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Abstract. In this paper, a deterministic compartmental bacterial meningitis model including drug resist class is

formulated. Primarily, the invariant region and positivity of solutions of the model, the equilibria and their stability

are examined. The effective reproduction number (Re f ) of the system also computed using Routh-Hurwize criteria.

From the stability analysis studied the disease free equilibrium (DFE) is both locally and globally asymptotically

stable. The center manifold theory is used to examined the local stability of endemic equilibrium (EE), and the

system shows forward bifurcation at Re f = 1. With the help of normalized forward sensitivity index approach, the

most influential parameters on the system are identified. Simulations of the model are performed using fourth-

order Runge-Kutta method to demonstrate stability behaviours of DFE and EE as well as the impact of the most

sensitive parameters on the bacterial meningitis disease transmission, which are presented graphically. These

results showed that as time goes large trajectories of the state variables are close to DFE whenever Re f < 1, and

a unique EE when Re f > 1, respectively. Moreover, decreasing effective transmission per contact rate, enhancing

vaccine uptake rate for susceptible individuals, increasing first line treatment rate for infected and second line

treatment rate for drug-resistance individuals using suitable measure mechanisms have a powerful role in reducing

the burden of bacterial meningitis disease in the community.
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1. INTRODUCTION

Meningitis is an attack of the meninges which are membranes that shields the brain and the

spinal cord. This disease is caused by different organisms like; viruses,bacteria, parasites, pro-

tozoa, and fungi, while the seriousness of the disease is depend on the organism causing the

disease [1, 2]. Bacterial meningitis is a serious disease if not diagnosed and treated early. It

is mainly spread from one individual to another through coughing, sneezing, or closed contact

with an individual who carries the bacterium [3]. The main pathogens that can motive bacterial

meningitis are Neisseria meningitidis (meningococcal meningitis), Streptococcus pneumoniae

(pneumococcal meningitis), Haemophilus influenzae (haemophilus meningitis), Group B Strep-

tococcu, Listeria monocytogenes , Escherichia coliand Myobacterium tuberculosis (Tubercu-

lous meningitis). Among these pathogens the most significantly recognized types of bacteria

that caused bacterial meningitis are Streptococcus pneumoniae, which is primarily found in the

respiratory tract, sinuses, and nasal pit; Neisseria meningitidis is transmit through saliva and

other respiratory fluids [4, 5].

Even though bacterial meningitis is endemic across the world, the majority occur in Sub-

Saharan Africa in the area called the meningitis belt, which includes 26 countries. This epi-

demic region spans across from Senegal in the west to Ethiopia in the east with 1.2 million

people affected each year, 135,000 of which are fatal. The case mortality rate can be from 3%

to 10% in developed countries, and as high as 20% in Africa meningitis belt countries, and up

to 20% of survivors developing neurological sequelae like deafness, epilepsy, cerebral palsy,

speech disorders, loss of limbs, and mental retardation [6, 7].

Quick detection and early use of a proper vaccine against the predominant bacterial meningitis

is the best way to control the disease. An important and mandatory examination for bacterial

meningitis is Cerebrospinal fluid (CSF) examination. After obtaining CSF using lumbar punc-

ture; administrating antibiotics like, penicillin, cephalosporin, and ciprofloxcin are among the
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important treatments of bacterial meningitis infected individuals. But nowadays, these antibi-

otics are ineffective against pneumococcal meningitis, meningococcal meningitis and Tuber-

culous meningitis. According to [8], out of 4,122 meningocaccal meningitis disease caused by

Neisseria meningitidis isolates, 113 were penicillin-resistant, five were ciprofloxacin-resistant,

two were rifampicin-resistant, and one was cefotaximeresistant; moreover Streptococcus pneu-

moniae is also resistance to one or more clinically relevant antibiotics in more than 30% of

cases [9]. Thus, the efficiency of globally available antibiotics is endangered by the univer-

sal emergence of multidrug-resistance bacteria like Streptococcus pneumoniae and Neisseria

meningitidis [10, 11]. It is, therefore, important to study the dynamics of bacterial meningitis

disease incorporating drug-resistance class.

A mathematical model is a crucial tool in understanding how diseases spread and are transmit-

ted. It can also be used to forecast how diseases will affect communities; explain key aspects

of the disease transmission process; suggest efficient control and prevention strategies; and es-

timate the severity and potential scope of an epidemic [12]. Several mathematical models have

been investigated in order to study the dynamics of bacterial meningitis disease. In this regards,

[13] constructed a non-linear compartmental mathematical model for transmission of bacterial

meningitis with two control strategies vaccine and treatment; where the whole population was

divided into four classes: susceptible, carrier, ill individuals and recovered individuals. Results

of their study concluded that the bast way to regulate bacterial meningitis was mixing use of

vaccine, treatment and public health education. The work done by [14] proposed SCIR model

of meningococcal meningitis disease with variable total population size. According to his sim-

ulation results, control measures that can lower the rate of disease transmission and immunity

waning as well as raise the rate of vaccination and treatment success would be successful in

containing and possibly curing the meningitis epidemic. Agusto & Leite [15], studied a Math-

ematical model of bacterial meningitis outbreaks in Nigeria by classifying the total population

into five classes namely: susceptible, vaccinated, carrier, infected and recovered. They obtained

from the sensitivity analysis of the basic reproductive number suggested that identification of

transmission probability per contact, the recovery rate of the carrier population, the vaccine

efficacy rate, and the disease progression rate were had high impact on disease transmission.
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The research worked by [16] constructed a deterministic mathematical model for transmission

of bacterial meningitis by incorporating standard incident rate and non-linear recovery rate.

Numerical results suggested that suppressing bacterial meningitis in an endemic environment,

the efficient providing of successful antibiotics for treatment with efficient providing of hospital

beds including vaccine was much better than concentrating on only vaccine or providing of hos-

pital beds. Similarly, [17] proposed a deterministic compartmental model of bacterial meningi-

tis disease depending on susceptible-vaccination-carrier-infected-treated-recovered. Examined

from sensitivity analysis an increase in vaccine waning, modification parameter of infectious-

ness the carrier population, progression rate from carrier to infected, and transmission prob-

ability will increase the spread of the disease. Moreover, results from numerical simulation

indicated that disease can be eradicated with effective vaccination and treatment. Afolabi [18]

created a mathematical model to illustrate how effective contact rate affects the transmission

dynamics of bacterial meningitis disease. Their simulation analysis demonstrated that effective

contact rate has a positive impact on increasing basic reproduction number. Other researchers

such as [19, 20, 21, 22, 23] have also studied on dynamics of bacterial meningitis disease.

In this study, we proposed a model for bacterial meningitis adopted from [15] by incorporat-

ing drug-resistant compartment, which is different from models mentioned above. Considering

this new compartment together with other two infectious classes namely, carrier and infected

classes are more useful to study the dynamics of this disease. The model we consider is formu-

lated based on bacterial meningitis transmission among population. This paper is organized as

follows. In section 2, the description of state variables and parameters, and model formulation

are done. In section 3, we study the qualitative analysis those are, positivity and boundedness

of the system; stability of disease free and endemic equilibrium points; and sensitivity analysis

of the effective reproduction number. In section 4, simulation analysis of the system is done.

We generalized in section 5 with conclusions.

2. MODEL FORMULATION

In this section, we develop a non-linear compartmental mathematical model for the transmis-

sion process of bacterial meningitis epidemic. The total population at the time t, denoted by

N(t), and partitioned it into six independent epidemiological classes such as, S(t), C(t), I(t),



DYNAMICS OF BACTERIAL MENINGITIS DISEASE 5

V (t),Dr(t) and R(t). Hence, the total population defined as follows.

(1) N(t) = S(t)+C(t)+V (t)+ I(t)+Dr(t)+R(t)

Moreover, description of the variables of the model are in the Table 1 below:

TABLE 1. Description of Variables of the bacterial meningitis disease model

Variable Description

S(t) The susceptible individuals; Individuals who are not yet infected, but will be infected easily,

C(t) Carrier individuals; Individuals who are infectious but not showing symptoms,

I(t) Infected individuals;Individuals who are infectious and showing symptoms,

V (t) Vaccinated individuals; Those who have immunity from the disease,

Dr(t) Drug resistant individuals; Individuals who adopting the first line antibiotics of bacterial meningitis,

R(t) Recovered individuals; Those individuals have recovered from the disease and have got temporary

immunity.

In the development of the model, the following assumptions are made:

(i) We assume that new entry to susceptible populations may be newborns or immigrants

at the constant rate of Π,

(ii) Disease induce death rate exists at I(t) compartment,

(iii) Both susceptible and vaccinated classes are infected through interaction of carrier,

symptomatically, infected or drug resist individuals.

(iv) There is a homogeneous mixing between populations,

(v) Recovered individuals can be reinfected,

(vi) All parameters are non-negative.

The model assumes that a fraction of the population was vaccinated at a rate of κΠ before the

illness breakout, and the remaining individuals (1−κ)Π are susceptible, where Π recruitment

rate and κ is the proportion of vaccinated. Susceptible class is infected through carrier, symp-

tomatically infected or drug resist individuals with a force of infection λ = β (q1C+q2I+q3Dr),

where 0 < q1 < 1, 0 < q3 < 1, and 0 < q2 ≤ 1 are the modification parameters of C, Dr and I

respectively and β is the effective transmission probability per contact.

Populations in the infected class can recover at a per capita rate of η with α proportion of

populations join the recovered class by use of proper treatment or join the drug resist class
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with (1−α) proportion,because of improper use of treatment. Since the vaccine does not pro-

vide immunity to all vaccine recipients, vaccinated people become infected at a lesser rate than

unprotected people with force of infection ελ , where ε is the proportion of the serotype not

covered by the vaccine. and 0 < ε < 1. Further explanation of parameters in the model are

described in the Table 2 below:
TABLE 2. Description of parameters of Bacterial Meningitis Disease model

Parameter Description

Π The recruitment rate of susceptible populations

µ Natural death rate

σ The death rate due to the disease at infected class

ϑ Rate of recovery individuals waning immunity

δ Rate of carrier move to infected class by developing symptoms or screen themselves

ω Natural recovery rate from carrier class

θ Recovery rate after second line treatment

γ1 Vaccine waning rate

γ2 Vaccine uptake rate

FIGURE 1. Compartmental flow diagram of bacterial meningitis disease transmission
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From the Figure 1, we can obtain the following non-linear first order system of ordinary

differential equations:

(2)



dS
dt

= Π(1−κ)+ϑR+ γ1V − (λ +µ + γ2)S

dV
dt

= Πκ + γ2S− (µ + ελ + γ1)V

dC
dt

= λS+ ελV − (δ +ω +µ)C

dI
dt

= δC− (η +σ +µ)I

dDr

dt
= (1−α)ηI− (θ +µ)Dr

dR
dt

= ωC+αηI +θDr− (ϑ +µ)R

With the initial conditions: S(0) = S0 ≥ 0 ,C(0) = C0 ≥ 0 , I(0) = I0 ≥ 0 ,V (0) = V0 ≥

0 ,Dr(0) = Dr,0 ≥ 0 ,and R(0) = R0 ≥ 0.

3. MODEL ANALYSIS

3.1. Invariant Region.

Theorem 1. All solutions of bacterial meningitis model in (2) remains in

Ωm =
{
(S,V,C, I,Dr,R) ∈ R6

+ : 0≤ N(t)≤ Π

µ

}
.

Proof: The total population at any time t is given by

(3) N(t) = S(t)+C(t)+V (t)+ I(t)+Dr(t)+R(t)

After differentiating both sides of N and we obtained,

(4)
dN
dt

=
dS
dt

+
dV
dt

+
dC
dt

+
dI
dt

+
dDr

dt
+

dR
dt

= Π−µN−σ I

Since the parameter σ , and the state variable I are non-negative in (4), we have

(5)
dN
dt
≤Π−µN

Using separation of variables rule equation (5) changes to,

(6)
dN

Π−µN
≤ dt
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By the help of [24] integrating both sides of equation (6),

(7)
∫ dN

Π−µN
≤
∫

dt

After further simplification and applying the initial condition N(0) = N0 we get,

(8) N ≤ Π

µ
− 1

µ
(Π−µN0)e−µt

As t→ ∞ in equation (8) the population size N→ Π

µ
, which implies that 0≤ N ≤ Π

µ
. Thus the

feasible solution of set of the system equation of the model enter and remain in the region:

(9) Ωm =

{
(S,V,C, I,Dr,R) ∈ R6

+ : 0≤ N ≤ Π

µ

}
Hence, the model is well posed epidemiologically as well as mathematically. Hence, it is suffi-

cient to study the dynamics of the basic model in Ωm.

3.2. Positivity of Solutions.

Theorem 2. Let Ωm(0) =
(

S(0),V (0),C(0), I(0),Dr(0),R(0)
)
∈ R6

+ be the initial condition

for the model (2). Then, the set of solutions
{

S(t),V (t),C(t), I(t),Dr(t),R(t)
}

of the model is

non-negative for all t > 0.

Proof: Let t1 = sup
{

t > 0 : S(t0) > 0,V (t0) > 0,C(t0) > 0, I(t0) > 0,Dr(t0) > 0,R(t0) >

0,∀t0 in [0, t]
}

. From the system of the differential equation in (2) let us take each equation step

by step. From the first equation of model ( 2), it follows that,

dS
dt

+
(
λ (t)+µ + γ2

)
S = Π(1−κ)+ϑR(t)+ γ1V (t)

Which can be rewritten as,

d
dt

[
S(t)e(µ+γ2)t+

∫ t
0 λ (m)dm

]
=
(

Π(1−κ)+ϑR(t)+ γ1V (t)
)

e(µ+γ2)t+
∫ t

0 λ (m)dm.

Hence,

S(t1)e(µ+γ2)t1+
∫ t1

0 λ (m)dm−S(0) =
∫ t1

0
(Π(1−κ)+ϑR(z)+ γ1V (z))

[
e(µ+γ2)z+

∫ z
0 λ (m)dm

]
dz.
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Therefore,

S(t1) = S(0)e(−µ−γ2)t1−
∫ t1

0 λ (m)dm+[
e(−µ−γ2)t1−

∫ t1
0 λ (m)dm

]
×
∫ t1

0

(
Π(1−κ)+ϑR(z)+ γ1V (z)

)[
e(µ+γ2)z+

∫ z
0 λ (m)dm

]
dz≥ 0.

Taking the second equation from (2),

dV
dt

+(γ1 + ελ +µ)V = Πκ + γ2S

We can write it as follows,

d
dt

[
V (t)e(µ+γ1)t+

∫ t
0 ελ (m)dm

]
=
(

Πκ + γ2S(t)
)

e(µ+γ1)t+
∫ t

0 ελ (m)dm.

Thus,

V (t1)e(µ+γ1)t1+
∫ t1

0 ελ (m)dm−V (0) =
∫ t1

0
(Πκ + γ2S(z))

[
e(µ+γ1)z+

∫ z
0 ελ (m)dm

]
dz.

Therefore,

V (t1) =V (0)e(−µ−γ1)t1−
∫ t1

0 ελ (m)dm+[
e(−µ−γ1)t1−

∫ t1
0 ελ (m)dm

]
×
∫ t1

0

(
Πκ + γ2S(z)

)[
e(µ+γ1)z+

∫ z
0 ελ (m)dm

]
dz≥ 0.

Let us take the third equation of the model

dC
dt

= λS+ ελV − (δ +ω +µ)C

dC
dt
≥−(µ +δ +ω)C

By separation of variable

dC
C
≥−(µ +δ +ω)dt

ln |C | ≥ −(µ +δ +ω)t +m3

C(t)≥ A3e−(µ+δ+ω)t

Applying the initial condition C(0) to obtained the value A3,

C(t)≥C(0)e−(µ+δ+ω)t ≥ 0
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Similarly,

(10)


I(t)≥ I(0)e−(η+σ+µ)t ≥ 0,∀t ≥ 0,

Dr(t)≥ Dr(0)e−(θ+µ)t ≥ 0,∀t ≥ 0,

R(t)≥ R(0)e−(ϑ+µ)t ≥ 0,∀t ≥ 0.

Therefore, all solutions of the system in (2) remain non-negative for all non-negative initial

conditions.

3.3. Disease Free Equilibrium. It is a point at which the epidemic is eradicated from the

population. By setting the left sides of systems of ordinary differential equations in (2) to zero

and substituting zero to all infective class variables we obtain,

(11) Π(1−κ)+ γ1V − (µ + γ2)S = 0

(12) Πκ + γ2S− (µ + γ1)V = 0

By using equation (11) and (12) simultaneously we obtain

S0 =
Π(µ(1−κ)+ γ1)

µ(µ + γ1 + γ2)
=

ΠD1

µ
,D1 =

µ(1−κ)+ γ1

(µ + γ1 + γ2)

V 0 =
Π(κµ + γ2)

µ(µ + γ1 + γ2)
=

ΠD2

µ
,D2 =

κµ + γ2

(µ + γ1 + γ2)

Hence the disease free equilibrium point is given by E0 = (S0,V 0,0,0,0,0) =(
ΠD1

µ
, ΠD2

µ
,0,0,0,0

)
. We used Routh-Hurwiz criteria to compute the effective reproduction

number(Re f ). It can be obtained from the constant term of the characteristics equation after

computing the Jacobian of the system at the disease free equilibrium [25].

Computing the Jacobian of (2) at the disease- free equilibrium gives,

(13) J(E0) =



−m1 γ1 −βq1S0 −βq2S0 −βq3S0 ϑ

γ2 −m6 −εβq1V 0 −εβq2V 0 −εβq3V 0 0

0 0 βq1m2−m4 βq2m2 βq3m2 0

0 0 δ −m7 0 0

0 0 0 m8 −m5 0

0 0 ω αη θ −m9


Where m1 = (µ +γ2),m2 = S0+εV 0,m4 = δ +µ +ω,m5 = θ +µ,m6 = µ +γ1,m7 = η +σ +

µ,m8 = (1−α)η ,m9 = ϑ +µ .
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Expanding the determinant of the characteristic equation | J(E0)−λ I |= 0 by the first column

twice and then by the last column, respectively, gives equation (14).

(14) [(−m1−λ )(−m6−λ )− γ1γ2](m9 +λ )

∣∣∣∣∣∣∣∣∣
βq1m2−m4−λ βq2m2 βq3m2

δ −m7−λ 0

0 m8 −m5−λ

∣∣∣∣∣∣∣∣∣= 0

We can rewrite equation (14) as follows.

(15) [(−m1−λ )(−m6−λ )− γ1γ2](m9 +λ ) = 0

Or

(16)

∣∣∣∣∣∣∣∣∣
βq1m2−m4−λ βq2m2 βq3m2

δ −m7−λ 0

0 m8 −m5−λ

∣∣∣∣∣∣∣∣∣= 0

The characteristic equation of (16) after simplification gives equation (17).

(17) λ
3 +a1λ

2 +a2λ +a3 = 0

Where,

a1 = m5 +m7 +m4−βq1m2

a2 = m7m5 +m4(m7 +m5)−βq1m2(m7 +m5)+δβq2m2

a3 = m4m7m5−βq1m2m7m5−δβq2m2m5−δβq3m2m8

The condition Re f < 1 should be equivalent to the condition a3 > 0 , hence, we define the

effective reproductive number of the model in (2) as follows.

m4m7m5−βq1m2m7m5−δβq2m2m5−δβq3m2m8 > 0

m4m7m5 > βq1m2m7m5 +δβq2m2m5 +δβq3m2m8

1 >
βq1m2

m4
+

δβq2m2

m4m7
+

δβq3m2m8

m4m7m5

Re f =
βq1m2

m4
+

δβq2m2

m4m7
+

δβq3m2m8

m4m7m5
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After substitution the values of m2,m4,m5 and m7 the effective reproduction number becomes,

Re f =

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)
(S0 + εV 0)

=

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)(
Π

µ
D1 + ε

Π

µ
D2

)
=

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)
Π

µ
D1+

ε

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)
Π

µ
D2

Then the effective reproduction number can be written as;

(18) Re f = RC +RI +RDr = Rs +Rv

Where,

Rs =

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)
ΠD1

µ

Rv = ε

(
βq1

δ +µ +ω
+

δβq2

(δ +µ +ω)(η +σ +µ)
+

δβq3(1−α)η

(δ +µ +ω)(η +σ +µ)(θ +µ)

)
ΠD2

µ

The threshold quantity Rs represents the reproduction number when all individuals are suscep-

tible whereas Rv denotes reproduction number when all hosts are vaccinated. Furthermore, the

effective reproduction number (Re f ) consists of the sum of three terms. The first term denoted

by (RC), gives the number of secondary infectious produced by one carrier, the second term

(RI) gives the number of secondary infectious produced by one infectious individual , and the

third term (RDr) gives the number of secondary infectious produced by one drug resistance

individual in totally susceptible and vaccinated individuals.

3.4. Local Stability of Disease Free Equilibrium.

Theorem 3. The disease free equilibrium point is locally asymptotically stable if Re f < 1 and

unstable if Re f > 1.

Proof: As we obtained in the previous section expanding the determinant of the characteristic

equation | J(E0)−λ I |= 0 from equation (13) we get;

(19) (λ 2 +(2µ + γ1 + γ2)λ +µ(µ + γ1 + γ2))(ϑ +µ +λ )
(
λ

3 +a1λ
2 +a2λ +a3

)
= 0
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Next computing the possible eigenvalues in equation (19) separately as follows,

(λ 2 +(2µ + γ1 + γ2)λ +µ(µ + γ1 + γ2))(ϑ +µ +λ ) = 0

Thus, λ1 = −(ϑ + µ) and, λ2 and λ3 are negative by the help of Routh-Hurwiz criteria.The

remanding three eigenvalues are obtained from,

λ
3 +a1λ

2 +a2λ +a3 = 0

where,

a1 = m5 +m7 +m4−βq1m2 = m5 +m7 +m4(1−RC)> 0

a2 = m7m5 +m4(m7 +m5)−βq1m2(m7 +m5)+δβq2m2

= m7m5 +m4(m7 +m5)(1−RC)+δβq2m2 > 0

a3 = m4m7m5(1−Re f )> 0

a1a2 = (m5+m7+m4(1−Rc))(m7m5+m4(m7+m5)(1−Rc)+δβq2m2)> m4m7m5(1−Rc)−

δβq2m2m5−δβq3m2m8 = a3, therefore a1a2 > a3, and also a3 > 0, whenever Re f < 1. Thus,

using Routh-Hurwiz principle the disease free equilibrium is locally asymptotically stable if

Re f < 1.

3.5. Global Stability of Disease Free Equilibrium.

Theorem 4. The disease-free equilibrium point,E0 = (S0,V 0,0,0,0,0), is globally asymptoti-

cally stable (GAS) whenever Re f < 1.

Proof: To prove this we use the method of Lyapunov function defined as,

(20) L = k1C+ k2I + k3Dr

where,

k1 =
q1m7m5 +q2δm5 +q3δ (1−α)η

q3m4m7

k2 =
m5q2 +(1−α)ηq3

q3m7

k3 = 1
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Notice that L(E0) = 0 and L(C, I,Dr) > 0∀(C, I,Dr) ∈U/E0, where U ⊂ Ωm . It remains to

prove dL
dt ≤ 0. Differentiating (20) we obtain,

dL
dt

= k1Ċ+ k2İ + k3Ḋr

=

(
[q1m7m5 +q2δm5 +q3δ (1−α)η ]m5

q3m4m7m5

)
[β (q1C+q2I +q3Dr)(S+ εV )−m4C]

+

(
m5q2 +(1−α)ηq3

q3m7

)
[δC−m7I]+ (1−α)ηI−m5Dr

≤
(
[q1m7m5 +q2δm5 +q3δ (1−α)η ]m5

q3m4m7m5

)[
β (q1C+q2I +q3Dr)(S0 + εV 0)−m4C

]
+

(
m5q2 +(1−α)ηq3

q3m7

)
[δC−m7I]+ (1−α)ηI−m5Dr, Since,S≤ S0,V ≤V 0

=

(
[q1m7m5 +q2δm5 +q3δ (1−α)η ]m5βq1C(S0 + εV 0)

q3m4m7m5
− q1m5C

q3

)
+

(
[q1m7m5 +q2δm5 +q3δ (1−α)η ]m5βq2I(S0 + εV 0)

q3m4m7m5
− q2m5I

q3

)
+

(
[q1m7m5 +q2δm5 +q3δ (1−α)η ]m5βDr(S0 + εV 0)

m4m7m5
−m5Dr

)
=

m5q1

q3
(Re f −1)C+

m5q2

q3
(Re f −1)I +m5(Re f −1)Dr

Where, Re f =
(q1m7m5+q2δm5+q3δ (1−α)η)β (S0+εV 0)

m4m7m5
. Thus, dL

dt < 0 if Re f < 1, and dL
dt = 0. There-

fore, according to La Salle invariant principle presented in [26], we conclude that the point, E0

is GAS in Ωm if Re f < 1.

3.6. Endemic Equilibrium. Endemic equilibrium point of the system (2) is the steady

state solution where the bacterial meningitis persist in the population and it is denoted by

E∗=(S∗,V ∗,C∗, I∗,D∗r ,R
∗). This can be obtained by equating the system of equation (2) to

zero.

From the fourth, fifth and sixth equations of the model (2) respectively we obtain,

C∗ =
(η +σ +µ)I∗

δ
(21)

D∗r =
(1−α)ηI∗

θ +µ
(22)



DYNAMICS OF BACTERIAL MENINGITIS DISEASE 15

R∗ = (
ω(θ +µ)(η +σ +µ)+δαηµ +δθη

δ (θ +µ)(ϑ +µ)
)I∗(23)

Using the first and second equations of the system (2),

V ∗ =
Πκ + γ2S∗

µ + ελ ∗+ γ1
(24)

S∗ =
(µ + ελ ∗+ γ1)(Π(1−κ)+ϑR∗)+ γ1Πκ

(λ ∗+µ + γ2)(µ + ελ ∗+ γ1)− γ1γ2
(25)

By substituting the expression of C∗,V ∗, and S∗ above into the third equation in the system (2)

and rearranging it we get;

(26) H1I∗3 +H2I∗2 +H3I∗+H4 = 0

Where

H1 = (θϑ(ηµ +σδ +σ µ +µδ +µ
2)+µϑ(ηδ +ηµ +σδ +σ µ +µδ +µ

2)

+(θ µ +µ
2)(ηδ +ηµ +ηω +σδ +σ µ +σω +µδ +µ

2 +µω)−ϑ µδαη)A3
β

3
ε

2

H2 = d3d5d1d2(ε
2d6 +2d7)β

2A2− (δd3d5πε
2
β

3A3 +2ϑ(ωd1d3 +δd3αη +θd4δ )(2d7 + εγ2)εA2
β

2)

H3 = d1d2d3d5ε(d7(d6 +d7 +1)− γ1γ2)βA− ((2δd3d5d7π(1−κ)+πκγ1)A2
β

2
ε +δd3d5π(γ2(1−κ)

+κ(d6 +d7))ε
2
β

2A2 +ϑ(ωd1d3 +δd3αη +θd4δ )(d7 + ε))

H4 = (ϑ +µ)(µ + γ1)(1−Re f )

d1 = η +σ + µ,d2 = δ + µ +ω,d3 = θ + µ,d4 = (1−α)η ,d5 = ϑ + µ,d6 = µ + γ2 , d7 =

µ + γ1 and A = q1d1d3+δd3q2+q3d4δ

δd3
.

The coefficient H1 is positive while the sign of H4 is depend on the values of Re f . We use the

Descarte’s rule of signs presented in [27] to analyse the existence of possible positive roots of

the polynomial equation in (26).

Theorem 5. Model (2)

(i) has a unique positive endemic equilibrium if the case(2,4,6) are satisfied,

(ii) has a unique, or would have three positive endemic equilibrium if the case 8 is satisfied,

(iii) would have two , or has no positive endemic equilibrium if the case (3,5,7) are satisfied

and,

(iv) has no endemic equilibrium if the case 1 is satisfied.
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TABLE 3. Number of possible positive real roots of I∗

Cases H1 H2 H3 H4 Re f No. of sign No.of positive

change real roots

1 + + + + Re f < 1 0 0

2 + + + − Re f > 1 1 1

3 + + − + Re f < 1 2 0,2

4 + + − − Re f > 1 1 1

5 + − − + Re f < 1 2 0,2

6 + − − − Re f > 1 1 1

7 + − + + Re f < 1 2 0,2

8 + − + − Re f > 1 3 1,3

3.7. Local Stability of the Endemic Equilibrium.

Theorem 6. The endemic equilibrium E∗ of the system in (2), is locally asymptotically stable

for Re f > 1(but near to 1).

Proof: To investigate the possibility of backward or forward bifurcation of the model (2) we

use the method introduced by [28]. This is done by assigning the variables as follows;

S = x1,V = x2,C = x3, I = x4,Dr = x5,R = x6.

Then the system (2) can be written as;

(27)



dx1

dt
= Π(1−κ)+ϑx6 + γ1x2− (λ +µ + γ2)x1

dx2

dt
= Πκ + γ2x1− (µ + ελ + γ1)x2

dx3

dt
= λx1 + ελx2− (δ +ω +µ)x3

dx4

dt
= δx3− (η +σ +µ)x4

dx5

dt
= (1−α)ηx4− (θ +µ)x5

dx6

dt
= ωx3 +αηx4 +θx5− (ϑ +µ)x6

choosing β as bifurcation parameter and solving for β = β ∗ in (18), when Re f = 1 yields;

β
∗ =

(δ +µ +ω)(η +σ +µ)(θ +µ)(µ + γ1 + γ2)µ

π [q1(η +σ +µ)(θ +µ)+q2δ (θ +µ)+q3δ (1−α)η ] [µ(1−κ)+ γ1 + ε(µκ + γ2)]
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The linearization matrix of system in (27) around the disease free equilibrium when β = β ∗ is;

(28) J(E0,β
∗) =



−m1 γ1 −β ∗q1S0 −β ∗q2S0 −β ∗q3S0 ϑ

γ2 −m6 −εβq1V0 −εβ ∗q2V0 −εβ ∗q3V 0 0

0 0 β ∗q1m2−m4 β ∗q2m2 β ∗q3m2 0

0 0 δ ∗ −m7 0 0

0 0 0 m8 −m5 0

0 0 ω αη θ −m9


Where m1 = (µ +γ2),m2 = S0+εV 0,m4 = δ +µ +ω,m5 = θ +µ,m6 = µ +γ1,m7 = η +σ +

µ,m8 = (1−α)η ,m9 = ϑ +µ .

The Jacobian matrix in (28) has a simple zero eigenvalues, hence the center manifold theory

will be used to analyses the dynamic of the system (27) near β = β ∗.

Next, we obtain the left and the right eigenvector of J(E0,β
∗) associated with the zero eigen-

value. The right eigenvector is given by w = (w1,w2,w3,w4,w5,w6)
T from (28);

−m1 γ1 −β ∗q1S0 −β ∗q2S0 −β ∗q3S0 ϑ

γ2 −m6 −εβq1V0 −εβ ∗q2V0 −εβ ∗q3V0 0

0 0 β ∗q1m2−m4 β ∗q2m2 β ∗q3m2 0

0 0 δ ∗ −m7 0 0

0 0 0 m8 −m5 0

0 0 ω αη θ −m9





w1

w2

w3

w4

w5

w6


=



0

0

0

0

0

0


The system of this equation becomes,

(29)



−m1w1 + γ1w2−β
∗q1S0w3−β

∗q2S0w4−β
∗q3S0w5 +ϑw6 = 0

γ2w1−m6w2− εβ
∗q1V0w3− εβ

∗q2V0w4− εβ
∗q3V0w5 = 0

(β ∗q1m2−m4)w3 +β
∗q2m2w4 +β

∗q3m2w5 = 0

δw3−m7w4 = 0

m8w4−m5w5 = 0

ωw3 +αηw4 +θw5−m9w6 = 0
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Solving system of (29) we obtain;

w1 =
εm4(κµ + γ2)w3

γ2(µ(1−κ)+ γ1 + ε(κµ + γ2))
+

m6w2

γ2

w2 =
1

µ(µ + γ1 + γ2)

(
γ2ϑ(ωm7m5 +αδηm5 +θδm8)

m7m5m9
− m4µε(κµ + γ2)

µ(1−κ)+ γ1 + ε(κµ + γ2)
− γ2m4

)
w3

w3 = w3 > 0

w4 =
δw3

m7

w5 =
m8δw3

m7m5

w6 =

(
ωm7m5 +αδηm5 +θδm8

m7m5m9

)
w3

Similarly, we have the left eigenvectors of JE0β ∗ associated with the zero eigenvalues. It is given

by v = (v1,v2,v3,v4,v5,v6)
T where;

−m1 γ2 0 0 0 0

γ1 −m6 0 0 0 0

−β ∗q1S0 −εβ ∗q1V0 β ∗q1m2−m4 δ 0 ω

−β ∗q2S0 −εβ ∗q2V0 β ∗q2m2 −m7 m8 αη

−β ∗q3S0 −εβ ∗q3V0 β ∗q3m2 0 −m5 θ

ϑ 0 0 0 0 −m9





v1

v2

v3

v4

v5

v6


=



0

0

0

0

0

0


The system of equation becomes;

(30)



−m1v1 + γ2v2 = 0

γ1v1−m6v2 = 0

−β
∗q1S0v1−−β

∗q1V0v2 +(−β
∗q1m2−m4)v3 +δv4 +ωv6 = 0

−β
∗q2S0v1− εβ

∗q2V0v2 +β
∗q2Sm2v3−m7v4 +m8v5 +αηv6 = 0

−β
∗q3S0v1− εβ

∗q3V0v2 +β
∗q3m2v3−m5v5 +θv6 = 0

ϑv1−m9v2 = 0
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Solving system of equation (30) simultaneously we obtain;

v1 = v2 = v6 = 0

v3 = v3 > 0

v4 =
(m4−β ∗q1m2)v3

δ

v5 =
β ∗q3m2v3

m5

Furthermore, by the help of w.v = 1 we can determine for v3 and w3 as,

w3 =
m7m2

5(q1m7m5 +q2δm5 +q3δm8)

m7m2
5(q1m7m5 +q2δm5 +q3δm8)+m4m2

5(q2δm5 +q3δm8)+m4m7m5m8q3

v3 = 1

Now, we compute the coefficient a and b which defined in Castillo-Chavez and Song as follows,

a =
6

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(E0)(31)

b =
6

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂β
(E0)(32)

Where,

(33)



f1 = Π(1−κ)+ϑx6 + γ1x2− (λ +µ + γ2)x1

f2 = Πκ + γ2x1− (µ + ελ + γ1)x2

f3 = λx1 + ελx2− (δ +ω +µ)x3

f4 = δx3− (η +σ +µ)x4

f5 = (1−α)ηx4− (θ +µ)x5

f6 = ωx3 +αηx4 +θx5− (ϑ +µ)x6

We obtained by examining only the non-zero components of the left eigenvectors v3,v4 and v5

and taking into account the corresponding second-order partial derivatives of the system in (33);

a =−2v3w2
3β

(
q1 +

δq2

η +σ +µ
+

(1−α)ηδq3

(η +σ +µ)(θ +µ)

)(
εm4(κµ + γ2)(1− ε)

γ2(µ(1−κ)+ γ1 + ε(κµ + γ2))(µ + γ1 + γ2)

+

(
m6 + εγ2

µ(µ + γ1 + γ2)

)(
ϑ µηδ (1−α)+ϑδ (σ +µ)m5 +ϑ µm7m5 +µm4m7m5

m7m5m9

))
< 0.
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b = w3v3Π

(
q1 +

δq2

δ +µ +ω
+

(1−α)ηδq3

(η +σ +µ)(θ +µ)

)(
[µ(1−κ)+ γ1 + ε(κµ + γ2)]

µ(µ + γ1 + γ2)

)
> 0

Since a < 0 and b > 0, by the help of [28], the system (2) exhibits a forward bifurcation at

Re f = 1 (see Figure 2), and the endemic equilibrium is locally asymptotically stable for Re f > 1,

but near to 1. Its biological meaning is that as long as Re f < 1 the disease can be eradicated

from the population.
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FIGURE 2. Forward bifurication

3.8. Sensitivity Analysis. In this section, we examined the sensitivity of the parameters for

the effective reproduction number of the model using the idea presented in [29, 30, 31]. This

helped us in identifying the parameters that have a significant impact on the effective reproduc-

tive number Re f . To compute the sensitivity index of Re f to a given parameter Ψ we use the

following formula,

(34) Λ
Re f
Ψ

=

(
∂Re f

∂Ψ

)(
Ψ

Re f

)
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Thus, we compute the sensitivity index of Re f corresponding to each parameters in (18) as

follows.

Λ
Re f

β
= 1 = Λ

Re f
Π

Λ
Re f
q1 =

q1(η +σ +µ)(θ +µ)

q1(η +σ +µ)(µ +θ)+δq2(θ +µ)+δq3(1−α)η

Λ
Re f
q2 =

q2δ (θ +µ)

q1(η +µ +σ)(µ +θ)+δq2(θ +µ)+δq3(1−α)η

Λ
Re f
q3 =

δ (1−α)ηq3

q1(η +σ +µ)(µ +θ)+δq2(θ +µ)+δq3(1−α)η

Λ
Re f
α =

−αδηq3

q1(η +σ +µ)(µ +θ)+δq2(θ +µ)+δq3(1−α)η

Λ
Re f
κ =

κµ(ε−1)
µ(1−κ)+ γ1 + ε(µκ + γ2)

Λ
Re f
ε =

ε(µκ + γ2)

µ(1−κ)+ γ1 + ε(µκ + γ2)

Λ
Re f
ω =

−ω

δ +µ +ω

Λ
Re f
θ

=
−θδq3(1−α)η

[q1(η +σ +µ)(µ +θ)+q2δ (θ +µ)+δq3(1−α)η ] (θ +µ)

Λ
Re f
γ1 =

γ1(γ2−µ +µκ− ε(µκ + γ2))

[µ(1−κ)+ γ1 + ε(κµ + γ2)] (µ(µ + γ1 + γ2)2)

Λ
Re f
γ2 =

γ2(ε(µ + γ1 + γ2)− (µ(1−κ)+ γ1 + ε(µκ + γ2)))

(µ + γ1 + γ2)(µ(1−κ)+ γ1 + ε(κµ + γ2)

Λ
Re f

δ
=

δ [(q2(θ +µ)+q3(1−α)η)(δ +µ +ω)− (q1(η +σ +µ)(θ +µ)+δq2(µ +θ)+δq3(1−α)η)]

(δ +ω +µ) [q1(η +σ +µ)(θ +µ)+q2δ (θ +µ)+q3δ (1−α)η ]

Λ
Re f
η =

η [(q1(θ +µ)+δq3(1−α))(η +σ +µ)− (q1(η +µ +σ)(θ +µ)+δq2(θ +µ)+δq3(1−α)η)]

(η +σ +µ) [q1(η +σ +µ)(θ +µ)+q2δ (θ +µ)+δq3(1−α)η ]

Λ
Re f
σ =

σ [q1(η +σ +µ)− (q1(η +σ +µ)(µ +θ)+q2δ (θ +µ)+q3δ (1−α)η)]

(η +µ +σ) [q1(η +σ +µ)(µ +θ)+δq2(θ +µ)+q3δ (1−α)η ]

Λ
Re f
µ =

µ(ΦΨ+ϕ(1−κ + εκ))

ϕΨ
− µ(τρ− ιζ )

ιρ

where,

Φ = q1(2µ +θη +σ)+δq2

Ψ = µ(1−µ)+ γ1 + ε(κµ + γ2)

ϕ = q1(η +σ +µ)(µ +θ)+δq2(θ +µ)+δq3(1−α)η

τ = 2µ + γ1 + γ2
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ρ = (δ +µ +ω)(µ +θ)(η +σ +µ)

ι = µ(µ + γ1 + γ−2)

ζ = θ(η +σ)+δθ +2µθ +ωθ +(η +2µ +ω)(η +σ)+(2δ µ +3µ
2 +2ωµ).

The values of sensitivity indices of the effective reproduction number (Re f ) to each of its

parameter values are itemized in Table 4. Thus, the sensitivity indices of the parameters

(Π,β ,γ1,q1,q2,q3,ε) will have a corresponding percentage increase in severity of the dis-

ease. For instance, the effective transmission probability per contact (β ) and recruitment rate

(Π) which have a sensitivity indices of 1 have a positive impact on the effective reproduc-

tion number and x% increase in both β and Π will leads to a 2x% increase in disease burden.

Similarly increasing the value of q2 by 10% results in increase in the value Re f by 8.533%.

Thus, the effective reproduction number is most sensitive the effective transmission probabil-

ity per contact (β ), the recruitment rate (Π) and q2. Similarly from Table (4), demonstrates

that the effective reproduction number Re f , can be decreased through an increase in the values

(η ,σ ,θ ,α,ω,µ,γ2,κ). However, since σ and µ represent disease induce death rate from in-

fected class and natural death rate from all compartments respectively, we cannot use them as

intervention measures. In contrast, Λ
Re f
η = −0.394, means that a 0.394 increase in η will pro-

duce 0.651 decrease in Re f based on treatment. Furthermore, the disease burden will decreased

by 6.8% if the vaccine uptake rate of susceptible individuals (γ2) increase by 10%. Epidemio-

logical implication of this section is that preventive and control should be targeted on the most

sensitive parameters to reduce the burden of bacterial meningitis on populations.

4. SIMULATIONS OF THE SYSTEM

In this section, authors use some numerical simulations to illustrate the previous theoretical

analysis and discuss more dynamical behaviour of the system(2). Fourth-order Runge-Kutta

method in the MATLAB program is used to solve the system and the results are represents

graphically. The initial condition (S0,V0,C0, I0,Dr0,R0) = (5550,4100,1620,210,180,350),

and Π = 111, β = 0.03 and ϑ = 0.0839 are used for the simulation of figures (5,6, and 7), in

addition to parameter values given in Table 4.

Figure (3) shows simulation results converge to the disease free equilibrium point for the total
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TABLE 4. Sensitivity indices

Parameter Value Source Sensitivity indices

Π Varied 1

β Varied 1

η 0.56 Assumed −0.394

δ 0.1−0.52 [13] 0.17

γ1 0.32 Assumed 0.65

γ2 0.92 Assumed −0.68

µ 0.02 [32] −0.00006

κ 0.21 Assumed −0.012

ω 0.1118 [15] −0.174

σ 0.05−0.5 [16] −0.44

q1 0.0016 Assumed 0.0358

q2 0.08 Assumed 0.8533

q3 0.02 Assumed 0.111

α 0.22 Assumed −0.0313

ε [0.019−0.15] Assumed 0.05

θ 0.82 Assumed −0.1083

number of susceptible, vaccinated, carrier, infected and drug-resistant individuals using various

initial conditions, β = 0.025 and Π = 30 (in such manner Re f = 0.7323) and ϑ = 0.0839. All

other parameters are as in Table (4). This result shows that bacterial meningitis can be elimi-

nated from the population as long as effective reproduction number (Re f )< 1. Since the unique

positive endemic equilibrium is locally asymptotically stable in Figure (4) all solution trajecto-

ries of carrier,infected and drug-resistant individuals converge to the endemic equilibrium using

different initial conditions, β = 0.03, Π = 111 and all other parameters are as in table(4) (in

such manner Re f = 3.2513) and ϑ = 0.0839. This indicated that the disease persist in the com-

munity because Re f = 3.2513 > 1. The effective transmission probability per contact rate (β )

plays a powerful role in expanding of bacterial meningitis disease transmission by maximizing
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FIGURE 3. Simulation of system(2) showing the total number of populations as

a function of time ,using various initial conditions when β = 0.025 and Π = 30

(in such a manner Re f = 0.7323) and ϑ = 0.0839. All other parameters are as

in Table (4).

the incidence rate in the infectious populations. Figure 5( a and b) demonstrates that maximiz-

ing the effective transmission probability per contact rate (β ) which value significantly increase

the number of susceptible and vaccinated individuals getting infectious (or decrease the number

of susceptible and vaccinated ), respectively and vice versa. Thus, the maximization of effective

transmission probability per contact rate (β ) result in increase in the size of carrier, infected and

drug-resistant population as shown in Figure 5(c− e) respectively. In Figure (6), the change

in vaccinated, carrier, infected and drug-resistant populations are shown for different values of

vaccine uptake rate (γ2). It is found that as the intervention vaccine uptake rate increases the

vaccinated individuals in Figure ( 6) (a) increases and remains stable, while,the carrier, infected

and drug-resistant individuals decreases after some time as shown from Figure (6) (b− d) re-

spectively. It indicates that by increasing the intervention vaccine uptake rate, the spread of the

infectious disease can be reduced.
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FIGURE 4. Simulation of system(2) showing the total number of infectious

individuals as a function of time ,using various initial conditions when β = 0.03

and Π = 111 (in such a manner Re f = 3.2513) and ϑ = 0.0839. All other pa-

rameters are as in Table (4).
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Figure (7) demonstrates that the trajectories of infected, drug-resistant and recovered

individuals for different values of treatment rates η and θ . It found out that the increment in

both treatments results the minimization of both infected individuals in Figure (7) (a) and

drug-resistant population in (7) (b) ,and vice versa. Moreover, increasing the treatment rates

results, in more individuals get recovering as shown in (7)(c). Thus, the spread of bacterial
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FIGURE 5. The impact of effective transmission probability per contact rate on

susceptible, vaccinated, carrier, infected and drug-resist populations.
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FIGURE 6. The effect of vaccine uptake rates on vaccinated, carrier, infected

and drug-resist individuals.

meningitis can be control by enhancing both first and second lines of bacterial meningitis

treatments.
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FIGURE 7. The effect of treatment rates on infected, drug-resistant and recov-

ered individuals

5. CONCLUSIONS

In this work, a compartmental mathematical model for the dynamics of bacterial meningitis

in the presence of drug-resistant class are formulated, and extensively examined to understand

dynamical characteristics associated with its epidemiological thresholds. Investigation of the

model demonstrated that there exists a feasible region where the model is epidemiologically

meaningful and mathematically well-posed. Using Routh-Hurwize criteria the effective repro-

duction number(Re f ), of the model was computed. Existence and stability of the associated

equilibria were examined. Based on Lyapunov function approach, we demonstrated that the

disease-free equilibrium (DFE) is globally asymptotically stable if Re f < 1 and unstable oth-

erwise. Furthermore, using center manifold theory, an endemic equilibrium (EE) is locally

asymptotically stable when Re f is greater than one. The sensitivity analysis of the model was

examined using normalized forward sensitivity index method. Among other parameters, the

recruitment rate (Π), effective transmission per contact rate (β ), modification rate(q2), vac-

cine uptake rate(γ2),first line treatment (η) and second line treatment(θ) are the most sensitive

on effective reproduction number (Re f ). This demonstrates that minimizing the number of

infectious individuals depends on the reduction of β and q2 on susceptible and vaccinated indi-

viduals; maximizing vaccine uptake rate (γ2) for susceptible and enhancing first line treatment

rate (η) and second line treatment rate(θ) for infected and drug-resistance individuals respec-

tively. Biological implication of this illustration is preventive and control measures should be

addressed on the parameters, effective transmission per contact rate (β ),vaccine uptake rate(γ2),

modification rate(q2), and treatment rates (η and θ) to reduce the difficulty of the disease. The
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simulations of the system was conducted using fourth-order Runge-Kutta method in the MAT-

LAB program. From simulation of the system,it is shown that as time goes large trajectories of

the state variables are close to disease free equilibrium point whenever Re f = 0.7323 < 1, and a

unique endemic equilibrium point for Re f = 3.2513> 1 respectively, moreover the model shows

forward bifurcation at Re f = 1. The biological implication of this is that if effective reproduction

number less than unity, the bacterial meningitis disease disappeared from the population.
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