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Abstract. In this paper, we propose a COVID-19 epidemic model with quarantine class. The model contains 6

sub-populations, namely the susceptible (S), exposed (E), infected (I), quarantined (Q), recovered (R), and death

(D) sub-populations. For the proposed model, we show the existence, uniqueness, non-negativity, and boundedness

of solution. We obtain two equilibrium points, namely the disease-free equilibrium (DFE) point and the endemic

equilibrium (EE) point. Applying the next generation matrix, we get the basic reproduction number (R0). It

is found that R0 is inversely proportional to the quarantine rate as well as to the recovery rate of infected sub-

population. The DFE point always exists and if R0 < 1 then the DFE point is asymptotically stable, both locally

and globally. On the other hand, if R0 > 1 then there exists an EE point, which is globally asymptotically stable.

Here, there occurs a forward bifurcation driven by R0. The dynamical properties of the proposed model have been

verified our numerical simulations.
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1. INTRODUCTION

Coronavirus Disease-2019 or COVID-19, which was first found in Wuhan, China in Decem-

ber 2019, is an infectious disease caused by a newly discovered coronavirus. COVID-19 virus

is primarily transmitted through droplets produced when an infected person coughs, sneezes, or

exhales. Fever, coughing, and breathing problems are the earliest symptoms of this disease. In

the following stages, the infection can cause pneumonia, serious acute respiratory syndrome,

kidney damage, and even death [1]. COVID-19 is currently receiving great attention among

researchers, governments and the general public due to its high rate of spread of infection and

significant number of death [2]. As a result, many researchers in the Mathematics field are in-

vestigating and developing mathematical models of the spread of COVID-19 disease [3–5], as

well as forecasting the time required for the disease to be eradicated [6–8].

When modelling the spread of an epidemic, population is divided into several fundamen-

tal disease states. One of simple epidemic models is the susceptible-infected-recovered (SIR)

model, which consists of the susceptible class, the infected class, and the recovered class [9].

Individuals in susceptible state are at risk of getting the disease. Infected individuals are con-

tagious and may spread the disease to others through contact with susceptible individuals. Re-

covered state consists of individuals who have immunity from a vaccine or acquired immunity

and died people. Several investigating of COVID-19 SIR model are studied in [10–12]. The

models are in the form of system of three nonlinear ordinary differential equations (ODEs).

It is well known that COVID-19 has latency or incubation period. Hence, some researchers

have considered SEIR COVID-19 epidemic model by including an exposed (E) class, those

who have been infected but have not exhibited any disease symptoms and cannot transmit the

disease [13–16]. By taking into account the further characteristics of COVID-19, Peng et al.

[18] extended the SEIR model by involving class of protected inviduals, quarantined individu-

als and closed (or death due to COVID-19 disease). In this case, Peng et al. [18] divides the

population into 7 sub-population classes, namely Susceptible (S), Insusceptible, i.e. susceptible

but protected because they always apply health protocols in an orderly manner (P), exposed (in-

fected but not yet be infectious) (E), infected population (I), infected and quarantined privately
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or in hospital (Q), recovered (R) and closed cases (or dead) from COVID-19 (D). The quar-

antined class can’t spread the disease to others because they have lost contact with susceptible

people [17]. It is expected that the COVID-19 outbreak will be controlled by the presence of

a quarantined sub-population [5]. Peng et al. [18] obtained a SEIQRD epidemic model. The

SEIQRD model in [18] does not consider demographic parameters such as birth and death rates.

Therefore López and Rodó [19] modified the model (2.6) by including those two demographic

parameters. However, they ignored the deaths of infected individuals caused by the COVID-19

disease and assumed that the infected individuals cannot recover from the disease unless they

quarantine first. Zeb et al. [2] have also proposed a COVID-19 epidemic model which includes

S,E, I,Q and R classes, but without considering the closed class (D). Zeb et al. [2] assumes

that disease transmission occurs through contact between susceptible individuals and exposed

individuals or infected individuals where the rate of transmission follows the bilinear incidence

rate.

According to Postavaru et al. [20], the exposed individuals are infected individuals but not yet

infective. Thus, in this article, we propose a SEIQRD COVID-19 epidemic model by assuming

that COVID-19 transmission occurs only when there is contact between susceptible individuals

and infected individuals, with the transmission rate being the standard incident rate. We also

consider deaths due to COVID-19 disease and recovery in both infected and quarantined sub-

populations into the model, which are not considered by Zeb et al [2] nor by López and Rodó

[19].

The outline of this study is given as follows. In Section 2, we present the SEIQRD model with

some assumptions. We provide the basic properties of proposed model in Section 3 and 4. In

Section 5 and 6, we study the equilibrium points and basic reproduction number. The stability

of equilibrium points, both locally and globally, are provided in Section 7. The numerical

simulation was carried out in Section 8. Finally, some conclusion will be given in Section 9.

2. MODEL DEVELOPMENT

Based on the assumptions described previously, we formulate a SEIQRD COVID-19 model

by considering the model of Zeb et al. [2] and the model of López and Rodó [19], but without
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including the confined (C) compartment. The compartment diagram of the proposed model can

be seen in Figure 1.

Susceptible (S) Exposed (E)

Infective (I)

Quarantined (Q)

Recovered (R) Death (D)

Λ β

γ

θ

ϑ κ

δ

σ

µ

µ

µ

µ

µ

FIGURE 1. Compartment diagram.

Based on the diagram, the developed model is a system of

(1)

dS(t)
dt = Λ− βS(t)I(t)

N(t) −µS(t),
dE(t)

dt = βS(t)I(t)
N(t) − (γ +µ)E(t),

dI(t)
dt = γE(t)− (σ +θ +δ +µ)I(t),

dQ(t)
dt = σ I(t)− (ϑ +κ +µ)Q(t),

dR(t)
dt = θ I(t)+ϑQ(t)−µR(t),

dD(t)
dt = δ I(t)+κQ(t),

where S represents the size of the susceptible sub-population, i.e. all people who are at risk

of contracting COVID-19; E represents the size of the exposed sub-population, i.e. people

who have been infected and have not shown symptoms of disease, I represents the size of the

infected sub-population, i.e. people who have shown symptoms of the disease, Q represents

the size of the quarantined sub-population, i.e. people who are infected and self-isolated or

hospitalized for treatment, R represents the size of the sub-population who have fully recovered

from COVID-19, and D represents the size of death sub-population caused by COVID-19. The

parameters of system (1) are described in the Table 1.

For dynamical analysis, the last equation in the model (1) is not considered because other

equations do not involve variable D in the model. Hence, we only consider first five equations

in model (1).
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TABLE 1. Description of Parameters

Parameter Description

Λ recruitment rate

β infection rate

µ natural death rate

γ incubation rate

σ quarantine rate

θ recovery rate of I

δ death rate of I induced by the disease

ϑ recovery rate of Q

κ death rate of Q induced by the disease

3. THE NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTION

In this section, we prove the non-negativity and boundedness of solution of model (1) to show

that the model is epidemiologically meaningful.

Theorem 1. All solutions of model (1) subject to non-negative initial values are non-negative

and ultimately bounded.

Proof. We first show the non-negativity of S. By assuming that this not the case, the intermedi-

ate value theorem in [21] guarantees the existence of τ > 0 such that

S(τ−)≥ 0, S(τ) = 0, S(τ+)< 0.

From model (1) we have

dS
dt

∣∣∣
t=τ

= Λ > 0.

This means that S > 0 in (τ,τ + ε) for arbitrary small positive constant ε . This leads to a

contradiction. Hence, S ≥ 0 for all t > 0. The non-negativity of E, I, Q, and R can be proven

analogously. Therefore, all solutions of model (1) are non-negative.
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Total population is generally defined as the number of living humans, so that the total po-

pulation (N(t)) is obtained by adding up all sub-populations in the model (1) except the sub-

population D, i.e. N(t) = S(t)+E(t)+ I(t)+Q(t)+R(t). If all equations in the system (1) are

summed up, then the following differential equation is obtained.

(2)
dN(t)

dt
= Λ−µN(t)−δ I(t)−κQ(t)≤ Λ−µN(t).

The solution of the equation (2) satisfies

N(t)≤ Λ

µ
+

(
N(0)− Λ

µ

)
exp(−µt),

where N(0) is the initial value. It is clear that

lim
t→∞

N(t)≤ 0,

and thus N(t) is bounded with N(t) ≤ Λ

µ
. Hence, we can see that the feasible region of model

(1) is

Ω =

{
(S,E, I,Q,R) ∈ R5

+∪~0 : N = S+E + I +Q+R≤ Λ

µ

}
,

which is positively invariant region. �

4. THE EXISTENCE AND UNIQUENESS OF SOLUTION

The existence and uniqueness of solution of model (1) can be proven by Derrick and Groos-

man theorem in [22], which states that if Lipchitz’s condition as in Definition 1 is satisfied, then

the solution of model (1) exists and is unique.

Definition 1. [23] ~f in system (1) satisfies Lipchitz’s condition in Ω⊂ R5 if there is a positive

constant k such as

||~f (~X1)−~f (~X2)||< k||~X1− ~X2||,∀~X1, ~X2 ∈Ω.

The following theorem guarantee the existence and uniqueness of solution of model (1).

Theorem 2. The model (1) subject to non-negative initial values has a unique solution in Ω for

all t ≥ 0.
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Proof. The right side of model (1) can be written as follows.

f1 = Λ− βS(t)I(t)
N(t)

−µS(t),

f2 =
βS(t)I(t)

N(t)
− (γ +µ)E(t),

f3 = γE(t)− (σ +θ +δ +µ)I(t),

f4 = σ I(t)− (ϑ +κ +µ)Q(t),

f5 = θ I(t)+ϑQ(t)−µR(t),

f6 = δ I(t)+κQ(t),

Suppose that x1 = S, x2 = E, x3 = I, x4 = Q, and x5 = R. Then, it can be shown that ∂ fi
∂x j

is

continuous and
∣∣∣ ∂ fi

∂x j

∣∣∣ < ∞ for all i, j = 1,2, ..,6. Based on Derrick and Groosman theorem in

[22], system (1) satisfies Lipchitz’s condition, meaning that the model (1) has a unique solution.

�

5. EQUILIBRIUM POINTS

Let X = (S,E, I,Q,R)T . By setting

(3)
dX(t)

dt
=~0,

we get E = (σ+θ+δ+µ)
γ

I, Q= σ

(ϑ+κ+µ)I, R= θ I+ϑQ
µ

, and N = Λ−δ I−κQ
µ

=
Λ−
(

δ+ κσ

θ+κ+µ

)
I

µ
. Then,

by substituting E to the second equation of (3), we obtain

βSI
N
− (γ +µ)(σ +θ +δ +µ)

γ
I = 0 =⇒ I = 0∨S =

(γ +µ)(σ +θ +δ +µ)

βγ
N.

For I = 0, it is clear that E = 0,Q = 0,R = 0,N = Λ

µ
,S = Λ

µ
. Meanwhile, for S =

(γ+µ)(σ+θ+δ+µ)
βγ

N, based on the first equation of (3), we get

0 = Λ− (γ+µ)(σ+θ+δ+µ)
γ

I− (γ+µ)(σ+θ+δ+µ)Λ
βγ

+
(γ+µ)(σ+θ+δ+µ)

(
δ+ κσ

θ+κ+µ

)
I

βγ
,

I =

[
(γ+µ)(σ+θ+δ+µ)Λ

βγ

]
−Λ[

(γ+µ)(σ+θ+δ+µ)
(

δ+ κσ
θ+κ+µ

)
βγ

− (γ+µ)(σ+θ+δ+µ)
γ

]

= (γ+µ)(σ+θ+δ+µ)Λ−βγΛ[
(γ+µ)(σ+θ+δ+µ)

(
δ+ κσ

θ+κ+µ

)
−(γ+µ)(σ+θ+δ+µ)

] .
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As a result, we obtain the endemic equilibrium point (S∗,E∗, I∗,Q∗,R∗) with

(4)

I∗ = (γ+µ)(σ+θ+δ+µ)Λ−βγΛ[
(γ+µ)(σ+θ+δ+µ)

(
δ+ κσ

θ+κ+µ

)
−(γ+µ)(σ+θ+δ+µ)

] ,
S∗ = (γ+µ)(σ+θ+δ+µ)Λ

βγµ
−

(γ+µ)(σ+θ+δ+µ)
(

δ+ κσ

θ+κ+µ

)
I∗

βγµ
,

E∗ = (σ+θ+δ+µ)
γ

I∗,

Q∗ = σ

ϑ+κµ
I∗,

R∗ = θ I∗+ϑQ∗
µ

.

Theorem 3. The model (1) has two equilibrium points as follows.

(1) The disease-free equilibrium point ε0 = (S0,0,0,0,0) with S0 = Λ

µ

(2) The endemic equilibrium point ε∗ = (S∗,E∗, I∗,Q∗,R∗) with S∗,E∗, I∗,Q∗,R∗ are given

by equations (4)

6. BASIC REPRODUCTION NUMBER

One of important epidemiologic metric is the basic reproduction number (R0), which mea-

sures the contagiousness or transmissibility of infectious agents. The basic reproduction num-

ber can be determined by the next generation matrix method. For that aim, we consider

Z = (E, I,Q)T . Then, we have

dZ
dt

= F (Z)−V (Z),

where

F (Z) =


βSI
N

0

0

 and V (Z) =


(γ +µ)E

−γE +(σ +θ +δ +µ)I

−σ I +(ϑ +κ +µ)Q

 .

The Jacobian matrices of F and V evaluated at ε0 are respectively given by F and V as

follows

F =


0 β 0

0 0 0

0 0 0

 and V =


µ + γ 0 0

−γ σ +θ +δ +µ 0

0 −σ ϑ +κ +µ

 .
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Hence, the next generation matrix is given by

FV−1 =


βγ

(µ+γ)(σ+θ+δ+µ)
β

(σ+θ+δ+µ) 0

0 0 0

0 0 0

 .

The basic reproduction number (R0) is a spectral radius of the next generation matrix, that is,

R0 = ρ(FV−1) =
βγ

(γ +µ)(σ +θ +δ +µ)
.

We observe that R0 is inversely proportional to the the recovery rate of the infected sub-

population (θ) as well as to the quarantine rate σ . The larger the value of θ or σ , the smaller

the R0 value. We also notice that I∗ in endemic point can be written in term of R0 as follows

I∗ =
Λ(1−R0)

δ + κσ

θ+κ+µ
−β

.

If R0 > 1, then

β >
(γ +µ)(σ +θ +δ +µ)

γ
> (σ +θ +δ +µ)> δ +σ > δ +σ

κ

θ +κ +µ
.

Thus, the endemic equilibrium point exists if R0 > 1.

7. THE STABILITY OF EQUILIBRIUM POINTS

In this section, we first provide the local asymptotic stability of disease-free equilibrium point

ε0 as follow.

Theorem 4. The disease-free point ε0 is locally asymptotically stable in domain Ω if R0 < 1.

Proof. The Jacobian matrix of system (1) evaluated at ε0 is given by

J(ε0) =



−µ 0 β 0 0

0 −(γ +µ) β 0 0

0 γ −(σ +θ +δ +µ) 0 0

0 0 σ −(ϑ +κ +µ) 0

0 0 θ ϑ −µ


.
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The first three eigenvalues of the Jacobian matrix J(ε0) are λ1 = λ2 = µ < 0, λ3 = −(ϑ +

κ +µ)< 0, while the other two eigenvalues are the eigenvalues of the following matrix

JR =

−(γ +µ) β

γ −(σ +θ +δ +µ)

 .

Notice that Trace(JR) =−(γ +σ +θ +δ +2µ)< 0 and Det(JR) = (γ +µ)(σ +θ +δ +µ)−

βγ . It is clear that Det(JR)> 0 if R0 < 1. Thus, if R0 < 1, then the real parts of λ4 and λ5 are

negative. Consequently, the disease-free point ε0 is locally asymptotically stable if R0 < 1. �

In the following theorems, we show the global asymptotic stability of the disease-free equili-

brium point ε0 and the endemic equilibrium point ε∗.

Theorem 5. The disease-free equilibrium point ε0 is globally asymptotically stable in the do-

main Ω if R0 < 1.

Proof. To prove this theorem, we follow the method of Castilo-Chavez et al. [24]. First, we

rewrite the model (1) as

dY
dt

= F1(Y,Z) =

 Λ− βSI
N −µS

θ I−ϑQ−µR

 ,

dZ
dt

= F2(Y,Z) =


βS(t)I(t)

N(t) − (γ +µ)E(t)

γE(t)− (σ +θ +δ +µ)I(t)

σ I(t)− (ϑ +κ +µ)Q(t)

 ; F2(Y,~0) =~0,

where the elements of Y = (S,R) ∈ R2
+ describe the number of non-infected individuals while

the components of Z = (E, I,Q) ∈ R3
+ indicate the number of non-infected individuals. Let

ε0 =
(

Y 0,~0
)

with Y 0 =
(

Λ

µ
,0
)

. Based on the theorem in [24], the ε0 is globally asymptotically

stable if R0 < 1 and the following conditions hold:

(H.1) Y 0 is globally asymptotically stable for system dY
dt = F1(Y,~0).

(H.2) F2(Y,~0) =~0 and F2 (Y,Z) =CZ− F̂2 (Y,Z) where F̂2 (Y,Z)≥ 0 for any (Y,Z) ∈Ω and C

is the Jacobian matrix
(

∂F2
∂Z

)
evaluated at ε0.
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We notice that

C =


−(γ +µ) −β 0

γ −(σ +θ +δ +µ) 0

0 σ −(ε +κ +µ)

 and F̂2(Y,Z) =


β I
N

(
λ

µ
−S
)

0

0

 .

It is clearly seen that the elements of F̂2(Y,Z) are non-negative, and therefore condition (H.2) is

satisfied.

We next consider that

dY
dt

= F1(Y,~0) =

Λ−µS

−µR

 ,

from which we get

Y (t) =

S(t)

R(t)

=

Λ

µ
+
(

S(0)− Λ

µ

)
exp(−µt)

R(0)exp(−µt)

 .

It is observed that S(t)→ Λ

µ
and R(t)→ 0 as t→ ∞, showing that Y 0 is globally asymptotically

stable. Since condition (H.1) is also satisfied, the disease-free point ε0 is globally asymptoti-

cally stable in domain Ω. �

Theorem 6. Assume that R0 > 1, and thus the endemic equilibrium ε∗ exists. Then, the point

ε∗ is globally asymptotically stable in the domain Ω.

Proof. Consider a Lyapunov function W , which is defined by

W (S,E, I) = S−S∗−S∗ ln
(

S
S∗

)
+E−E∗−E∗ ln

(
E
E∗

)
+

γ +µ

γ

(
I− I∗− I∗ ln

(
I
I∗

))
.

The Lyapunov function W is a positive definite function in region Ω. The derivative of W with

respect to t is

dW
dt

=

(
1− S

S∗

)
dS
dt

+

(
1− E

E∗

)
dE
dt

+
γ +µ

γ

(
1− I

I∗

)
dI
dt

=

(
1− S

S∗

)(
Λ− βS(t)I(t)

N(t)
−µS(t)

)
+

(
1− E

E∗

)(
βS(t)I(t)

N(t)
− (γ +µ)E(t)

)
+

γ +µ

γ

(
1− I

I∗

)
(γE(t)− (σ +θ +δ +µ)I(t))



12 I. DARTI, TRISILOWATI, M. RAYUNGSARI, R.R. MUSAFIR, A. SURYANTO

= −µ

S
(S−S∗)2 +

βS∗I∗

N
− βSI

N
− β (S∗)2I∗

N
+

βS∗I
N

+
βSI
N
− βSIE∗S∗I∗

NES∗I∗
− (γ +µ)E

+(γ +µ)E∗+ (γ +µ)E− (γ +µ)(σ +θ +δ +µ)

γ
I− (γ +µ)I∗EE∗

IE∗

+
(γ +µ)(σ +θ +δ +µ)

γ
I∗

= −µ

S
(S−S∗)2 +

βS∗I∗

N

(
3− S∗

S
− E∗SI

ES∗I∗
− EI∗

E∗I

)
Since the geometric mean is less than or equal to the arithmetic mean [25], we have

3≤
(

S∗

S
+

E∗SI
ES∗I∗

+
EI∗

E∗I

)
.

It is clear that
dW
dt
≤ 0. Furthermore,

dW
dt

= 0 is satisfied if and only if S = S∗, E = E∗, and

I = I∗. The LaSalle’s Invariance Principle in [25] guarantees that S→ S∗, E → E∗, and I→ I∗

as t→ ∞. Hence, Q→ Q∗ and R→ R∗ as t→ ∞. In other words, ε∗ is globally asymptotically

stable. �

From discussion above, we know that the disease-free equilibrium ε0 always exists. If R0 < 1

then the endemic equilibrium point ε∗ does not exist and ε0 is globally asymtotically stable.

However, if R0 > 1 then ε∗ co-exists and is globally asymtotically stable. Hence, based on

Martcheva [25], there occurs a forward bifurcation driven by R0. Because R0 is directly pro-

portional to the infection rate β , the forward bifurcation may also caused by β . For example,

we perform simulation using parameters value as in Table 2 and varying the value of β . Based

on this simulation, we plot the bifurcation diagram as shown in Figure 2. It can be seen that

the model (1) exhibits a forward bifurcation, where the bifurcation occurs when R0 = 1 or

β = 0.2314.

8. NUMERICAL SIMULATIONS

To confirm our previous analytical results, we solve the SEIQRD epidemic model (1) us-

ing the fourth-order Runge-Kutta method. If not stated otherwise, our simulation uses pa-

rameter values as in Table 2. First, we take infection rate β = 1.7 and initial value S(0) =

9,000,E(0) = 45, I(0) = 5,Q(0) = 40,R(0) = 17,500,D(0) = 1,000. Using these parameter

values, we get R0 = 3.0245 > 1, and therefore the endemic equilibrium point exists and it
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TABLE 2. Parameters values

Parameter Value Unit Source

Λ 3.52
individual

day
[26]

µ 0.0001
1

day
[26]

γ 0.052
1

day
[26]

σ 0.5
1

day
Assumed

θ 0.041
1

day
[26]

δ 0.2–0.0001
1

day
[26]

ϑ 0.041
1

day
[27]

κ 0.2–0.0001
1

day
Assumed

0.5 0.75 1 1.25 1.5

R
0

0

0.5

1

1.5

2

2.5

3

I*

Stable DFE
Unstable DFE
Stable EE
Bifurcation point

FIGURE 2. Forward bifurcation driven by R0.

is globally asymptotically stable. This stability properties is confirmed by our simulation de-

picted in Figure 3, that is the numerical solution is convergent to the endemic equilibrium point

ε∗ = (8795.7718,50.6799,4.6976,38.5049,17713.0407).

For the second numerical simulation, we take a larger value of the quarantine rate, i.e. σ = 2.

The basic reproduction number in this case is R0 = 0.8233 < 1. Hence, our previous anal-

ysis says that the disease-free equilbrium point ε0 = (35200,0,0,0,0) is globally asymtoti-

cally stable. The numerical solution using initial value S(0) = 38,000,E(0) = 2000, I(0) =
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FIGURE 3. Numerical solution of the model (1) with parameters value as in

Table 2 and β = 1.7.

1000,Q(0) = 3000,R(0) = 50,D(0) = 1,000 is shown in Figure 4. This picture shows that

ε0 = (35200,0,0,0,0) is indeed asymtotically stable.

To see the effect of the recovery rate of the infected class (θ), we perform simulation using

parameters value as for the first simulation but with θ = 1.2. The basic reproduction num-

ber in this case is R0 = 0.8233 < 1 and hence we can expect that the disease-free equilibrium

point ε0 = (35200,0,0,0,0) is globally asymptotically stable. This is confirmed by our numer-

ical result shown in Figure 5. Here we take initial value S(0) = 38,000,E(0) = 2000, I(0) =

1000,Q(0) = 3000,R(0) = 50,D(0) = 1,000.
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FIGURE 4. Numerical solution of the model (1) with β = 1.7, σ = 2, and other

parameters value as in Table 2.
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FIGURE 5. Numerical solution of the model (1) with β = 1.7, θ = 1.2, and

other parameters value as in Table 2.
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9. CONCLUSIONS

A SEIQRD model to describe the spread of COVID-19 disease using the standard incidence

rate has been developed in this paper. The model consists of susceptible (S), exposed (E), in-

fected (I), quarantined (Q), recovered (R), and death caused by the COVID-19 disease(D) sub-

populations. The existence, uniqueness, non-negativity, and boundedness of solution have been

proven, showing that the proposed model is biologically feasible. The model has two equi-

librium points, namely the disease-free equilibrium point and the endemic equilibrium point.

Using the next generation matrix method, we have determined the basic reproduction number.

The disease-free equilibrium point always exists and it is locally and globally asymptotically

stable if the basic reproduction number is less than unity. If the endemic equilibrium point ex-

ists, i.e. when the basic reproduction number is greater than unity, then it is always globally

asymptotically stable. The proposed model exhibits a forward bifurcation, where the basic re-

production number acts as a bifurcation parameter. The results of our dynamical analysis are

confirmed by our numerical simulations. Furthermore, from the basic reproduction number for-

mula and our numerical simulation results, the basic reproduction number can be reduced by

increasing the rate of recovery or quarantine of the infected sub-population. This shows that

COVID-19 disease can be controlled by treating infected individuals or by quarantining them.
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