

∣∣∣∂c1
∂t

∣∣∣2 dsdx+λ2 ´ t
0

´
Ω
|4c1|2 dsdx−2λ

´ t
0

´
Ω

∂c1
∂t 4c1dsdx

=
´ t

0

´
Ω
(Λ−bc1c2−mc1−uχω1(x)c1)

2 dsdx

Using the regularity of c1 and the Greens formula, we can write

2λ
´ t

0

´
Ω

∂c1
∂t 4c1dsdx = λ

´
Ω
|∇c1|2 dx−λ

´
Ω

∣∣∇c0
1

∣∣2 dx

Then

´ t
0

´
Ω

∣∣∣∂c1
∂t

∣∣∣2 dsdx+λ2 ´ t
0

´
Ω
|4c1|2 dsdx+λ

´
Ω
|∇c1|2 dx−λ

´
Ω

∣∣∇c0
1

∣∣2 dx

=
´ t

0

´
Ω
(Λ−bc1c2−mc1−uχω1(x)c1)

2 dsdx

Since c0
i ∈ H2(Ω) and ‖ci‖L∞(Q)for i = 1,2,3 are bounded independently of v and u, we submit

that c1 ∈ L∞
(
0,T,H1 (Ω)

)
and the first inequality in (14) holds for i = 1. The remaining cases

can be treated similarly.

Let show the positiveness of c1, c2 and c3, first we show the positiveness of u2, we set c2 =

c+2 − c−2 with

c+2 (t,x) = sup{c2 (t,x) ,0} and c−2 (t,x) = in f {c2 (t,x) ,0}

One multiplies the second equation of the system (4) by c−2 integrates over Ω, we have

−1
2

d
dt

(´
Ω

(
c−2
)2
(t,x)dx

)
=
´

Ω

∣∣β∇c−2 (t,x)
∣∣2 dx+(g+m+ k)

´
Ω

(
c−2
)2
(t,x)dx

−b
´

Ω
c1
(
c−2
)2
(t,x)dx+

´
ω

χω2 (x)
(

v
(
c−2
)2
)
(t,x)dx
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As c1 ≤ N then −bc1 ≥ −bN , we have −1
2

d
dt

(´
Ω

(
c−2
)2
(t,x)dx

)
≥ −b

´
Ω

N
(
c−2
)2
(t,x)dx.

Gronwall’s inequality leads to
ˆ

Ω

(
c−2
)2
(t,x)dx≤ etbN

ˆ
Ω

(
c−2
)2
(0,x)dx

Then

c−2 = 0

One deduces that c2 (x, t)≥ 0, ∀(t,x) ∈ Q. In addition, we consider the system

(15)



∂c1

∂t
= λ∆c1 +Λ−bc1c2−mc1−uχω1(x)c1

∂c3

∂t
= γ∆c3 +gc2−mc3 + vχω2(x)c2 +uχω1(x)c1

where 
F (c1,c3) = Λ−bc1c2−mc1−uχω1(x)c1

G(c1,c3) = gc2−mc3 + vχω2(x)c2 +uχω1(x)c1

It is obvious to see that the functions F and G are continuously differentiable satisfying

F (0,c3) = Λ and G(c1,0) = gc2 + vχω2(x)c2 + uχω1(x)c1 for all c1,c3 ≥ 0. Since initial data

of system (4-6) are non-negative, we deduce the positivity of c1 and c2 [28]. One deduces that

c1 (x, t)≥ 0, c2 (x, t)≥ 0 and c3 (x, t)≥ 0∀(t,x) ∈ Q. �

4. THE EXISTENCE OF THE OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal control for problem (4-6) subject to

reaction diffusion system and (u,v) ∈Uad . The main result of this section is the following.

Theorem 2. Under the conditions of theorem (1) the optimal control problem (4-6) admits an

optimal solution (c∗,u∗,v∗).

Proof. Let

(16) J∗ = inf{J (c,u,v)}

where (u,v) ∈Uad and c is the solution of (4-6).



10 M. KARIM, S.B. RHILA, H. BOUTAYEB, M. RACHIK

Obviously J∗is finite. Therefore there exists a sequence(cn,un,vn) with (un,vn) ∈Uad , cn =(
cn

1,c
n
2,c

n
3
)
∈W 1,2 ([0,T ] ;H(Ω)) , such that

(17)



∂cn
1

∂t
= λ∆cn

1 +Λ−bcn
1cn

2−mcn
1−unχω1(x)c

n
1

∂cn
2

∂t
= β∆cn

2 +bcn
1cn

2− (g+m+ k)cn
2− vnχω2(x)c

n
2 (t,x) ∈ Q

∂cn
3

∂t
= γ∆cn

3 +gcn
2−mcn

3 + vnχω2(x)c
n
2 +unχω1(x)c

n
1

∂cn
1

∂η
=

∂cn
2

∂η
=

∂cn
3

∂η
= 0 (t,x) ∈ Σ(18)

cn
i (0,x) = c0

i f or.i = 1,2,3 x ∈Ω(19)

and

(20) J∗ ≤ J (cn,(un,vn))≤ J∗+
1
n

(∀n≥ 1)

Since H1 (Ω) is compactly embedded in L2 (Ω), we infer that cn
1 (t) is compact in

L2 (Ω). Show that
{

cn
1 (t) ,n≥ 1

}
is equicontinuous in C

(
[0,T ] : L2 (Ω)

)
. As

∂cn
1

∂t
is bounded in

L2 (Q), i = 1,2,3, this implies that for all s, t ∈ [0,T ]

(21)
∣∣∣∣ˆ

Ω

(cn
1)

2 (t,x)dx−
ˆ

Ω

(cn
1)

2 (s,x)dx
∣∣∣∣≤ K |t− s|

for any s, t ∈ [0,T ]. The Ascoli-Arzela Theorem (See [24]) implies that cn
1 is compact in

C
(
[0,T ] : L2 (Ω)

)
. We conclude that there exist a subsquence denoted again cn

1 such that

cn
1 −→ c∗1 in L2 (Ω), uniformly with respect to t.

Analogously cn
i −→ c∗i in L2 (Ω), i = 2,3 uniformly with respect to t.

The boundedness of ∆cn
i in L2 (Q) implies its weak convergence in L2 (Q) on a subsequence

denoted again4cn
i then for all distribution ψ

ˆ
Q

ψ∆cn
i =

ˆ
Q

cn
i4ψ→

ˆ
Q

c∗i4ψ =

ˆ
Q

ψ∆c∗i

Which implies that ∆cn
i ⇀ ∆c∗i in L2 (Q) for i = 1,2,3 . Here and everywhere below the sign ⇀

denotes the weak convergence in the specified space. Estimates lead to
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∂cn
i

∂t
⇀

∂c∗i
∂t

in L2 (Q) , i = 1,2,3

cn
i ⇀ c∗i in L2 (0,T : H2 (Ω)

)
, i = 1,2,3

cn
i ⇀ c∗i in L∞

(
0,T : H1 (Ω)

)
, i = 1,2,3

Writing cn
1cn

2− c∗1c∗2 =
(
cn

1− c∗1
)

cn
2 + c∗1

(
cn

2− c∗2
)

and making use of the convergences cn
i

−→ c∗i in L2 (Q), i= 1,2 and of the boundedness of c∗1, cn
2 in L∞ (Q), one arrives at cn

1cn
2 7→ c∗1c∗2in

L2 (Q). We also havevn ⇀ v∗ and un ⇀ u∗in L2 (Q) on a subsequence denoted again vn and un.

Since Uad is a closed and convex set in L2 (Q), it is weakly closed, so (u∗,v∗)∈Uad and as above

unχω1(x)c
n
1 → χω1 (x)u∗c∗1 in L2 ([0,T ]×ω) also vnχω2(x)c

n
2 → v∗χω2(x)c

∗
2in L2 ([0,T ]×ω).

Now we may pass to the limit in L2 (Q) as n→ ∞ in (17-19) to deduce that (c∗,(u∗,v∗)) is an

optimal solution. �

5. NECESSARY OPTIMALITY CONDITIONS

In this section, we establish the optimality condition corresponding to problem (1)and we

investigate a characterization of optimal control.

Theorem 3. The mapping c : Uad → W 1,2 ([0,T ] ,H(Ω)) with ci ∈ L(T,Ω) is Gateaux

differentiable with respect to w∗ =

 u∗

v∗

. For w =

 u

v

 ∈Uad , c′ (w)w∗ =C is the unique

solution in W 1,2 ([0,T ] ,H(Ω)) with Ci ∈ L(T,Ω) of the problem

(22)



∂C
∂t

= AC+ JC+Gw sur Q

C (0,x) = 0

with

J =


−bc∗2−m−u∗χω1(x) −bc∗1 0

bc∗2 βc∗1−g−m− k− v∗χω2 (x) 0

u∗χω1(x) g+ v∗χω2 (x) −m

 ,
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G =


−c∗1χω1(x) 0

0 −c∗2χω2 (x)

c∗1χω1(x) c∗2χω2 (x)


Proof. In order to establish the result of this theorem, let (c∗,w∗) be an optimal pair and wε =

w∗+ εw (ε > 0) ∈ L2 (Q). Denote by cε =
(
cε

1,c
ε
2,c

ε
3
)

and c∗ =
(
c∗1,c

∗
2,c
∗
3
)

the solution of (17-

19) corresponding to wε and w∗, respectively. Put cε
i = c∗i + εCε for i = 1,2,3

Subtracting system (17-19) corresponding c∗ from the system corresponding tocε we get

(23)

∂Cε
1

∂t = λ∆Cε
1 +(−bc∗2−m−u∗χω1(x))Cε

1 +(−bc∗1)Cε
2−u∗χω1(x)c

∗
1

∂Cε
2

∂t = β∆Cε
2 +bc∗2Cε

1 +(βc∗1−g−m− k− v∗χω2 (x))Cε
2− v∗χω2 (x)c∗2 (x, t) ∈ Q = [0,T ]×Ω

∂Cε
3

∂t = γ∆Cε
3 +(u∗χω1(x))Cε

1 +(g+ v∗χω2 (x))C
ε
2−mCε

3 +u∗χω1(x)c
∗
1 + v∗χω2 (x)c∗2

(24)
∂Cε

1
∂η

=
∂Cε

2
∂η

=
∂Cε

3
∂η

= 0 (t,x) ∈ Σ = [0,T ]×∂Ω

(25) Cε
i (0,x) = 0 x ∈Ω, f or i = 1,2,3

Now we show that Cε
i are bounded in L2 (Q) uniformly with respect to ε and that cε

i in L2 (Q).

To this end, denote

Jε =


−bcε

2−m−u∗χω1(x) −bc∗1 0

bcε
2 βc∗1−g−m− k− vεχω2 (x) 0

uεχω1(x) g+ vεχω2 (x) −m



and G =


−c∗1χω1(x) 0

0 −c∗2χω2 (x)

c∗1χω1(x) c∗2χω2 (x)


Then the system (23-25) can be written in the form

(26)


∂Cε

∂t = ACε + JεCε +Gw on [0,T ]

Cε (0) = 0
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We consider (S (t) , t ≥ 0) the semi-group generated by A, then the solution of system(26) is

given by

(27) Cε (t) =
ˆ t

0
S (t− s)Jε (s)Cε (s)ds+

ˆ t

0
S (t− s)(Gw)(s)ds,

since the elements of the matrix Jε are bounded uniformly with respect to ε, the Gronwall’s

inequality we guide to

(28) ‖Cε
i ‖L2(Q) ≤ Γ

for some constant Γ > 0 (i = 1,2,3). Then

(29) ‖cε
i − c∗i ‖L2(Q) = ε‖Cε

i ‖L2(Q)

Thus cε
i → c∗i in L2 (Q), i = 1,2,3. Let

J =


−bc∗2−m−u∗χω1(x) −bc∗1 0

bc∗2 βc∗1−g−m− k− v∗χω2 (x) 0

u∗χω1(x) g+ v∗χω2 (x) −m



and G =


−c∗1χω1(x) 0

0 −c∗2χω2 (x)

c∗1χω1(x) c∗2χω2 (x)


Then the system (23-25) can be written as

(30)


∂C
∂t = AC+ JC+Gwon [0,T ]

C(0) = 0

and its solution is given by

(31) C (t) =
ˆ t

0
S (t− s)J (s)C (s)ds+

ˆ t

0
S (t− s)(Gw)(s)ds,

By (27) and (31) one deduces that

(32) Cε (t)−C (t) =
ˆ t

0
S (t− s)Jε (s)(Cε−C)+C (s)(Jε (s)− J (s))ds.
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Since all the elements of the matrix Jεtend to the corresponding elements of the matrix J in

L2 (Q), by using the Gronwall’s inequality, we derive that Thus Cε
i →C∗i in L2 (Q) as ε→ 0, for

i = 1,2,3. �

Let p = (p1, p2, p3) the adjoint variable, we can write the dual system associated to our

problem

(33)



−∂p
∂t
−Ap− J∗p = D∗Dc∗ t ∈ [0,T ]

p(T,x) = 0

∂p
∂η

= 0

where w∗ is the optimal control, c∗ =
(
c∗1,c

∗
2,c
∗
3
)

is the optimal state and D is the matrix defined

by D =


0 0 0

0 1 0

0 0 −1

 .

Lemma 4. Under hypotheses of theorem 1, if (c∗,(u∗,v∗)) is an optimal pair, then the dual

system (33) admits a unique strong solution p ∈W 1,2 ([0,T ] ,H(Ω)) with pi = (p1, p2, p3) ∈

L(T,Ω) for i = 1,2,3.

Proof. The lemma can be proved by making the change of variable s = T − t and the change of

functions qi (s,x) = pi (T − s,x) = pi (t,x) ,(t,x)∈Q, i = 1,2,3. And applying the same method

as in the proof above. �

Now, we can find the first order necessary condition by applying standard optimality

techniques, analyzing the objective functional and utilizing relationships between the state and

adjoint equations [29].

Theorem 5. Let w∗be an optimal control of (23-25) and let c∗ ∈W 1,2 (0,T ;H(Ω)) with c∗i ∈

L(T,Ω) for i = 1,2,3 be the optimal state, that is c∗ is the solution to (1.2) with the control w∗.
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Then, there exists a unique solution p ∈W 1,2 (0,T,H(Ω)) of the linear problem

(34)


−∂p

∂t −Ap− J∗p = D∗Dc∗ t ∈ [0,T ]

p(T,x) = 0

∂p
∂η

= 0

and

(35)

u∗ = min
(

1,max
(

0,
c∗1χω1(x)

ρ
(p1− p3)

))
and v∗ = min

(
1,max

(
0,

c∗2χω2(x)
ρ

(p2− p3)

))
.

Proof. Suppose w∗ is an optimal control and c∗ =
(
c∗1,c

∗
2,c
∗
3
)
= (c1,c2,c3)(w∗) are the

corresponding state variables. Putting wε = w∗+ εh ∈Uad ,h =

 h1

h2

∈ (L2(0,T ;L2(Ω)))2

and corresponding state solution cε =
(
cε

1,c
ε
2,c

ε
3
)
= (c1,c2,c3)(wε).

Since the minimum of the objective functional is attained at w∗, we have

J (w∗)(h) = limε→0
1
ε
(J (wε)− J (w∗))

= limε→0
1
ε
(

ˆ T

0

ˆ
Ω

(cε
2)

2− (c∗2)
2dxdt−

ˆ T

0

ˆ
Ω

(cε
3)

2− (c∗3)
2dxdt

+ρ

ˆ T

0

ˆ
Ω

(uε)2− (u∗)2dxdt +ρ

ˆ T

0

ˆ
Ω

(vε)2− (v∗)2dxdt)

= limε→0(

ˆ T

0

ˆ
Ω

(
cε

2− c∗2
ε

)(cε
2 + c∗2)dxdt−

ˆ T

0

ˆ
Ω

(
cε

3− cε
3

ε
)(cε

3 + c∗3)dxdt

+ρ

ˆ T

0

ˆ
Ω

(εh1)
2 +2h1u∗dxdt +ρ

ˆ T

0

ˆ
Ω

(εh2)
2 +2h2v∗dxdt)

as limε→0
cε

2−c∗2
ε

= limε→0
c2(w∗+εh)−c∗2

ε
= c′2(w

∗)h, cε
2 −→ c∗2 inL2(Q)and cε

2,c
∗
2 ∈

L∞(Q), same f or cε
3.

Then we obtain

J (w∗)(h) = 2
´ T

0

´
Ω
(c∗2− c∗3)c

′(w∗)hdxdt +2ρ
´ T

0

´
Ω

h1u∗dxdt +2ρ
´ T

0

´
Ω

h2v∗dxdt

= 2
´ T

0 〈Dc∗,DC〉H(Ω)+2ρ
´ T

0 〈w
∗,h〉(L2(Ω))2 dt

Since J is Gateaux differentiable at w∗ and Uad is convex, it is seen that J
′
(w∗)(z−w∗)≥ 0 for

all z ∈Uad
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J
′
(w∗)(z−w∗) = 2

ˆ T

0
〈Dc∗,DC〉H(Ω)+2ρ

ˆ T

0
〈w∗,z−w∗〉L2(Ω) dt

We have
ˆ T

0
〈Dc∗,DC〉H(Ω) =

ˆ T

0
〈D∗Dc∗,C〉H(Ω) dt

=

ˆ T

0

〈
−∂p

∂t
−Ap− Jp,C

〉
H(Ω)

dt

=

ˆ T

0

〈
P,

∂C
∂t
−AC− JC

〉
H(Ω)

dt

=

ˆ T

0
〈P,G(z−w∗)〉H(Ω) dt

=

ˆ T

0
〈G∗P,(z−w∗)〉(L2(Ω))2 dt

We deduce that J
′
(w∗)(z−w∗)≥ 0 for all z∈Uad equivalent to

´ T
0 〈G

∗P,(z−w∗)〉(L2(Ω))2 dt ≥ 0

for all z ∈Uad . By standard arguments varying z, we get

w∗ =−1
ρ

G∗P

Afterwards

u∗ =
c∗1χω1(x)

ρ
(p1− p3) and v∗ =

c∗2χω2(x)
ρ

(p2− p3)

As (u∗,v∗) ∈Uad, we have

u∗ = min
(

1,max
(

0,
c∗1χω1(x)

ρ
(p1− p3)

))
and v∗ = min

(
1,max

(
0,

c∗2χω2(x)
ρ

(p2− p3)

))
�

6. NUMERICAL SIMULATIONS

In this section, we present the numerical results that illustrate and reinforce the effect of

our control strategy. This strategy consists of applying two terms of control, representing the

vaccination and the treatment program, in order to fight against the spread of the COVID-19

disease. We developed a code in MATLAB and simulated our results using different data.

Regarding the numerical method, we give numerical simulations of our optimality system,

which is formulated by state equations with initial conditions and boundary conditions (4-6),
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adjoint equations with transversality conditions, and a characterization of the optimal control.

We apply the forward-backward sweep method (FBSM) [30] to solve our optimality system in

an iterative process. The state equations are solved using a direct method in time by employing

Euler explicit method, in order to discretize the second order derivatives 4ST , 4IT , and

4RT we use the second order Euler explicit method, initial control variables are guessed in

the beginning of the iterative method, next, the adjoint equations are solved backward in time.

Finally, the control variables are updated with the current state and adjoint solutions. The

iterative process is repeated until reaching a tolerance criterion.

To show the importance of our work, and without loss of generality, we consider a 40km×

30km rectangular grid denoted. We assume that the susceptible individuals are homogeneously

distributed, with 45 in each 1km×1km subdomain, except in the subdomain Ω1 = cell(20;15)

, when the disease starts at the middle of Ω ; where we introduce 5 infectious, and keep 40

susceptible. All simulations are performed using the parameter values in Table 1. For all figures

below, the red part of the colored bars contains a very large number of individuals, while the

blue part contains the smaller numbers.

In Fig.1 (a), Fig.1 (b) and Fig.1 (c), we present simulations illustrating the dynamics of

susceptible, infected and cured individuals in the case where no control strategy is yet proposed

(see differential system (1). We note that in all these figures presented here, the simulations give

us an idea of the spread of the disease in the case where the infection starts in the middle, in

order to show the effect of the spatial factor, and the contribution of mobility in the transmission

of Covid-19.
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TABLE 1. Initial conditions and parameters values

Parameter Value Description

S0
45 f or Ω j

40 f or Ω1

Initial susceptible population

I0
0 f or Ω j

5 f or Ω1

Initial infected population

R0 0 Initial immune population

k 0.01 Mortality due to infection

d 0.02 Natural mortality rate

b 0.24 Transmission rate

g 0.02 Recovery rate

Λ 0.01 birth rate

λ,β,γ = 1, 2,3 0.6 Diffusion coefficient

FIGURE 1. States of system without controls. (a) Susceptibles behavior in

the absence of control. (b) Infectives behavior in the absence of control. (c)

Removed behavior in the absence of control
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We can see more clearly that the number of susceptible individuals has decreased, and the

disease is spreading rapidly to reach the whole population, which indicates the danger of the

disease. Regarding the class of cured individuals, there are a few cured individuals (about 5

persons). These remarks observed in the simulations lead us to consider the definition of an

appropriate control strategy.

As a demonstration and clarification of the utility of our Covid-19 transmission control

strategy, we present a regional control aimed at preserving a specific region from the impact

of Covid-19 transmission from neighboring regions. We consider two treatment areas as

a rectangle ω1 = [20,30]× [0,15] at the border, and ω2 = [10,20]× [15,25] in the center.

This strategy consists of the introduction of two controls, the first being vaccination to slow

the spread of infection and the second being integrated treatment to reduce actively infected

individuals. The main objective is to show the effectiveness of our vaccination and treatment

procedures in controlling the spread of Covid-19 virus disease in two different regions; the

assumption is that a patient is treated in a region ωi, i = 1,2 immediately after infection with

Covid-19 virus.

FIGURE 2. Susceptible behavior within Ω with control in regions ω1 and ω2.

Once our spatio-temporal control strategy based on vaccination and treatment is introduced,

we can clearly infer its effect in slowing the spread of infection in the ωi, i = 1,2 areas.

Specifically, in Figure 3, after t = 250, the density of infected people decreases from 30
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individuals per cell (in the absence of control) to 0 individuals per cell (in the presence of

control treatment) in the ωi, i = 1,2 zones, while there is no changes outside ωi, i = 1,2 where

the number of infected remains the same (see Figs. 3, 4).

FIGURE 3. Infected behavior within Ω with control in region ω1.

FIGURE 4. Infected behavior within Ω with control in region ω2.
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FIGURE 5. Recovered behavior within Ω with control in region ω1.

FIGURE 6. Recovered behavior within Ω with control in region ω2.

Finally, as a comparison of the behavior of the susceptible population, Figs. 1 and 2 show

the disappearance of this group in the absence and presence of control. But the difference of

these two cases, is the epidemiological movement of susceptible individuals, in the first case,

susceptible individuals are transferred to the infected class, as it is shown in Fig1(a) and Fig1(b),

but in the second case, susceptible individuals are transferred to the removed class in the areas

targeted, while there is no change outside these areas, as it is shown in Figs. 5 and 6. Which
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is very advantageous and reflects the importance of our regional control strategy in the fight

against the spread of Covid-19 in specific areas, as it can be seen in Figs. 5 and 6.

7. CONCLUSION

In this article, we present an interesting application theory to study the optimal combination

of vaccination and treatment strategies for spatiotemporal epidemic models described by a

system of partial differential equations. The control variable is the spatial and temporal

distribution of the vaccine and treatment. The existence of solutions to the state system and

the existence of optimal controls have been proved. For our given functional objective, optimal

control is characterized in terms of the corresponding state and adjoint functions. A numerical

simulation is executed, showing that optimal control of treatment time is very efficacious in

reducing the total number of infections for diverse scripts of COVID-19.
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