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Abstract. In this article, a fractional-order eco-epidemic model with Allee effect and prey refuge is studied.

First we prove the existence and the uniqueness of solution of the proposed model. The non-negativity and the

boundedness solutions are also shown. It is found that the model has four equilibrium points, namely the extinction

of both prey and predator point (E0), the disease-prey-free and predator-free point (E∗), the predator-free point (Ẽ),

and the coexistence point (Ê). All equilibrium points are locally and globally asymptotically stable with conditions.

Those analytical results are confirmed by our numerical simulations. As expected, our analytical and numerical

simulations show that the Allee effect may induced the extinction of prey population. The prey refuge, particularly

for the case of weak Allee effect, may reduce the possibility of prey extinction.
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1. INTRODUCTION

In this era, mathematical modeling is often used as a scientific tool in studying most bio-

logical processes. One of interesting biological processes is the interaction between prey and

predator. A model describing the interaction between predator dan prey was first introduced
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by Lotka-Volterra in 1925. Furthermore, Gause (1934) and Leslie-Gower (1948) developed

the predator-prey model by applying logistics growth to their models [1]. The development of

predator-prey model does not only stop at considering logistic growth, but also continue to in-

clude other effects such as Allee effect [2, 3, 4, 5], refuge on a population [6, 7, 8, 9], and so on.

The addition of these assumptions can certainly affect the population density of the interaction

between the two populations. The spread of disease in an interaction between populations can

also occur, which can certainly affect the population density. To study the spread of disease

in the predator-prey populations, it is necessary to link the fields of ecology and epidemiology,

which is know as eco-epidemiology. Eco-epidemiology was first introduced by Anderson and

May (1986) [10] who explained the existence of a disturbance that occurred in the predator-

prey equation system and found a case study of disease control in the predator-prey equation

system. Several studies related to the spread of disease in predator-prey systems can be seen

in [11, 12, 13]. There are many kinds of rate of disease spread, namely the standard disease

spread rate aSI
N , bilinear aSI, and non-linear incidance rate aSI

1+cI . Nonlinear incidance rate were

first introduced by Capasso and Serio (1978) [15] who reviewed the Kermack and Mckendrick

(1927) epidemic model [14] in the case of a cholera outbreak in 1973. They added assumption

of an increased risk of infection disease due to the number of individuals infected with the dis-

ease. Research that examines the rate of non-linear incidance rate can be seen for example in

[16, 17].

In this study we consider an eco-epidemic model adapted from Moustafa et al (2021), [19] by

assuming that the prey experiences Allee effect and the prey makes refuge to keep away from

predation. Hence, we propose the following model

dS
dt̂

= rS
(

1− S+ I
K

)
− mS

S+b
− aSI

1+ cS
,

dI
dt̂

=
aSI

1+ cS
− e1I− f (1−θ)IP,

dP
dt̂

= g(1−θ)IP− e2P,

(1)

where S is susceptible prey, I is infected prey, and P is predator with initial conditions S(0) ≥

0, I(0)≥ 0,P(0)≥ 0. All parameters r,K,m,b,a,c,θ , f ,g,e1, and e2 are positive constant and they

are described in Table 1.
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TABLE 1. The description of biological parameters

Parameter Biological interpretation

r The intrinsic growth rate of prey

K The environmental carrying capacity of prey

m and b
The Allee parameters: (i) the weak Allee effect if 0 < m < b, and

(ii) the strong Allee effect if m > b

a The disease spread rate from susceptible prey to infected prey

c The half-saturated constant for the disease spread of prey

θ The coefficient of refuge, where θ ∈ (0,1]

f The predation rate of predators

g The conversion of predatory prey to infected prey

e1 and e2 The natural death of infected prey and predator, respectively

To ease the analysis process, the model (1) are simplified by introducing variable transforma-

tion (S, I,P, t̂)→
(
Kx,Ky, r

f z, 1
t

)
to get the following non-dimensional system.

ẋ = x(1− (x+ y))− ξ x
x+ ε

− β̂xy
1+ηx

,

ẏ =
β̂xy

1+ηx
− γ̂y− (1−θ)yz,

ż = ω̂(1−θ)yz− δ̂ z,

(2)

where ξ =
m
rK

, β̂ =
aK
r
,η = cK, γ̂ =

e1

r
, ω̂ =

gK
r
,ε =

b
K

, and δ̂ =
e2

r
. The prey has a weak

Allee effect if 0 < ξ < ε and strong Allee effect if ξ > ε [18].

Fractional calculus is often used in describing complex ecological phenomena involv-

ing memory and genetically related biological properties that are hereditary, see references

[20, 21, 22]. The derivative of fractional-order is a theory of fractional calculus that has non-

local properties, where the state of the next model does not only depend on the current state, but

also depends on all previous state [23]. As a result, the application of fractional-order deriva-

tives in eco-epidemiological models is required for the expansion of the stability region [24].
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To include the memory effect in model (2), we apply fractional-order derivative. To be con-

sistent with the physical dimension, we introduce new parameters β = β̂ α , γ = γ̂α , ω = ω̂α ,

and δ = δ̂ α , to get the following model

CDα
t x =

[
1− (x+ y)− ξ

x+ ε
− βy

1+ηx

]
x,

CDα
t y =

[
βx

1+ηx
− γ− (1−θ)z

]
y,

CDα
t z =

[
ω(1−θ)y−δ

]
z,

(3)

where CDα
t denotes the Caputo fractional derivative of order-α with 0 < α ≤ 1. The Caputo

fractional derivative of order-α of function f (t) is defined by

(4) Dα
t f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,

where t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function.

In this article we study the dynamics of the model (3). The structure of this article is as

follows. In Section 2 we investigate the properties of solution of the model (3). The investiga-

tion includes the existence, uniqueness, non-negativity, and boundedness of the solutions. The

existence of equilibrium points, local stability, and global stability are discussed in Section 3.

Furthermore, in Section 4, several numerical simulations of the model (3) are presented. Finally,

we present some conclusions in Section 5.

2. THEORETICAL ANALYSIS

2.1. Existence and Uniqueness. Let Ω :=
{
(x,y,z) ∈R3 : max{|x|, |y|, |z|} ≤M

}
and R3

+ :={
(x,y,z) : x≥ 0,y≥ 0,z≥ 0,x,y,z∈R

}
. The existence and uniqueness of the solution of model

(3) is explained in the following theorem.

Theorem 1. For each initial value {x0,y0,z0} ∈ R3
+ in Ω, model (3) has a unique solution in

Ω× (0,∞] for all t > 0.
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Proof. Consider a mapping H(X) =
(
H1(X),H2(X),H3(X)

)
. For a X = (x,y,z), X̄ = (x̄, ȳ, z̄),

with X , X̄ ∈Ω then from model (3) we get

||H(X)−H(X̄)||= |H1(X)−H1(X̄)|+ |H2(X)−H2(X̄)|+ |H3(X)−H3(X̄)|

=

∣∣∣∣∣(x− x̄)− (x+ x̄)(x− x̄)− y(x− x̄)− x̄(y− ȳ)

−
(

εξ

(x+ ε)(x̄+ ε)

)
(x− x̄)−

(
βy

(1+ηx)(1+η x̄)

)
(x− x̄)

−
(

β x̄
(1+ηx)(1+η x̄)

)
(y− ȳ)−

(
βηxx̄

(1+ηx)(1+η x̄)

)
(y− ȳ)

∣∣∣∣∣
+

∣∣∣∣∣ βy
(1+ηx)(1+η x̄)

(x− x̄)+
β x̄

(1+ηx)(1+η x̄)
(y− ȳ)

+
βηxx̄

(1+ηx)(1+η x̄)
(y− ȳ)− γ(y− ȳ)−

(
1−θ

)
z(y− ȳ)−

(
1−θ

)
ȳ(z− z̄)

∣∣∣∣∣
+

∣∣∣∣∣ω(1−θ
)
z(y− ȳ)+ω

(
1−θ

)
ȳ(z− z̄)−δ (z− z̄)

∣∣∣∣∣
≤ |x− x̄|+2M|x− x̄|+M|x− x̄|+M|y− ȳ|+ ξ

ε
|x− x̄|+βM|x− x̄|

+βM|y− ȳ|+βηM2|y− ȳ|+βM|x− x̄|+βM|y− ȳ|+βηM2|y− ȳ|

+ γ|y− ȳ|+(1−θ)M|y− ȳ|+(1−θ)M|z− z̄|+ω(1−θ)M|y− ȳ|

+ω(1−θ)M|z− z̄|+δ |z− z̄|

=
(

1+(3+2β )M+
ξ

ε

)
|x− x̄|+

((
1+(1−θ)+ω(1−θ)+2β

)
M

+2βηM2 + γ

)
|y− ȳ|+

((
(1−θ)+ω(1−θ)

)
M+δ

)
|z− z̄|

≤L||X− X̄ ||

where L = max
{

1+(3+2β )M+
ξ

ε
,
[
1+(1+ω)(1−θ)+2β +2βηM

]
M+ γ,

(
(1+ω)(1−

θ)
)
M + δ

}
. Thus, H(X) satisfies Lipschitz’s condition. Based on Lemma 2 in [13], then for

each initial value of (x0,y0,z0) ∈ R3
+ in Ω, there is a unique solution in Ω of model (3) for all

t > 0. �
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2.2. Non-Negativity and Boundedness of Solutions. In this section, non-negativity and

boundedness of the solution of model (3) will be studied. They are given in some theorem

below.

Theorem 2. For any initial values (x0,y0,z0) ∈ R3
+, solutions of model (3) are non-negative

and uniformly bounded.

Proof. First, we will show that (x0,y0,z0) ∈ R3
+ then x(t)≥ 0 along t→ ∞ by using contradic-

tion. Suppose the statement is not true then there is t1 > 0 so that

(5)


x(t),y(t),z(t) > 0, 0≤ t < t1,

x(t1),y(t1),z(t1) = 0,

x(t+1 ),y(t+1 ),z(t+1 ) < 0.

Using equations (5) and the first equation of the model (3) we get

CDα
t x(t1)|x(t1) = 0.

Based on Lemma 1 in [13], we get x(t+1 ) = 0, which contradicts the fact that x(t+1 ) < 0. Then

it should be x(t)≥ 0 for any t→ ∞. Using the same method, it can be shown that y(t)≥ 0 and

z(t)≥ 0 are for any t→ ∞.

Next, we will show the boundedness of the solution of model (3). First define the function

V (t) = x(t)+ y(t)+
1
ω

z(t).

Then, for every ζ > 0, we get

CDα
t V (t)+ζV (t) =

(
x
(

1− (x+ y)
)
− ξ x

x+ ε
− βxy

1+ηx

)
+

(
βxy

1+ηx
− γy− (1−θ)yz

)

+
1
ω

(
ω(1−θ)yz−δ z

)
+ζ

(
x+ y+

1
ω

z
)

= −x2 +(1+ζ )x− xy− ξ x
x+ ε

+(ζ − γ)y+
(

ζ −δ

ω

)
z.

By choosing ζ < min{γ,δ}, we get

CDα
t V (t)+ζV (t) ≤ −x2 +(1+ζ )x

= −x2 +(1+ζ )+
(1+ζ )2

4
− (1+ζ )2

4
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= −

(
x2− (1+ζ )x+

(1+ζ )2

4

)
+

(1+ζ )2

4

≤ (1+ζ )2

4
CDα

t V (t) ≤ −ζV (t)+
(1+ζ )2

4
.

Based on Lemma 3 in [13], we get

V (t) =

(
V (0)− (1+ζ )2

4ζ

)
Eα [−ζ tα ]+

(1+ζ )2

4ζ
.

If t→∞, then V (t)→ (1+ζ )2

4 . Therefore, all solutions of model (3) are confined to the region ψ

where

(6) ψ :=
{
(x,y,z) ∈ R3

+ : x+ y+
1
ω

z≤ ϕ

}
with ϕ = (1+ζ )2

4 +κ and κ > 0. Thus, we get a complete proof for the Theorem 2. �

3. EQUILIBRIUM POINT, LOCAL STABILITY, AND GLOBAL STABILITY

In this section, the dynamics of the proposed model under study will be explained. Model (3)

has several equilibrium points and their existence is described as follows

(1) The extinction of both prey and predator point E0(0,0,0), which is always defined in

R3
+.

(2) The disease-prey-free and predator-free point E∗(x∗,0,0), where x∗ is

x∗ = x1,2 =
(1− ε)±

√
Dx∗E∗

2
,

Dx∗E∗ = (1− ε)2−4(ξ − ε).

The existence of the equilibrium point E∗ is described in Lemma 3.

Lemma 3. The equilibrium point E∗ ∈ R3
+ if

(i). ξ = (1−ε)2+4ε

4 and 1 > ε . This condition produces a point of equilibrium E∗. Or,

(ii). ξ > (1−ε)2+4ε

4 and 1 > ε . This condition produces two equilibrium points E∗.
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(3) The predator-free point Ẽ(x̃, ỹ,0), where

x̃ =
γ

β − γη
,

ỹ =

[
(1− x̃)(x̃+ ε)−ξ

]
(1+η x̃)

(x̃+ ε)(1+η x̃+β )
.

The equilibrium point Ẽ ∈ R3
+, if β > ηγ and ξ < (x̃+ ε)(1− x̃).

(4) The coexistence point Ê(x̂, ŷ, ẑ) , where

x̂ ∆
= x3 +3µ1x2 +µ2x+µ3 = 0,

ŷ =
δ

ω(1−θ)
,

ẑ =
β x̂− γ(1+η x̂)
(1+η x̂)(1−θ)

.

where µ1 =
1
η
+ ŷ+ ε−1, µ2 =

ŷβ

η
+ ŷε + ŷ

η
+ξ + ε

η
−
( 1

η
+ ε
)
, and µ3 =

ŷε+ξ+ŷβε−ε

η
.

To determine the existence of the equilibrium point Ê, first we need to know the

positive real roots of the cubic equation x̂. In [25], it has been explained in Lemma 3.1

and will be rewritten in the following lemma.

Lemma 4. Let x̂ be the positive real root of the cubic equation. Using the w = x+ µ1

transformation, the x̂ equation becomes

(7) h(w) = w3 +3pw+q = 0,

where p = µ2− µ2
1 and q = µ3 + 2µ3

1 − 3µ1µ2. We get the existence of a positive real

root of the following Equation (7):

(i). If q < 0, then Equation (7) has one positive real root.

(ii). If q > 0 and p < 0, then:

a. if q2 +4p3 = 0, then Equation (7) has two positive twin roots.

b. if q2 +4p3 < 0, then Equation (7) has two positive roots.

(iii). if q = 0 and p < 0, then Equation (7) has a unique positive root.

Therefore, we get the existence of the equilibrium point Ê described in Lemma 5.

Lemma 5. The equilibrium point Ê ∈ R3
+ if satisfied one of Lemma 4 and β > γ(1+η x̂)

x̂ .
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Now, we investigate the local stability and global stability of the equilibrium points of model

(3), which is explained in the following theorems.

Theorem 6. The equilibrium point E0 is:

(i). local asymptotically stable if ξ > ε .

(ii). saddle point if ξ < ε .

Proof. The Jacobian matrix of model (3) which has been substituted for E0 is

J(E0) =


ε−ξ

ε
0 0

0 −γ 0

0 0 −δ


The eigenvalues of this Jacobian matrix are λ1 =

ε−ξ

ε
, λ2 = −γ , and λ3 = −δ . Get

|arg(λ2,3)|= π > απ

2 . Therefore, the stability of the equilibrium point E0 depends on λ1.

(i). If ξ > ε , then |arg(λ1)|= π > απ

2 . According to Matignon’s condition (see Theorem 2

in [13]), E0 is locally asymptotically stable.

(ii). If ξ < ε , then |arg(λ1)|= 0 < απ

2 . According to Matignon’s condition (see Theorem 2

in [13]), E0 is a saddle point.

�

Theorem 7. The equilibrium point E∗ is:

(i). locally asymptotically stable if ξ < (x∗+ ε)2 and γ > βx∗
ηx∗+1 .

(ii). saddle point if ξ > (x∗+ ε)2 or γ < βx∗
ηx∗+1 .

Proof. The Jacobian matrix of model (3) evaluated at E∗ is

J(E∗) =


−x∗+

ξ x∗

(x∗+ ε)2 −x∗− βx∗

ηx∗+1
0

0
βx∗

ηx∗+1
− γ 0

0 0 −δ


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The eigenvalues of this Jacobian matrix are λ1 =
[ξ − (x∗+ ε)2]x∗

(x∗+ ε)2 , λ2 =
βx∗

ηx∗+1
− γ , and

λ3 =−δ . Get |arg(λ3)|= π > απ

2 . Therefore, the stability of the equilibrium point E∗ depends

on λ1,2.

(i). If ξ < (x∗+ ε)2 and γ >
βx∗

ηx∗+1
, then |arg(λ1)|= π >

απ

2
and |arg(λ2)|= π >

απ

2
.

According to Matignon’s condition (see Theorem 2 in [13]), E∗ is locally asymptotically

stable.

(ii). If any of the conditions are not fulfilled, then |arg(λ1)| = π <
απ

2
or |arg(λ2)| = π <

απ

2
. According to Matignon’s condition (see Theorem 2 in [13]), E∗ is a saddle point.

�

Theorem 8. Suppose that:

k1 = x̃−
(

ξ x̃
(x̃+ ε)2 +

βη x̃ỹ
(1+η x̃)2

)
,

k2 =
β x̃ỹ

(1+η x̃)2

(
1+

β

1+η x̃

)
.

(8)

The equilibrium point Ẽ is said to be locally asymptotically stable if it satisfies:

(i). ω <
δ

(1−θ)ỹ
, k1 > 0 and k2 > 0. Or,

(ii). ω <
δ

(1−θ)ỹ
, k1 < 0, 4k2 > k2

1, and tan−1
(√

4k2−k2
1

k1

)
> απ

2 .

Proof. The Jacobian matrix of model (3) which has been substituted for Ẽ is

J(Ẽ) =


−x̃+

ξ x̃
(x̃+ ε)2 +

βη x̃ỹ
(η x̃+1)2 −x̃

(
1+

β

η x̃+1

)
0

β ỹ
η x̃+1

(
1− η x̃

η x̃+1

)
0 −(1−θ)ỹ

0 0 ω(1−θ)ỹ−δ


One of the eigenvalue og Jacobian matrix is λ1 = ω(1−θ)ỹ−δ and the two other eigenvalues

are the solution of λ 2+k1λ +k2 = 0. If ω <
δ

(1−θ)ỹ
, then |arg(λ1)|= π > απ

2 . Furthermore,

by using the Routh-Hurwitz criteria for a fractional order dynamic system (See Proposition 1

in [26]), the two other eigenvalues satisfy |arg(λ )| = π > απ

2 if: (i) k1 > 0 and k2 > 0 or, (ii)

k1 < 0, 4k2 > k2
1, and tan−1

(√
4k2−k2

1
k1

)
> απ

2 . Therefore, Ẽ is locally asymptotically stable if

conditions (i) or (ii) is satisfied. �
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Theorem 9. Suppose that:

o1 = x̂−
(

ξ x̂
(x̂+ ε)2 +

βη x̂ŷ
(1+η x̂)2

)
,

o2 = ω(1−θ)2ŷẑ+
β x̂ŷ

(1+η x̂)2

(
1+

β

η x̂+1

)
,

o3 = ω(1−θ)2ŷẑ
(

x̂−
[

ξ x̂
(x̂+ ε)2 +

βη x̂ŷ
(1+η x̂)2

])
,

∆
∗ = 18o1o2o3 +(o1o2)

2−4o3o3
1−4o3

2−27o2
3.

(9)

The equilibrium point Ê is said to be locally asymptotically stable if it satisfies:

(i). ∆∗ > 0,o1 > 0, o3 > 0, and o1o2 > o3. Or,

(ii). ∆∗ < 0, o1 ≥ 0, o2 ≥ 0, o3 > 0, and α <
2
3

. Or,

(iii). ∆∗ < 0, o1 < 0, o2 < 0, and α >
2
3

. Or,

(iv). ∆∗ < 0, o1 > 0, o2 > 0, o1o2 = o3 for all 0 < α < 1.

Proof. The Jacobian matrix of model (3) evaluated at Ê is

Ĵ(Ê) =


−x̂+

ξ x̂
(x̂+ ε)2 +

βη x̂ŷ
(η x̂+1)2 −x̂

(
1+

β

η x̂+1

)
0

β ŷ
η x̂+1

(
1− η x̂

η x̂+1

)
0 −(1−θ)ŷ

0 ω(1−θ)ẑ 0


We get the characteristic equation λ 3 + o1λ 2 + o2λ + o3 = 0. The equilibrium Ê is locally

asymptotically stable, if the roots of the caracteristic equation satisfy the Routh-Hurwitz criteria

for a fractional order dynamic system (see Proposition 1 in [26]). �

Theorem 10. The equilibrium point E0 is said to be globally asymptotically stable if it satisfies

ξ > ϕ + ε .

Proof. First define the Lyapunov function

V0(x,y,z) = x+ y+
1
ω

z.

Next, by following Lemma 4 in [13], we have

CDα
t V0(x,y,z) ≤ CDα

t x+CDα
t y+

1
ω

CDα
t z

=
[
1− x− y− ξ

x+ ε
− βy

1+ηx

]
x+
[

βx
1+ηx

− γ− (1−θ)z
]
y
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+
1
ω
[ω(1−θ)y−δ ]z

= x− x2− xy− ξ x
x+ ε

− γy− δ z
ω

≤
[
1− ξ

x+ ε

]
x

Equation (6) says that x < ϕ , then

CDα
t V0(x,y,z)≤

[
1− ξ

ϕ + ε

]
x.

We can see CDα
t V0(E0) ≤ 0 if ξ > ϕ + ε . Thus, based on Lemma 5 in [13], the point E0 is

globally asymptotically stable if ξ > ϕ + ε . �

Theorem 11. The equilibrium point E∗ is said to be globally asymptotically stable if it satisfies

ξ < εx∗ and γ > (1+β )x∗.

Proof. Consider a Lyapunov function

V1(x,y,z) =
[
x− x∗− x∗ ln

x
x∗

]
+ y+

1
ω

z.

According to Lemma 4 in [13], we get

CDα
t V1(x,y,z) ≤

(x− x∗

x

)
CDα

t x+CDα
t y+

1
ω

CDα
t z

= (x− x∗)
[
1− x− y− ξ

x+ ε
− βy

1+ηx

]
+
[

βx
1+ηx

− γ− (1−θ)z
]
y

+
1
ω
[ω(1−θ)y−δ ]z

= −(x− x∗)2 +
ξ (x− x∗)2

(x∗+ ε)(x+ ε)
− xy+ x∗y+

βx∗y
1+ηx

− γy− δ z
ω

≤ −
[
1− ξ

x∗ε

]
(x− x∗)2 +

[
(1+β )x∗− γ

]
y

It is clear that CDα
t V1(E∗) ≤ 0 if ξ < εx∗ and γ > (1+ β )x∗. Consequently, if ξ < εx∗ and

γ > (1+β )x∗ the point E∗ is globally asymptotically stable (see Lemma 5 in [13]). �

Theorem 12. The equilibrium point Ẽ is said to be globally asymptotically stable if it satisfies

ω <
δ

(1−θ)ỹ
and max

{
βε ỹ+ξ

ε
,γ +ϕ

}
< x̃ <

γ

1+β
.

Proof. We define a Lyapunov function

V2(x,y,z) =
[
x− x̃− x̃ ln

x
x̃

]
+
[
y− ỹ− ỹ ln

y
ỹ

]
+

1
ω

z.
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Using the same argument as in proof of Theorem 10, we have

CDα
t V2(x,y,z)≤

(x− x̃
x

)
CDα

t x+
(y− ỹ

y

)
CDα

t y+
1
ω

CDα
t z

= (x− x̃)
[
1− x− y− ξ

x+ ε
− βy

1+ηx

]
+(y− ỹ)

[
βx

1+ηx
− γ− (1−θ)z

]
+

1
ω
[(1−θ)y−δ ]z

= − (x− x̃)2− xy+ x̃y+ ỹx− x̃ỹ+
ξ (x− x̃)2

(x̃+ ε)(x+ ε)
+

βη ỹ(x− x̃)2

(1+η x̃)(1+ηx)

+
β x̃y

1+ηx
− β x̃ỹ

1+ηx
− γy+ γ ỹ+(1−θ)ỹz− δ z

ω

≤ −
[

1−
(

ξ

ε x̃
+

β ỹ
x̃

)]
(x− x̃)2 +

[
(1+β )x̃− (ϕ + γ)

]
y+
[
(1−θ)ỹ− δ

ω

]
z

+

[
x+ γ−

(
1+

β

1+ηx

)
x̃

]
ỹ

≤ −
[

1−
(

ξ

ε x̃
+

β ỹ
x̃

)]
(x− x̃)2 +

[
(1+β )x̃− (ϕ + γ)

]
y+
[
(1−θ)ỹ− δ

ω

]
z

+

[
ϕ + γ−

(
1+ηϕ +β

1+ηϕ

)
x̃

]
ỹ.

Obviously, CDα
t V2(Ẽ) ≤ 0 when ω <

δ

(1−θ)ỹ
and max

{
βε ỹ+ξ

ε
,
(γ +ϕ)(1+ηϕ)

1+ηϕ +β

}
< x̃ <

ϕ + γ

1+β
. It follows from Lemma 5 in [13], the point Ẽ is globally asymptotically stable if ω <

δ

(1−θ)ỹ
and max

{
βε ỹ+ξ

ε
,
(γ +ϕ)(1+ηϕ)

1+ηϕ +β

}
< x̃ <

ϕ + γ

1+β
. �

Theorem 13. The equilibrium point Ê is said to be globally asymptotically stable if it satisfies

max
{

βε ŷ+ξ

ε
,
ω(ϕ + γ)ŷ+δ ẑ

ω ŷ

}
< x̂ <

γ +(1−θ)ẑ
β +1

and ω <
δ

(1−θ)ŷ
.

Proof. Defined a positive Lyapunov function

V3(x,y,z) =
[
x− x̂− x̂ ln

x
x̂

]
+
[
y− ŷ− ŷ ln

y
ŷ

]
+

1
ω

[
z− ẑ− ẑ ln

y
ẑ

]
We using the same argument as in the proof of Theorem 10, we have

CDα
t V3(x,y,z)≤

(x− x̂
x

)
CDα

t x+
(y− ŷ

y

)
CDα

t y+
(z− ẑ

z

) 1
ω

CDα
t z

= (x− x̂)
[
1− x− y− ξ

x+ ε
− βy

1+ηx

]
+(y− ŷ)

[
βx

1+ηx
− γ− (1−θ)z

]



14 N. HASAN, A. SURYANTO, TRISILOWATI

+
1
ω
(z− ẑ)[(1−θ)y−δ ]

= − (x− x̂)2− xy+ x̂y+ ŷx− x̂ŷ+
ξ (x− x̂)2

(x̂+ ε)(x+ ε)
+

βη ŷ(x− x̂)2

(1+η x̂)(1+ηx)

+
β x̂y

1+ηx
− β x̂ŷ

1+ηx
− γy+ γ ŷ+(1−θ)ŷz− (1−θ)ẑy− δ z

ω
− δ ẑ

ω

≤ −
[

1−
(

ξ

ε x̂
+

β ŷ
x̂

)]
(x− x̂)2 +

[
(β +1)x̂− (x+ γ +(1−θ)ẑ)

]
y

+
[
(1−θ)ŷ− δ

ω

]
z+

[
ω(x+ γ)ŷ+δ ẑ

ω ŷ
−
(

1+
β

1+ηx

)
x̂

]
ŷ

≤ −
[

1−
(

ξ

ε x̂
+

β ŷ
x̂

)]
(x− x̂)2 +

[
(β +1)x̂− (ϕ + γ +(1−θ)ẑ)

]
y

+
[
(1−θ)ŷ− δ

ω

]
z+

[
ω(ϕ + γ)ŷ+δ ẑ

ω ŷ
−
(

1+ηϕ +β

1+ηϕ

)
x̂

]
ŷ

Thus CDα
t V3(Ê) ≤ 0 if max

{
βε ŷ+ξ

ε
,

[
ω(ϕ + γ)ŷ+δ ẑ

]
(1+ηϕ)

ω ŷ(1+ηϕ +β )

}
< x̂ <

ϕ + γ +(1−θ)ẑ
β +1

and ω <
δ

(1−θ)ŷ
. According to Lemma 5 in [13], the point Ê is globally asymptotically

stable. �

4. NUMERICAL SIMULATIONS

In this section, we present some numerical simulation results of the model (3) using the

Caputo fractional-order predictor-corrector scheme developed by Diethelm et al (2002) [27].

The parameter values in this simulation are hypothetical parameter values, because field data

are not available.

First, a numerical simulation is performed using the following parameter values:

(10) ξ = 0.8, β = 0.25, ε = 0.3, η = 0.5, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.1, α = 0.9.

Using these parameter values, the model (3) has equilibrium point E0. Since ξ = 0.8 > ε = 0.3,

the prey experiences a strong Allee effect and thus E0 is locally asymptotically stable. This

behavior can be seen in Figure 1. If we take ξ = 0.2, we have a case of week Allee effect and

the model (3) have two equilibrium points i.e., E∗ which is locally asymptotically stable because

ξ = 0.2 < (x∗+ε)2 ≈ 1.2582 and γ = 0.1 >
βx∗

1+ηx∗
≈ 0.0058 and E0 which is unstable saddle

point. Such behavior is shown in Figure 2. Next, we takee ξ = 0.2 and β = 0.4. Here, we
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FIGURE 1. Phase portrait of system (3) with parameter ξ = 0.8, β = 0.25, ε =

0.3, η = 0.5, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.1, and α = 0.9.

FIGURE 2. Phase portrait of system (3) with parameter ξ = 0.2, β = 0.25, ε =

0.3, η = 0.5, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.1, and α = 0.9.

still have a case of weak Allee effect, but the model (3) now has three equilibrium points i.e.,

unstable saddle points E0 and E∗, and locally asymptotically stable Ẽ. Ẽ is stable because k2

is always positive, ω = 0.1 <
δ

(1−θ)ỹ
≈ 1.2852, and k1 ≈ 0.5166 > 0. Those properties are

clearly seen in Figure 3.
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FIGURE 3. Phase portrait of system (3) with parameter ξ = 0.2, β = 0.4, ε =

0.3, η = 0.5, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.1, and α = 0.9.

FIGURE 4. Phase portrait of system (3) with parameter ξ = 0.38, β = 0.65,

ε = 0.42, η = 0.5, γ = 0.01, θ = 0.3, ω = 0.2, δ = 0.01, and α = 0.95.
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We now perform a numerical simulation using the following parameter values:

(11) ξ = 0.38, β = 0.65, ε = 0.42, η = 0.5, γ = 0.01, θ = 0.3, ω = 0.2, δ = 0.01, α = 0.95.

By using these parameter values, we have a case of week Allee effect and the model (3) has two

co-existence points i.e., unstable Ê2 and locally asymptotically stable Ê1. Ê1 is stable because

o1 ≈ 0.2251 > 0, o2 is always positive, and o3 ≈ 0.0007 > 0. Such behavior is shown in Figure

4.

Finally, a numerical simulation is performed using the following parameter values:

(12) ξ = 0.63, β = 0.1, ε = 0.6, η = 0.3, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.2, α = 0.9,

and

(13) ξ = 0.3, β = 0.2, ε = 0.2, η = 0.1, γ = 0.1, θ = 0.2, ω = 0.3, δ = 0.1, α = 0.9.

FIGURE 5. Phase portrait of system (3) with parameter ξ = 0.63, β = 0.1, ε =

0.6, η = 0.3, γ = 0.2, θ = 0.2, ω = 0.1, δ = 0.2, and α = 0.9.
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The parameter values in (12) and (13) represent the cases of Allee effect becuase ξ > ε . The

model (3) with parameter values (12) has three equilibrium points i.e., E0 and E∗1 which are

locally asymptotically stable; and E∗2 which is unstable saddle point. Since there are two locally

stable equilibrium points, the model (3) shows a bistability phenomenon, see Figure 5. On the

other hand, the model (3) with parameter values (13) has four equilibrium points E0, E∗1 , E∗2 ,

and Ẽ. Because ξ = 0.3 > ε = 0.2, ω = 0.3 <
δ

(1−θ)ỹ
≈ 2.4529, k1 ≈ 0.2265 > 0, and k2 is

always positive, both E0 and Ẽ are locally asymptotically stable, while E∗1 and E∗2 are saddle.

Hence, we also have a bistability phenomenon for this case, see Figure 6.

FIGURE 6. Phase portrait of system (3) with parameter ξ = 0.3, β = 0.2, ε =

0.2, η = 0.1, γ = 0.1, θ = 0.2, ω = 0.3, δ = 0.1, and α = 0.9.

5. CONCLUSIONS

In this article, we consider a fractional-order eco-epidemiological model with Allee effects

and prey refuge. The solution properties of the model (3) including existence, uniqueness, non-

negative, and boundedness solutions have been studied. The model (3) has four equilibrium

points in R3
+. The local and global stabilities of each equilibrium point have been described

in several theorems. Our numerical simulations confirm the analytical finding and also show

the existence of bistability phenomenon. Furthermore, our numerical observations show that a

weak Allee effect (ξ < ε) can reduce the risk of extinction of population, while strong Allee



DYNAMICS OF A FRACTIONAL-ORDER ECO-EPIDEMIC MODEL 19

effect (ξ > ε) leads to the larger possibility of the population extinction. Moreover, the strong

Allee effect may cause a bistability phenomenon.
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