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Abstract. This work presents a fractional SITR mathematical model that investigates the Tuberculosis (TB) spread

in a human population. It was shown that disease-free and endemic equilibrium stability depended on the basic

reproduction number. These results are in accordance with the epidemic theory. A numerical example is given to

demonstrate the validity of the results. The results show that the infected subpopulation increases in the absence

of special treatment.
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1. INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, and is

usually acquired through airborne infection from active TB cases [1, 2]. According to the

World Health Organization, one third of the world’s population is infected with tuberculosis

either latently or actively. Despite effective antimicrobial chemotherapy, tuberculosis infection

remains a leading cause of death from an infectious disease [3].
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Mathematical modelling has been proven to be important in better understanding the trans-

mission dynamics of TB and evaluating the effectiveness of various control and prevention

strategies. Several studies on the spread of TB disease using mathematical models have been

carried out by many researchers, see [4, 5, 6, 7] for models in form of the nonlinear differential

equations.

The SIT R model is one of among the models of the spread of tuberculosis in the form of

non-linear differential equations that are widely discussed [8, 9]. In this model, the observed

human population (N) is divided into fourth epidemiological sub-compartments denoted by

susceptible S(t), TB active (infected) I(t), under treatment T (t), and recovered individuals after

treatment R(t) as described in the compartment diagram in Figure 1. Based on the Figure 1, the

transmission model for TB dynamics is given by the system of non-linear differential equations

(1) [9].

FIGURE 1. Compartment diagram for SITR model

Ṡ =bN−β
I
N

S−µS

İ =β
I
N

S−αI−µI(1)

Ṫ =αI− γT −µT

Ṙ =γT −µR,

with the initial conditions S(0) = S0, I(0) = I0,T (0) = T0,R(0) = R0 and the involve various

parameters in (1) are described in Table 1. The population total is N = S+ I +T +R. Along
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TABLE 1. Parameter with description occuring in the model (1).

Parameter Description

b Birth rate

β Transmission rate

µ Natural death rate

α Progression rate from I to T

γ Rate at which treated people leave T class

with the development of the fractional-order differential equation, recently the issue on devel-

opment of mathematical models in form of the fractional-order non-linear differential equation

are widely discussed by many researchers, see [10, 11, 12, 13, 14, 15, 16]. In this paper, we

modify the model (1) by replacing usual derivative into fractional-order derivative such that the

model (1) can be written as a following new model:

∆
(δ )S =bN−β

I
N

S−µS

∆
(δ )I =β

I
N

S−αI−µI(2)

∆
(δ )T =αI− γT −µT

∆
(δ )R =γT −µR,

where ∆(δ ) is the Caputo fractional derivative operator of oder δ with 0 < δ < 1. As a new

SIT R model, we study the stability of the disease-free equilibrium and endemic equilibrium of

the model (2). To the best of the author’s knowledge, this issue has not been solved yet to date.

Therefore the results of this work constitute a novelties at once a new contribution in the field

of fractional-order epidemic dynamic.

The paper is organized as follows: Section 2 considers some useful results about Caputo

fractional derivative and stability of the fractional-order nonlinear system. The main result of

this article is presented in the section 3. Section 4 concludes the paper.
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2. SOME USEFUL RESULTS

In this section we recall several mathematical tools used in this study. The Caputo fractional

derivative of order δ with δ ∈ (k−1,k) , k ∈ N for the integrable vector function x : [0,∞)→

Rn, is defined by

(3) ∆
(δ )x(t) =

1
Γ(k−δ )

t∫
0

(t− τ)k−δ−1
∆
(k)x(τ)dτ

where Γ(.) is the Euler Gamma function [17], and ∆(k)x(.) is the usual kth derivative of function

x(.).

Let us consider the fractional-order nonlinear system involving Caputo derivative

(4) ∆
(δ )x(t) = f(t,x(t))

with suitable initial conditions x(0) = x0, where x(t) ∈ Rn is the state vector of the system (4),

f : [0,∞)×Rn→ Rn. If f is linear, the system (4) can be written as

(5) ∆
(δ )x(t) = Ax(t)),

where A ∈ Rn×n. The point x∗ is said the equilibrium point of the system (4) if f(t,x∗) = 0.

Theorem 2.1. [18] The fractional-order linear system (5) with δ ∈ (0,1), is asymptotically

stable if

(6) |arg(λ j)|>
δπ

2
,

and λ j, j = 1,2, · · · ,n are eigenvalues of the matrix A.

Theorem 2.2. [18] Let x = x∗ is an equilibrium of the the fractional-order system (4) with

δ ∈ (0,1). The equilibrium point x = x∗ is asymptotically stable if

(7) |arg(λ )|> δπ

2
,

for all roots λ of the equation

(8) |Jx∗−λ I|= 0

where Jx∗ is the Jacobian matrix of system (4) at the equilibrium x∗.
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3. STABILITY ANALYSIS

The dynamical behavior of the model can be classified by the basic reproductive number

[6]. By applying the next generation technique presented in [6], the basic reproduction number,

denoted by R0, for the model (2) is

(9) R0 =
βb

µ(µ +α)
.

The equilibrium points of the model (2) is evaluated by solving the following equations:

(10) ∆
(δ )S = ∆

(δ )I = ∆
(δ )T = ∆

(δ )R = 0.

The disease-free equilibrium, denoted by K0, of the fractional order TB model (2) is obtained

by assuming I = 0, such that the disease-free equilibrium is

(11) K0 =

(
bN
µ

,0,0,0
)
.

The endemic equilibrium, denoted by K1, of the fractional order TB model (2) exists if R0 > 1.

Thus the endemic equilibrium of the model (2) is K1 = (S∗, I∗,T ∗,R∗), where

S∗ =
(µ +α)N

β
,

I∗ =
(βb−µ(µ +α))N

β (µ +α)
,

T ∗ =
(βb−µ(µ +α))αN

β (µ +α)(γ +µ)
,(12)

R∗ =
γαN(βb−µ(µ +α))

β (µ +α)(γ +µ)
.

We will analyze the stability of these two equilibrium points. First of all, the Jacobian matrix

of the vector field corresponding to model (2) is

J =



−β I
N −µ −βS

N 0 0

β I
N

βS
N −µ−α 0 0

0 α −γ−µ 0

0 0 γ −µ


.(13)
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The stability of the disease-free equilibrium K0 is given in the following theorem.

Theorem 3.1. If R0 < 1, then K0 is asymptotically stable and becomes unstable when R0 ≥ 1.

Proof. For K0 = (bN
µ
,0,0,0), the characteristic equation of (13) is given by

|JK0−λ I|=
(

βb
µ
−µ−α−λ

)
(−µ−λ )(−γ−µ−λ )(−µ−λ ) = 0.(14)

The equation (14) shows that the eigenvalues of JK0 are βb
µ
− µ −α,−(γ + µ) and −µ. One

can see that all eigenvalues of (14) satisfy |arg(λ j)|> δπ

2 if R0 < 1 and at least one eigenvalue

satisfy |arg(λ j)| < δπ

2 when R0 > 1. Hence, K0 is locally asymptotically stable if R0 < 1 and

becomes unstable if R0 > 1. �

We now consider the stability of the endemic equilibrium K1. The Jacobian matrix of (13) at

K1 becomes

(15) JK1 =



−βb
µ+α

−µ−α 0 0

βb
µ+α
−µ 0 0 0

0 α −γ−µ 0

0 0 γ −µ


The stability of the endemic equilibrium K1 is given in the following theorem.

Theorem 3.2. If R0 > 1, then K1 is asymptotically stable and becomes unstable when R0 < 1.

Proof. The characteristic equation of (15) is given by

(16) |JK1−λ I|= (−µ−λ )(−γ−µ−λ )

(
λ

2 +

(
βb

µ +α

)
λ +βb−µ(µ +α)

)
= 0.

The eigenvalues of JK1 are

λ1 =−µ, λ2 =−µ− γ,
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and λ3,4 that constitute roots of the equation

λ
2 +

(
βb

µ +α

)
λ +(βb−µ(µ +α)) = 0.(17)

Observe that if R0 > 1, then λi satisfies |arg(λi)| > δπ

2 , for i = 1,2,3,4, thus K1 is locally

asymptotically stable. Otherwise, K1 is unstable. �

In order to show the validity of the results, let us consider the following numerical exam-

ple. For the model (2), let b = 0.3,µ = 0.1,β = 0.5,α = 0.3,γ = 0.85 and N = 1. The initial

conditions are S0 = 0.2921, I(0) = 0.2921,T (0) = 0.2921 and R(0) = 0.1237. Base on these

parameter values, we find the basic reproduction number R0 = 3.75, thus the equiblirium point

is endemic is K1 = (0.8,0.55,0.1737,0.1476). Graph of the susceptible subpopulation, infected

subpopulation, treatment subpopulation and recovered subpopulation for several fractional or-

der, respectively, are given in the Figure 2, Figure 3, Figure 4 and Figure 5. One can see that

the infected subpopulation increases in the absence of special treatment.

FIGURE 2. Susceptible Subpopulation FIGURE 3. Infected Subpopulation
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FIGURE 4. Treatment Subpopulation FIGURE 5. Recovered Subpopulation

4. CONCLUSION

We have find the fractional SIT R model for dynamic of tuberculosis spread. An example

that illustrating the result has been presented. The analysis show that the SIT R model give the

adequate information about spread of tuberculosis.
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