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Abstract. In this paper, we proposed a new HIV-1 infection model with saturation infection rate by incorporating,

cure rate, absorption effect, and two-time delays namely intracellular time delay that representing the time viral

passage into a target cell and creation of new infectious particles and maturation time delay representing the

required time for newly produce virus to mature and the infect the susceptible cell. The mathematical investigation

shows that the basic reproduction number R0 of the model totally decides the steadiness properties. Utilizing

the characteristic equation of the model and Routh-Hurwitz steadiness basis, we affirmed that the infection-free

equilibrium and the chronic disease equilibrium are locally asymptotically steady in case R0 ≤ 1 and R0 > 1,

individually. If R0 ≤ 1, using the appropriate Lyapunov functions and LaSalle’s invariance principle, it has been

shown that the infection-free equilibrium of the model is globally asymptotically stable. If R0 > 1 the model

is persistent. Conversely, if R0 > 1, the infection-free equilibrium is unstable and a unique chronic infection

equilibrium exists. We show that, if R0 > 1, the chronic infection is globally asymptotically stable. Moreover,

numerical simulations are performed to verify the theoretical results.
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1. INTRODUCTION

HIV is called human immunodeficiency infection, taints and annihilates the cells of the hu-

man resistant framework, challenging it to battle off other illnesses. When HIV severely weak-

ens the human immune system, it causes acquired immunodeficiency syndrome (AIDS) [1].

HIV contamination happens through the exchange of blood, bosom milk, vaginal liquid, se-

men, or pre-ejaculation. In these body fluids, HIV may exist in the form as free-virus and virus

within the infected cells. HIV attacks to the immune system of the body, which consists of a

variety of biological structures to prevent or control a variety of infections and diseases.

CD4+T cells are focal middle mediators of the immune system in people, critically organiz-

ing cellular and humoral immune reactions against infections. The use of CD4+T lymphocytes

in the fight against infections is reduced because HIV only infects CD4+T lymphocytes, which

make up a large portion of white blood cells [2]. Therefore, if the infected body is not given

external treatment, the amount of CD4+T in the human body can be drastically reduced and

it may increasing trend to receive the associated diseases. An opportunistic infection occurs

when a certain number of CD4+T cells are destroyed, resulting in weakened immune systems.

Therefore, if not treated with HIV drugs, HIV can gradually destroy the immune system and

develop into the acquired immunodeficiency syndrome (AIDS), which is the advanced stage of

HIV infection (see [3, 4]).

Current statistics published by the World Health Organization indicate that HIV remains as

a major global public health problem. Certain antiretroviral (ARV) drugs are currently avail-

able to help the immune system fight off HIV infection. Protease Inhibitors (PIs), is one of

chemotherapy drugs that inhibit virus production from actively infected CD4+T cells. Reverse

transcriptase inhibitors (RTIs) are another chemotherapy that opposes the conversion of the

virus’s RNA into DNA (reverse transcription), so that the viral population will be low and the

CD4+T count will high and the host can survive (see [5, 6]). Even though HIV treatment and

prevention have made significant progress, appropriate or relevant drug therapy must still be

promoted. The dynamics of HIV infection, its progression, and the immune system’s coopera-

tion with HIV can all be studied with the help of mathematical modeling.
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Bonhoeffer and Nowak proposed the fundamental virus dynamics model (1.1) in section [7],

and Korobeinikov performed the model’s entire theoretical calculation in [8].

ẋ(t) = λ −βx(t)v(t)−dx(t),

ẏ(t) = βx(t)v(t)− py(t),

v̇(t) = ky(t)−uv(t).

(1.1)

Where, x(t) and y(t) denote the densities of uninfected cells and infected cells which have

capability to produce virus at time t, respectively. v(t) is free virus at time t. All parameters of

model (1.1) are assumed to be positive constants, and the biological meanings of them are as

follows. The new uninfected cells generating rate is denoted by parameter λ . The parameters d

and β are the natural death rate of uninfected cells and the rate of infection, respectively. The

infected cells produce new viruses at a rate of k throughout their lifetimes, with p representing

the death rate of the infected cells as a result of the virus or the immune system. parameter u

represent the cleaning rate of free virus from the system.

In model (1.1), the rate of disease infection per host and per virus is assumed to be a bilinear

incidence rate, and virus particles produce virus immediately upon binding to a target cell with-

out a time delay. The tests detailed in [9] unequivocally recommended that the contamination

pace of microparasitic diseases is a rising capability of the parasite portion, and is normally

sigmoidal in shape (see e.g [10]). In [11], it has been demonstrated biologically that there is a

delay known as the intracellular time delay between the time a virus enters a target cell and the

time it takes that infected cell to produce another virus. Therefore, researchers are motivated

to propose and develop the mathematical dynamics models by introducing time delays and the

different functional responses instead of the bilinear functional response (see e.g.[12, 13, 14]).

Li-Ming et al. in [13] Have examined the HIV-1 infection model using the Beddington-

DeAngelis functional response and intracellular time delay, and they demonstrated that the

system is permanent and infection equilibrium is globally asymptotically stable if the repro-

duction number is greater than one. In fact, when a pathogen enters into uninfected cells, the

number of pathogens in the blood volume decreases, which is known as the retention impact or

absorption effect (see e.g [14]). In [15], Pradeep and Ma have looked at a HIV-1 virus dynamics
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model with an absorption effect, a Beddington-DeAngelis functional response, and an intracel-

lular time delay. The authors have determined the local and global stability of the infection-free

equilibrium by using Lyapunov method and determine only local stability of the chronic infec-

tion equilibrium and show that the stability properties are totally dependent on the reproduction

number of the model. A HIV-1 model with double delays (intracellular deferral and immune

delay) and infection depreciation term is proposed in [16]. The authors have done a total ana-

lytical calculation and numerical simulation. Further suggested that intracellular delay is more

important than the immune delay.

In [17], Hattaf and Noura have considered the mathematical model with the general form of

infection process by incorporating the cure rate and absorption effect without considering the

delay terms. In this paper the authors have determined the stability of the disease free equilib-

rium by direct Lyapunov method and geometrical approach have used for chronic infection.

Geo and Ma [18], have considered the Mathematical dynamics model of HIV with apoptosis

by incorporation intracellular time delay and considering the general nonlinear infection pro-

cesses. The authors have determined that if the basic reproduction number of the model is less

than unit, the infection-free equilibrium is globally asymptotically stable and global attractors

if equal to unity. They further show that the system is permanent if the reproduction number

greater than unity.

In [19], Zhuang and Zhu have suggested a model for the dynamics of HIV with cure rate.

The authors have studied the existence of Hopf bifurcation by analysing the transcendental

characteristic equation and used the Hopf bifurcation theory for global existence of bifurcating

periodic solutions. Culshaw and Ruan have presented a mathematical model with intercellular

time delay in [20] and the authors have discussed the effect of the time delay on the stability of

the endemically infected equilibrium and they have given criteria to ensure the chronic infection

is asymptotically stable for all delay.

A HIV-1 dynamics model by incorporating with both saturation infection rate and intracellu-

lar time delay has been proposed by Xu in [21]. The author has determined the local and global

stability of the both infection-free equilibrium and a chronic-infection equilibrium of the model.
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In addition, Xu conducted a comprehensive mathematical analysis of the HIV-1 infection model

in [22], which included an intracellular delay and absorption effect.

The time required for the virus to ripen after the infected cells have replicated the new virus

is known as the maturation time. A newly produced virus cannot attach directly to uninfected

target cells without maturing biologically. A mathematical model in [23] has been presented by

incorporating both intercellular time and maturation time and a thorough theoretical analysis

has been performed to show the global stability of the model.

In [24], the authors present a mathematical model that incorporates an intracellular time

delay, a maturation time delay, and an absorption effect. They also demonstrate that the model’s

equilibrium points are stable both locally and globally. Further researcher have shown that the

system is permanent.

Inspired by the above researches, we can consider the following dynamic model of HIV infec-

tion together with the saturation infection rate by incorporating absorption effects, intercellular

time delay, maturation time delay, and cure rate.

ẋ(t) = λ −dx(t)− βx(t)v(t)
1+αv(t)

+ γy(t),

ẏ(t) =
βe−pτx(t− τ)v(t− τ)

1+αv(t− τ)
− (p+ γ)y(t),

v̇(t) = ke−uσ y(t−σ)−uv(t)− βx(t)v(t)
1+αv(t)

.

(1.2)

where, τ ≥ 0 represent the intercellular time delays, the term e−pτ is the probability of surviving

from t− τ to t, 1/α is half saturation constant, when the number of susceptible cells increases

the inhibition effect from the behavioral change is measured by 1/(1+αv) and the infectivity

of the virus is measured by βv, σ ≥ 0 present the maturity time delay, the term e−uσ present the

probability of surviving from time t−σ to t, γ is the cure rate of infected cells. In addition, it

is presumptively assumed that all parameters are positive, and the remaining variables have the

same biological significance as the models discussed earlier.

The remainder of the content of the paper is arranged as follows. Section 2 present the

solution of system (1.2)’s positive, bounded, and limiting behavior. The existence of the unique

equilibrium of the system (1.2), as well as the local and global stability of each equilibrium

point, are all discussed in Section 3. In Section 4, the permanency of system (1.2) is discussed.
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In Section 5, the numerical simulations of system (1.2) are discussed. Section 6 provides a

discussion and conclusion.

2. PROPERTIES OF SOLUTION

Since the model depicts the growth of a cell population, we present the positivity and bound-

ingness of model (1.2) solutions in this section. As a result, the cell numbers ought to remain

fixed and not negative. The solutions’ global presence is inferred by these properties.

2.1. Positivity and boundedness. Let the initial condition of (1.2) is

(2.1) x(θ) = ψ1(θ),y(θ) = ψ2(θ),v(θ) = ψ3(θ), and ψi(θ)≥ 0, i = 1,2,3.

where θ ∈ [−ζ ,0], ψ = (ψ1(θ),ψ2(θ),ψ3(θ)) ∈C, and ζ = max{τ,σ}. C([−ζ ,R3
+]) map the

interval [−ζ ,0] into R3
+.

Theorem 2.1. Let (x(t),y(t),v(t)) be the solution of the model (1.2) satisfy the initial condition

(2.1), then the x(t),y(t) and v(t) are positive and ultimately bounded for all t ≥ 0. Further we

have

(i) w(t)≤ w(0)+ λ

δ
.

(ii) v(t)≤ v(0)+ ke−uσ

u ‖y‖∞.

where w(t) = x(t)+ y(t)+β

∫ t

t−τ

e−p(t−s) x(s)v(s)
1+αv(s)

ds, and δ = min{d, p}.

Proof. To start with, we will confirm the solution of system (1.2) is positive. Using the constant

variable formula, we get the following solution for the first and second equations of system

(1.2).

x(t) = e−dt
[

x(0)e−
∫ t

0
βv(ξ )

1+αv(ξ )dξ
+
∫ t

0
(λ + γy(η))edη−

∫ t
η

βv(ξ )
1+αv(ξ )dξ dη

]
.(2.2)

y(t) = y(0)e−(p+γ)t +βe−pτ

∫ t

0

x(η− τ)v(η− τ)

1+αv(η− τ)
e−(p+γ)(t−η)dη .(2.3)

Let t ∈ [0,ζ ], we have (η − τ) ∈ [−ζ ,0] for all η ∈ [0,ζ ]. Then using the initial condition

(2.1) and equation (2.2) and (2.3), we deduce that x(t)≥ 0,y(t)≥ 0 for t ∈ [0,ζ ]. This method

can repeat on [ζ ,2ζ ] to show that x(t) and y(t) are non-negative, and then successive intervals

[nζ ,(n+1)ζ ] for n≥ 2.
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Next, we show that v(t) is non-negative for t > 0. Assuming contrary, and considering t1 > 0

be the first time such that v(t1) = 0. Then by the third equation of the model (1.2) and the

similar argument above we have v̇(t1) = ke−nσ y(t1−σ) > 0, and hence we have v(t) < 0 for

some t ∈ (t1−ε, t1) for sufficiently small ε > 0. This contradicts v(t)> 0 for t ∈ [0, t1]. Therefore

it follows that v(t)> 0 for t > 0. This confirms the positivity of the solution.

Next, we have to show that the model (1.2) has bounded solutions.

From the first and second equations of (1.2), we have

(2.4) ẇ(t) = λ −dx(t)− py(t)− pβ

∫ t

t−τ

e−p(t−s) x(s)v(s)
1+αv(s)

ds.

Equation (2.4) can be deduced as

(2.5) w(t)≤ w(0)e−δ t +
λ

δ
(1− e−δ t).

As 1− e−δ t ≤ 1 and 0≤ e−δ t ≤ 1, we have (i).

The third equation of (1.2) can be simplify as

(2.6) v(t)≤ v(0)e−ut + ke−uσ

∫ t

0
eu(s−t)y(s−σ).ds

Then, we have

(2.7) v(t)≤ v(0)+
ke−uσ

u
‖y‖∞(1− e−ut).

Since 1− e−ut ≤ 1, from equation (2.7), we have (ii).

This confirms that the solutions of the model (1.2) are bounded. �

2.2. Limiting behavior of solution. It is important to focus our attention on the existence of

solutions to the finite behavior of the dynamical model.

Proposition 2.2. Let X(t) = (x(t),y(t),v(t)) be the solution of the model (1.2) subject to the

initial condition (2.1), then the limit of X(t) exists as t→+∞. Additionally, we have

lim
t→∞

x(t) ≤ λ

d
,(2.8)

lim
t→∞

y(t) ≤ uλ (λ −d limt→∞ x(t))
pud +(epτ −1)R0(a+δ )(ud +βλ ) limt→∞ x(t)

,(2.9)

lim
t→∞

v(t) ≤ ke−uσ

u
lim
t→∞

y(t).(2.10)
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Proof. Let z(t)= β

∫ t

t−τ

e−p(t−s) x(s)v(s)
1+αv(s)

ds. Then adding the first and second equation of (1.2)

and the derivative of z(t), we have

(2.11) ẋ(t)+dx(t) = λ − (ẏ(t)+ py(t))− (ż(t)+ pz(t)).

Equation (2.11) can be derived in form

(2.12)

x(t) = (z(0)+ y(0)+ x(0))e−dt− z(t)− y(t)+
λ

d
(1− e−dt)+(d− p)

∫ t

0
(y(s)+ z(s))ed(s−t)ds.

If d ≥ p, from Lemma 3.3 in [25] and equation (2.12), we have

limsup
t→+∞

x(t)≤ λ

d
− p

d

(
limsup
t→+∞

y(t)+ limsup
t→+∞

z(t)
)
,

liminf
t→+∞

x(t)≥ λ

d
− p

d

(
liminf
t→+∞

y(t)+ liminf
t→+∞

z(t)
)
.

(2.13)

If p≥ d, using similar methods to get equation (2.12), we have

(2.14) y(t) = (z(0)+ y(0)+ x(0))e−pt− x(t)− z(t)+
λ

p
(1− e−pt)+(p−d)

∫ t

0
ep(s−t)x(s)ds,

and, using Lemma 3.3 in [25] and from equation (2.14), we get

limsup
t→+∞

y(t)≤ λ

p
− d

p
limsup
t→+∞

x(t)− limsup
t→+∞

z(t),

liminf
t→+∞

y(t)≥ λ

p
− d

p
liminf
t→+∞

x(t)− liminf
t→+∞

z(t).
(2.15)

By comparing system (2.13) and (2.15), for the parameters p > 0, and d > 0, we have

limsup
t→+∞

x(t)≤ λ

d
− p

d

(
limsup
t→+∞

y(t)+ limsup
t→+∞

z(t)
)
,

liminf
t→+∞

x(t)≥ λ

d
− p

d

(
liminf
t→+∞

y(t)+ liminf
t→+∞

z(t)
)
.

(2.16)

Then, from system (2.16), we have

limsup
t→+∞

x(t)− liminf
t→+∞

x(t)≤ p
d

(
liminf
t→+∞

y(t)− limsup
t→+∞

y(t)
)
+

p
d

(
liminf
t→+∞

z(t)− limsup
t→+∞

z(t)
)
.

Thus, easily we can prove that

limsup
t→+∞

x(t) = liminf
t→+∞

x(t), limsup
t→+∞

y(t) = liminf
t→+∞

y(t), and limsup
t→+∞

z(t) = liminf
t→+∞

z(t).
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Then, from (2.16), we have

(2.17) lim
t→+∞

y(t) =
λ

p
− d

p
lim

t→+∞
x(t)− lim

t→+∞
z(t).

Since z(t)≥ 0 and y(t)≥ 0 for all t ≥ 0, from equation (2.17), we have (2.8).

From equation (2.6), we can easily deduce (2.10).

Since we have,

z(t) = β

∫
τ

0

e−psx(t− s)v(t− s)
1+αv(t− s)

ds,

then,

lim
t→+∞

z(t) =
β

p
(1− e−pτ) lim

t→+∞

(
x(t)v(t)

1+αv(t)

)
.

Therefore, from equation (2.17), we obtain

(2.18) lim
t→+∞

y(t) =
λ

p
− d

p
lim

t→+∞
x(t)− β

p
(1− e−pτ) lim

t→+∞

(
x(t)v(t)

1+αv(t)

)
.

Using (2.10) and (3.1), from equation (2.18), we can easily obtain (2.9). This implies that the

solution of (1.2) extends for any t > 0. Consequently, the solutions of (1.2) exist globally. �

3. MODEL ANALYSIS

In this section, we study the existence of the infection-free equilibrium point E f (x0,y0,v0)

and the chronic infection equilibrium point Ech(x1,y1,v1) of model (1.2) and their stabilities.

3.1. Basic reproduction number. The average number of infected cells produced by one

infected cell during the time of admixture when all cells are uninfected is referred to as the

basic reproductive number. The similar approach that was provided in [26] can be used to

determine the model reproduction number and which is denoted as R0.

(3.1) R0 =
λβke−uσ−pτ

(p+ γ)(ud +λβ )
,

where 1
p+γ

represents the average length of time an infected cell can be expected to live that is

less than 1
p because a portion of infected cells recover by removing all DNA from their nuclei

at a rate γ [17]. The dynamics of the system are significantly influenced by R0.

Theorem 3.1.
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(i) If R0 ≤ 1, then model (1.2) has a unique infection free equilibrium of the form

E f (λ/d,0,0).

(ii) if R0 > 1, then model (1.2) has a unique chronic infection equilibrium of the form

Ech(x1,y1,v1) with x1 ∈ (0, λ

d ),y1 > 0, and v1 > 0.

Proof. For any equilibrium points, the following system of equations holds.

λ −dx− βxv
1+αv

+ γy = 0(3.2)

βe−pτxv
1+αv

− (p+ γ)y = 0(3.3)

ke−uσ y−uv− βxv
1+αv

= 0(3.4)

Form the equations (3.2) and (3.3), we have y =
λ −dx

pepτ +(epτ −1)γ
≥ 0 implies that x ≤ λ

d .

Hence, there is no equilibrium point for the system if x > λ

d .

By direct calculation from the equations (3.2)-(3.4), it is easy to show that, if R0 > 1, system

(1.2) has a unique chronic infection equilibrium point Ech(x1,y1,v1), where

x1 =
λu(1+αv1)

udR0 +(R0−1)βλ
, y1 =

βe−pτx1v1

(1+αv1)(p+ γ)
,

v1 =
(p+ γ)(ud +βλ )(R0−1)

u [pβ +dα(p+ γ)+ γβ (1− e−pτ)]
.

(3.5)

Further, if R0 ≤ 1, from (3.5) and Theorem 2.1, we have a unique infection-free equilibrium

point of model (1.2) is E f (
λ

d ,0,0), which corresponds to the maximum level of healthy CD4+T

cells in the body. �

3.2. Stability of the infection free equilibrium. In this subsection we discuss about the local

stability of the infection free equilibrium point, E f (λ/d,0,0) by using then characteristic equa-

tion of model (1.2) and global stability of E f through the application of appropriate Lyapunov

functions and LaSalle’s invariance principle.
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Let E(x,y,v) be an arbitrary equilibrium point. Then the characteristic equation of the system

(1.2) about E is:

(3.6)

∣∣∣∣∣∣∣∣∣∣∣∣

s+
βv

1+αv
+d −γ

βx
(1+αv)2

−βve−pτ−sτ

1+αv
s+ p+ γ −βxe−pτ−sτ

(1+αv)2

βv
1+αv

−ke−uσ−sσ s+u+
βx

(1+αv)2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Theorem 3.2. For any τ ≥ and σ ≥ 0,

(i) if R0 < 1, then E f is locally asymptotically stable.

(ii) if R0 > 1, then E f is unstable.

(iii) if R0 = 1, then E f is linearly stable.

Proof. At the point E f , the characteristic equation (3.6) can be reduced to

(3.7) (s+d)
[
(s+ p+ γ)

(
s+u+

βλ

d

)
− kβλ

d
e−pτ−sτ−uσ−sσ

]
= 0.

As d =−s demonstrates, the first root of equation (3.7) has a negative root, and equation (3.8)

must be used to determine the other roots.

(3.8) (s+ p+ γ)

(
s+u+

βλ

d

)
− kβλ

d
e−pτ−uσ−sτ−sσ = 0.

Equation (3.8) can be written as

(3.9) s2 + s
(

p+ γ +u+
βλ

d

)
+(p+ γ)

(
u+

βλ

d

)[
1−R0e−sτ−sσ

]
= 0.

For any τ ≥ 0 and σ ≥ 0, when s = 0, equation (3.9) becomes

(p+ γ)

(
u+

βλ

d

)
(1−R0) = 0.

Thus, if R0 6= 1, s = 0 is not a solution of (3.8), for any τ,σ ≥ 0.

Let, τ = 0 and σ = 0. Then, from equation (3.9) becomes

(3.10) s2 + s
(

p+ γ +u+
βλ

d

)
+(p+ γ)

(
u+

βλ

d

)
(1−R0) = 0.

Clearly, if R0 < 1,(
p+ γ +u+

βλ

d

)
> 0 and (p+ γ)

(
u+

βλ

d

)
(1−R0)> 0.
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Therefore, by Ruth Hurwitz criterion, all roots of equation (3.10) have negative real parts.

Therefore, if R0 < 1, all the roots of equation (3.7) are negative real parts. Hence, if R0 < 1, the

point E f is locally asymptotically stable.

Next, assume that τ > 0,σ > 0, and s = ωi(ω > 0), is a pure imaginary root of equation (3.8)

[27]. Then, from equation (3.8), we have

(3.11) (ωi+ γ + p)
(

ωi+u+
βλ

d

)
− kβλ

d
e−pτ−uσ−iωτ−iωσ = 0.

By separating the imaginary and the real parts of (3.11), we have the following system

−ω
2 +(p+ γ)

(
u+

βλ

d

)
=

kβλ

d
e−uσ−pτ cosω(τ +σ)(3.12)

ω

(
p+ γ +u+

βλ

d

)
=−kβλ

d
e−uσ−pτ sinω(τ +σ)(3.13)

From the equations (3.12), (3.13) and (3.1 ), we have

(3.14) ω
4 +

[
(p+ γ)2 +

(
u+

βλ

d

)2
]

ω
2 +(p+ γ)2

(
u+

βλ

d

)2

(1−R2
0) = 0.

Clearly equation (3.14) has no positive solution for ω2 when R0 < 1. Hence, there is no roots

s = iω for equation (3.8) with ω ≥ 0. This implies, the roots of (3.8) do not pass through the

imaginary axis. Therefore, if R0 < 1, all roots of equation (3.7) have negative real parts. Hence,

from theorem 3.4.1 in [27], the infection-free equilibrium point E f is locally asymptotically

stable.

Conversely, when R0 > 1, it is not difficult to show that equation (3.8) has a real positive root.

Letting the equation (3.9) as

(3.15) g(τ,σ ,s) = s2 + s
(

p+ γ +u+
βλ

d

)
+(p+ γ)

(
u+

βλ

d

)[
1−R0e−sτ−sσ

]
.

For any τ,σ ≥ 0, and R0 > 1, we have

g(τ,σ ,0) = (p+ γ)

(
u+

βλ

d

)
(1−R0)< 0 and

lim
s→+∞

g(τ,σ ,s)→+∞.

Hence, g(τ,σ ,s) = 0 has at least one positive root if R0 > 1. Thus if R0 > 1 the infection-free

equilibrium point E f is unstable.
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When R0 = 1, from equation (3.9) we have

(3.16) s2 + s
(

p+ γ +u+
βλ

d

)
+(p+ γ)

(
u+

βλ

d

)(
1− e−sτ−sσ

)
= 0.

It is obvious that s = 0 is a solution of (3.16).

Further, any other root of (3.16) can be proved to be negative real.

Assume that s = α1 + iα2 is a root of equation (3.16) for some α1,α2 ≥ and τ,σ ≥ 0. Then,

by substituting s into (3.16) and separating the imaginary and real parts, we have the following

equations.

(3.17)

α
2
1 −α

2
2 +α1

(
p+ γ +u+

βλ

d

)
+(p+ γ)

(
u+

βλ

d

)
= (p+ γ)

(
u+

βλ

d

)
e−α1(τ+σ) cosα2(τ +σ),

and

(3.18) 2α1α2 +α2

(
p+ γ +u+

βλ

d

)
=−(p+ γ)

(
u+

βλ

d

)
e−α1(τ+σ) sinα2(τ +σ).

By squaring equations (3.17) and (3.18) and adding, we have the inequality,[
α

2
1 −α

2
2 +α1

(
p+ γ +u+

βλ

d

)
+(p+ γ)

(
u+

βλ

d

)]2

+

[
2α1α2 +α2

(
p+ γ +u+

βλ

d

)]2

≤
[
(p+ γ)

(
u+

βλ

d

)]2

.

(3.19)

Clearly inequality (3.19) cannot be fulfilled, which prompts a logical inconsistency. This im-

plies every roots of the equation (3.16) are negative real except s = 0. �

Theorem 3.3. When R0 ≤ 1, the infection-free equilibrium E f (λ/d,0,0) of system (1.2) is

globally asymptotically stable for any τ,σ ≥ 0.

Proof. Let prove Theorem 3.3 under the two cases.

Consider (x(t),y(t),v(t)) be any solution of model (1.2) with initial condition (2.1).

Case I: If ke−uσ−pτ − (p+ γ)> 0

Define a Lyapunov functional V1(t) as follows

(3.20) V1(t) =
(

x(t)− x0− x0 ln
x(t)
x0

)
+ k1y(t)+ k2v(t)+ k2I1 + k1J1,

where,

I1 = ke−uσ

∫ t

t−σ

y(θ)dθ , and J1 = βe−pτ

∫ t

t−τ

x(θ)v(θ)
1+αv(θ)

dθ .
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where k1 and k2 are determined later.

For t ≥ 0, taking the derivative of V1(t) along the solutions of (1.2), it shows that.

V̇1(t) =
(

1− x0

x(t)

)[
λ −dx(t)− βx(t)v(t)

1+αv(t)
+ γy(t)

]
+ k1

[
βe−pτx(t− τ)v(t− τ)

1+αv(t− τ)
− (p+ γ)y(t)

]
+k2

[
ke−uσ y(t−σ)−uv(t)− βx(t)v(t)

1+αv(t)

]
+ k2ke−uσ [y(t)− y(t−σ)]

+k1βe−pτ

[
x(t)v(t)

1+αv(t)
− x(t− τ)v(t− τ)

1+αv(t− τ)

]

(3.21)

Substituting x0 = λ/d and taking (1+ k2) = k1e−pτ and k1(p+ γ) = k2ke−uσ , equation (3.21)

can be derived as follows

(3.22) V̇1(t) =−
d

x(t)
(x(t)− x0)

2 +
βx0v(t)

1+αv(t)
+(x(t)− x0)

γy(t)
x(t)

− k2uv(t).

From equation (3.22) and (3.1), we have

(3.23) V̇1(t)≤−
d

x(t)
(x(t)− x0)

2−
(

λ

d
− x(t)

)
γy(t)
x(t)

+
(R0−1)(p+ γ)(ud +λβ )v(t)

d(ke−pτ−uσ − (p+ γ))
.

Thus, If R0 ≤ 1, from (2.8)(see e.g. Theorem 3 in [28]) and when ke−pτ−uσ − (p+ γ) > 0 we

have V̇1(t) ≤ 0. The equality holds if and only if x(t) = λ

d , and v = 0. By theorem 5.3.1 in

[29], let M1 be the largest invariant subset in E1 = {ψ = (x(t),y(t),v(t)) ∈ R3
+ | V̇1(ψ) = 0}.

Therefore, from the last equation of (1.2) we get y = 0. This implies that M1 = {E0}. By

implies of LaSalle’s invariance principle, it has that the disease free equilibrium E f is globally

asymptotically steady when R0 ≤ 1.

Case II: When ke−uσ−pτ − (γ + p)≤ 0, Let us define a Lyapunov functional as

(3.24) V2(t) = epτy(t)+ v(t)+β

∫ t

t−τ

x(θ)v(θ)
1+αv(θ)

dθ + ke−uσ

∫ t

t−σ

y(θ)dθ .

For t ≥ 0, taking the derivative of V2(t) along the solutions of (1.2), equation (3.24) can be

derive as follows.

(3.25) V̇2(t) =
(
ke−uσ−pτ − (p+ γ)

)
epτy(t)−uv(t).

Clearly, V̇2 ≤ 0 for all y,v > 0 when ke−uσ−pτ − (p+ γ) ≤ 0. Then, at this point, by a similar

argument as above, it is not difficult to show that E f is globally asymptotically stable. This

prove Theorem 3.3. �
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3.3. Stability of the chronic infection equilibrium. In this subsection we study the local

stability of the chronic infection equilibrium point Ech(x1,y1,v1) by using the characteristic

equation of model (1.2) considering three special cases that τ = 0,σ = 0, τ ≥ 0,σ = 0, and

τ = 0,σ ≥ 0 and the global stability of the chronic equilibrium points by using the Barbalat’s

lemma in [30].

Theorem 3.4. When R0 > 1, for any τ ≥ 0,σ = 0 and τ = 0,σ ≥ 0, the chronic infection

equilibrium Ech of system (1.2) is locally asymptotically stable.

Proof. Let

L =
v1

(1+αv1)
and M =

x1

(1+αv1)2

Then, from (3.6) the characteristic equation at Ech(x1,y1,v1) can be derived as

(s+d +βL)
[
(s+ γ + p)(s+u+βM)− kβMe−s(σ+τ)−uσ−pτ

]
+γ
[
−βLe−pτ−sτ(s+u+βM)+β

2LMe−pτ−sτ
]

+βM
[
kβLe−s(σ+τ)−uσ−pτ −βL(s+ γ + p)

]
= 0.

(3.26)

Since Ech satisfy system (1.2), equation (3.26) further can be simplified as

(3.27) s3 +a2s2 +a1s+a0 +(b1s+b0)e−sτ−sσ +(c1s+ c0)e−sτ = 0.

where,

a0 = u(p+ γ)(βL+d)+(p+ γ)Mβd,

a1 = (p+ γ)(u+βM)+(Lβ +d)(p+ γ +u)+dMβ ,

a2 = p+ γ +u+d +Mβ +Lβ ,

b0 =−d(p+ γ)

[
u

1+αv1
+βM

]
, b1 =−(p+ γ)

[
u

1+αv1
+βM

]
,

c0 =−uγβLe−pτ , c1 =−γβLe−pτ .

When σ = τ = 0, equation (3.27) reduced to the form

(3.28) s3 +a2s2 +(a1 +b1 + c1)s+(a0 +b0 + c0) = 0,
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and by direct computation, we have

a0 +b0 + c0 = puLβ +
(p+ γ)udαv1

1+αv1
> 0,

a1 +b1 + c1 = d(p+ γ +u)+
(p+ γ)uαv1

1+αv1
+

β (p+u)v1

1+αv1
+

dβx1

(1+αv1)2 > 0.

and

a2(a1 +b1 + c1)− (a0 +b0 + c0) = (p+ γ +d +βM+βL)
[

pLβ +
(p+ γ)dαv1

1+αv1

]
+(p+ γ +d +u+βL+βM)

[
(d +Lβ )u+dβM+

(p+ γ)(d +uαv1)

1+αv1

]
> 0.

Therefore, according to the Routh-Hurwitz criterion, any root of equation (3.28) has negative

real part for τ = 0 and σ = 0. Hence, for τ = σ = 0, the chronic infection equilibrium Ech of

system (1.2) is locally asymmetrically stable.

As a second case, consider σ = 0 and τ ≥ 0. Then equation (3.27) can be written as

(3.29) s3 +a2s2 +a1s+a0 +[(b1 + c1)s+(b0 + c0)]e−sτ = 0.

Let s = iω (ω > 0) is the purely imaginary root of equation (3.29). Then, by substituting S into

(3.29) and separating the imaginary and real parts, we obtain following two equations

ω(b1 + c1)sin(ωτ)+(b0 + c0)cos(ωτ) = a2ω
2−a0(3.30)

ω(b1 + c1)cos(ωτ)− (b0 + c0)sin(ωτ) = ω
3−a1ω(3.31)

By squaring equation (3.30) and (3.31), and adding together we have

(3.32) (ω3)2 +(a2
2−2a1)(ω

2)2 +[a2
1−2a2a0− (b1 + c1)

2]ω2 +[a2
0− (b0 + c0)

2] = 0.

Let, m3 = a2
2− 2a1,m2 = a2

1− 2a2a0− (b1 + c1)
2,m1 = a2

0− (b0 + c0)
2 and u > u/(1+αv1).

Then by direct calculation, it can be show that

m3 = (u+βM)2 +2β
2ML+(p+ γ)2 +(d +βL)2 > 0,

m2 >
(p+ γ)2uαv1

1+αv1

[
2βM+

u(2+αv1)

1+αv1

]
+2udβM(d +βL)+(d +βL)2(pr+u2)

+(dβM)2 + γ
2(d +2dβL)+(p+ γ)

[
2pβ

2ML+ p(d +βL)2 +2uβLγ
]

+ γ
2
β

2L2(1− e−2pτ)+2γβL(p+ γ)(u+βM)(1− e−pτ)> 0.
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m1 =

[
(p+ γ)

(
u(Lβ +d)+2dβM+

du
1+αv0

)
+uLγβe−pτ

]
[

puLβ +
(p+ γ)duαv1

1+αv1
+uLγβ (1− e−pτ)

]
> 0.

Hence, based on the Routh-Hurwitz criterion, when τ ≥ 0, (3.32) has no positive real roots for

ω2. Consequently, this implies that all roots of equation (3.29) have negative real parts. That

is, if R0 > 1, the chronic disease equilibrium Ech in model (1.2) is locally asymptotically stable

[27].

As the third case, when σ ≥ 0 and τ = 0, equation (3.27) can be written as

(3.33) s3 +a2s2 +(a1 + c1)s+(a0 + c0)+(b1s+b0)e−sσ = 0.

Let s = iω(ω > 0) is the purely imaginary root of equation (3.33). Then by substituting S

into (3.33) and separating imaginary and real parts of the equation, we obtain following two

equations.

b1ω cos(ωσ)−b0 sin(ωσ) = ω
3− (a1 + c1)ω(3.34)

b1ω sin(ωσ)+b0 cos(ωσ) = a2ω
2− (a0 +b0)(3.35)

By adding the squares of both sides of equations (3.34) and (3.34), we have

(3.36)

(ω3)2 +[a2
2−2(a1 + c1)](ω

2)2 +[(a1 + c1)
2−2a2(a0 + c0)−b2

1]ω
2 +(a0 + c0)

2−b2
0 = 0.

Let, m4 = a2
2−2(a1+c1),m5 = (a1+c1)

2−2a2(a0+c0)−b2
1, and m6 = (a0+c0)

2−b2
0. Then

by direct calculation, it can be show that

m4 = (u+βM)2 +2β
2ML+(p+ γ)2 +(d +βL)2 +2γβL > 0

m5 >
(a+ γ)2uαv1

1+αv1

[
2βM+

u(2+αv1)

1+αv1

]
+u2(d +βL)2 +2βd2uM+2γβLu2 +(dβM)2

+2aβ
2ML(a+ γ)+(d2 +β

2L2)(a2 + γ
2)+2ad[γd +Lβ (a+ γ)]> 0

m6 =

[
pu(d +βL)+uγd +dβM(p+ γ)+d(p+ γ)

(
u

1+αv1
+βM

)]
[

puβL+
d(p+ γ)αv1

1+αv1

]
> 0
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Again, based on the Routh-Hurwitz criterion, (3.32) has no positive real roots for ω2 when

σ ≥ 0. Consequently, this implies that all roots of equation (3.29) have negative real parts. That

is, if R0 > 1, the chronic disease equilibrium Ech in model (1.2) is locally asymptotically stable

[27]. �

Theorem 3.5.

(i) If R0 ≤ 1, then the infection free equilibrium E f is globally asymptotically stable.

(ii) If R0 > 1, then the chronic infection equilibrium Ech is globally asymptotically stable.

Proof. Let X(t) = (x(t),y(t),v(t)) be the solution of system (1.2). Then, from the Proposition

2.2, X(t) has a finite limit as t→+∞. Therefore, we consider

lim
t→+∞

X(t) = (x∗,y∗,v∗).

According to the Barbalat’s lemma[30], we know that

lim
t→+∞

Ẋ(t) = 0.

Hence, from system (1.2), the point (x∗,y∗,v∗) is an equilibrium point.

From Theorem 3.1, we have

lim
t→+∞

X(t) = E f or lim
t→+∞

X(t) = Ech

If R0 < 1, the chronic infection equilibrium point Ech does not exits. Thus lim
t→+∞

X(t) = E f .

From the (iii) of Theorem 3.2, if R0 = 1, E f is linearly stable and then, lim
t→+∞

X(t) = E f . If

R0 > 1, from the (ii) of Theorem 3.2, E f is unstable. Hence, limt→+∞ X(t) = Ech. �

4. PERMANENCE

In this subsection, we will investigate the uniform persistence of model (1.2) with given initial

values (2.1). Biologically, the uniform persistence or permanence suggests that the virus v(t)

and infected cells y(t) not possible totally removed from the body and will ultimately continue.

To prove the system (1.2) is persistence, here we introduce persistence theory introduced in [31]

by Hale. Moreover, we express the states of Theorem 5.1.1 in [32] and have used the methods

and closely agree with the thoughts of [13, 33] and [34] on evidence for persistence.
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To continue, we present the terminology and notation as follows. Let the Banach space

of continuous functions which composed with sup-norm X = C
(
[−ζ ,0],R3

+

)
is mapping the

interval [−ζ ,0] into R3
+, X0 = {(φ1,φ2,φ3) ∈ X : φ2(θ) > 0,φ3(θ) > 0,andθ ∈ [−ζ ,0]}, and

∂X = X/X0 = {(φ1,φ2,φ3) ∈ X : φ2(θ) = 0, or φ3(θ) = 0,θ ∈ [−ζ ,0]}} = X0. For t ≥ 0., let

P(t) be the set of solutions operators for model (1.2). Defined ω− limit set as ω(x) = {y ∈

X |there is a sequence tn→ ∞asn→ ∞withP(tn)x→ yasn→ ∞}. Then, we refer Theorem 4.2

in [31].

Lemma 4.1. Assume that we have

(i) X0 ∈ X is a open set with X0⋂X0 = /0 and X0⋃X0 = X ,

(ii) P(t) satisfy P(t) : X0→ X0, P(t) : X0→ X0, and point dissipative in X ,

(iii) P(t) is asymptotically smooth,

(iv) If Y2 is the global attractor of P(t) limited to X0 and N =
⋂k

i=1 Ni, then

Ω2 =
⋃

x∈Y2
ω(x) is isolate and has acyclic covering N,

(v) for each Ni ∈ N,W s(Ni)
⋂

X0 = /0, where W s is stable set.

Then we have a uniform repeller P(t) with respect to X0. That is, there exists an η > 0 such that

for arbitrary x ∈ X0, liminf
t→+∞

d(P(t),X0)≥ η .

Theorem 4.1. If R0 > 1, then model (1.2) is uniformly persistent for any σ ,τ ≥ 0 with the

condition (2.1). i.e there is any ξ > 0 such that for any solution (x(t),y(t),v(t)) of model (1.2)

satisfy liminf
t→+∞

x(t)> ξ , liminf
t→+∞

y(t)> ξ and liminf
t→+∞

v(t)> ξ .

Proof. By Theorem 2.1 and Proposition 2.2, it is straightforward to see that (i)−(iii) of Lemma

4.1 always hold. Consequently, we only have to verify the last two conditions of the Lemma

4.1. For that we can define a set M∂ as

M∂ = {φ ∈C
(
[−ζ ,0],R3

+

)
: P(t)φ satisfies model (1.2) andP(t)φ ∈ ∂X for all t ≥ 0}.

First we say the set M∂ = {(λ

d ,0,0)}. Assume that P(t) ∈M∂ , for all t ≥ 0. Then it is enough

to show that y(t) = 0 and v(t) = 0 for all t ≥ 0. We then use contradiction to prove this claim.

suppose that there exists t1 > 0 such that (A). y(t1)> 0, v(t1) = 0; or (B). y(t1) = 0, v(t1)> 0.
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For case (A), from the last equation of system (1.2), we have

v̇(t) |t=t1> 0.

Hence, there exist arbitrarily small constant ε1 such that v(t) > 0 for all t ∈ (t1, t1 + ε1). Then

again, from y(t1) > 0, we have a arbitrarily small constant ε0(0 < ε0 < ε1). Thus, we have

x(t)> 0, y(t)> 0 for ∀t ∈ (t1, t1 + ε0), which lead us to contradiction with the assumption that

(x(t),y(t),v(t)) ∈M∂ for ∀t ≥ 0. Similarly it is easy to show that case (B) does not exists.

Let Ω2 =
⋃

x∈Y2
ω(x), where Y2 is the global attractor of P(t) restricted to the set ∂X . Now

we need to show that Ω2 = {E f }. Indeed, it follows from Ω2 ⊆M∂ and using the first equation

of system (1.2), Clearly limt→+∞ x(t) = λ

d . As a result, it is clear that {E f } ∈ X is a unique

invariant set.

Next, we need to prove that W s(E f )
⋂

X0 = /0. To prove this result, we assume the contradic-

tion. Suppose (x(t),y(t),v(t)) ∈ X0 is a positive solution for system (1.2) such that

(4.1) lim
t→∞

x(t) = x0 =
λ

d
, lim

t→∞
y(t) = 0, and lim

t→∞
v(t) = 0.

Then, for any small constant ε > 0, we have positive constant t0 > 0, such that

λ

d
− ε < x(t)<

λ

d
+ ε, 0 < y(t)< ε, and 0 < v(t)< ε for all t ≥ t0.

Thus, for the selected constant ε , from model (1.2) that for t ≥ t0 + τ and t ≥ t0 +σ , we have

ẏ(t)≥
e−pτβ (λ

d − ε)v(t− τ)

1+αε
− (p+ γ)y(t),

v̇(t)≥ ke−uσ y(t−σ)−uv(t)−
β (λ

d + ε)v(t)
1+αε

.

(4.2)

System (4.2) follows the quasi-monotone structure since the right hand sides of the first and

second equations of system (4.2) is increasing with the functions v(t− τ) and y(t−σ) (see e.g.

[13]).

Consider the following system of differential equations to apply the comparison principle.

u̇1(t) =
e−pτβ (λ

d − ε)u2(t− τ)

1+αε
− (p+ γ)u1(t),

u̇2(t) = ke−uσ u1(t−σ)−uu2(t)−
β (λ

d + ε)u2(t)
1+αε

.

(4.3)
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with the initial condition u1(t) = y(t), u2(t) = v(t), ∀t ∈ [t0, t0 +ζ ], where ζ = max{τ,σ}. It is

obvious that system (4.3) has non-negative solutions (u1(t),u2(t)).

To verify the states of Theorem 5.1.1 in [32], let us follows the notation of Theo-

rem 5.1.1 and define as ( f1(t,φ2), f2(t,φ3)) = (y(t,φ2),v(t,φ3)) and (g1(t,φ2),g2(t,φ3)) =

(u1(t,φ2),u2(t,φ3)). From Theorem 2.1, we have that (y(t),v(t)) is bounded, Hence for the

systems (4.2) and (4.3), it is obvious f1(t,φ2), f2(t,φ3)) and (g1(t,φ2),g2(t,φ3)) are continuous

and Lipschitz on each compact subset of X, and also f1(t,φ2), f2(t,φ3)) satisfies the condition

Q: at any time φ ≤ ψ and φi(0) = ψi(0) hold for some i, then fi(φ) ≤ fi(ψ)[32]. Therefore,

model (4.2), satisfy all the conditions of Theorem 5.1.1 in [32]. Hence, according to the compar-

ison principle (Theorem 5.1.1 in [32]), The solutions (u1(t),u2(t)) of system (4.3) are coverage

to (0,0) with the given initial conditions as we have assumed that (y(t),v(t)) converge to (0,0)

as t→ ∞.

Define

V3(t) = u1(t)+
βe−pτ(λ

d − ε)

u(1+αε)+β (λ

d + ε)
u2(t)+

βe−pτ(λ

d − ε)

1+αε

∫ t

t−τ

u2(θ)dθ

+
kβe−pτ−uσ (λ

d − ε)

u(1+αε)+β (λ

d + ε)

∫ t

t−σ

u1(θ)dθ .

(4.4)

Then, from the solutions lim
t→∞

(u1(t),u2(t))→ (0,0), we have that

(4.5) lim
t→+∞

V3(t) = 0.

Taking the derivative of V3(t) along the solutions of model (4.3), we have

(4.6) V̇3(t) =

[
kβe−pτ−uσ (λ

d − ε)

u(1+αε)+β (λ

d + ε)
− (p+ γ)

]
u1(t).

Since R0 > 1, it is possible to choose sufficiently small constant for ε , such that

(4.7)
kβe−pτ−uσ (λ

d − ε)

u(1+αε)+β (λ

d + ε)
− (p+ γ)> 0.

Consequently, V3(t) tends to either a positive constant value or infinity as t → ∞. This is a

contradiction to equation (4.5). Hence, we have W s(E f )
⋂

X0 = /0. Therefore, from the Lemma

4.1, we can get some constant ξ0 > 0 such that

liminf
t→+∞

y(t)> ξ0, and liminf
t→+∞

v(t)> ξ0.
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Further, using the first equation of model (1.2), we have [13]

ẋ(t)≥ λ −
(

d +
β

α

)
x(t).

It implies that,

liminf
t→+∞

x(t)≥ αλ

dα +β
.

This completes the proof of Theorem (4.1). �

5. NUMERICAL SIMULATIONS

The purpose of this section is to show that the theoretical results that we obtained in Sections

(3) and (4) are valid, by using the parameter values that have been reported in the literature and

are shown in Table 1.

TABLE 1. Parameter values used for numerical simulation.

Parameter Value Case I Case II Case III Case IV Case V source

λ 05 mm−3 - - - - - [35]

d 0.0139 day−1 - - - - - [30, 36]

β 0.00024 virons - - - - - [30, 36]

γ 0.01 - - - - - [30, 36, 19]

α 0.0001 - - - - - Assumed

p 0.5 day−1 - - - - - [30, 36, 19]

k 60 day−1 - - - - - [36]

u 3 day−1 - - - - - [30, 36]

τ days 5 0 1.6 1.300107 0.9 variable

σ days 0 0.9 1.2 0.94789 0.5 variable

First, we take that τ = 1.6 and σ = 1.2 and then the numerical simulation is given that

R0 = 0.404026 < 1. Then according to Theorem 3.3, it has shown that the infection free equi-

librium E f (λ/d,0,0) ≡ (359.7122,0,0) is globally asymptotically stable if R0 < 1 for any

τ,σ ≥ 0. The Figures 1 and 2 clearly demonstrate this conclusion. If we chose τ = 1.300107

and σ = 0.94789, then the reproduction number R0 = 1.000000, and by the Figure 3 verify the
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theoretical result given in Theorem 3.3. If we substitute τ = 0.9 and σ = 0.5, we have R0 =

4.681993 > 1, and the chronic infection equilibrium point is Ech(76.7880,4.9790,220.8676).

When τ = 5,σ = 0 and τ = 0,σ = 0.9, the the basic reproduction number R0 = 2.7012 > 1

and R0 = 2.2116 > 1 and the chronic infection equilibrium Ech(132.1136,0.5100,100.9454)

and Ech(161.2944,5.5160,73.2035) respectively. Then the conditions of Theorem 3.4 and The-

orem 3.5 are satisfied and this is numerically confirmed by Figures 4, 5 and Figure 6.

It is clear that time lag τ and σ both affect the reproduction rate R0 =
λβke−uσ−pτ

(p+γ)(ud+λβ ) . When

σ = 0, as shown in figure (7a), R0 decreases as τ increases. Further, R0 < 1 when τ is greater

than 7 and σ = 0. Consequently, the virus is eliminated from the system. Similarly, as shown

in Figure (7b) R0 decreases when σ increases and τ = 0. Further, (7b) show that, if σ ≥ 1.2,

R0 ≤ 1. Moreover, Figure 8 shows that sufficiently large τ and σ reduce the reproductive rate.

Hence, it is clear that both τ and σ contribute greatly to the removal of the virus from the

system.

(A) (B)

FIGURE 1. Dynamics of uninfected and infected cells for system (1.2) with

parameter values Case III in Table 1, and infection-free equilibrium point

E0(359.7122,0,0).
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(A) (B)

FIGURE 2. Free-virtual dynamics and phase space for system (1.2) with

parameter values Case III in Table 1, and infection-free equilibrium point

E f (359.7122,0,0).

(A) (B)

FIGURE 3. Free-virtual dynamics and phase space for system (1.2) with

parameter values Case IV in Table 1, and infection-free equilibrium point

E f (359.7122,0,0).
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(A) (B)

FIGURE 4. Dynamics of uninfected and infected cells for system (1.2)

with parameter values Case V in Table 1, and infection equilibrium point

Ech(76.7880,4.9790,220.8676).

(A) (B)

FIGURE 5. Dynamics of free-virus and phase space for system (1.2) with

parameter values Case V in Table 1, and infection equilibrium point

Ech(76.7880,4.9790,220.8676).
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(A) Phase diagram when σ = 0. (B) Phase diagram when τ = 0.

FIGURE 6. Phase diagram for system (1.2) with parameter values Case

I and Case II in Table 1, and the infection equilibrium point are

Ech(132.1136,0.5100,100.9454) and Ech(161.2944,5.5160,73.2035) respec-

tively.

(A) basic reproduction number R0 as τ

increasing (σ = 0)

(B) basic reproduction number R0 as σ

increasing (τ = 0)

FIGURE 7. Dynamics of the basic reproductive number R0 when τ and σ in-

crease.
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FIGURE 8. Dynamics of basic reproductive number R0 as both σ and τ increas-

ing.

6. CONCLUSION

In this article we presented and investigated a novel HIV-1 virus dynamics model with satu-

ration infection rate by incorporating the absorption effect, maturation time delay (σ ), intracel-

lular time delay (τ) and cure rate into the model. If R0 ≤ 1 and R0 > 1, the local stability of the

each infection-free equilibrium E f and the chronic infection equilibrium Ech of the model has

fully confirmed by considering the characteristic equation of the system (1.2) in Theorem 3.2

and Theorem 3.4, respectively. Further, if R0 ≤ 1, in Theorem 3.3, it has been shown that the E f

is globally stable for any time delay σ ,τ ≥ 0, by using the appropriate Lyapunov function and

Lassalle’s invariance principle and it further has been verified by using the Barbalat’s lemma in

Theorem 3.5. In this case, the virus will be removed from the system by activating the immune

system of the body or giving external medical treatment, the illness will be cured after some

time.

If R0 of the model is greater than unity, then E f become unstable (Theorem 3.3) and Ech is

locally asymptotically stable (Theorem 3.4). Further it has been shown in Theorem 3.5 chronic

infection equilibrium Ech is globally asymptotically stable. In this condition, the infection is

chronic and persistent, it biologically means that the host cannot control the infection with

drugs or the immune system. In Section (4), it has been confirmed that model (1.2) is uniformly

persistence for any σ ,τ ≥ 0, if R0 > 1. Numerical simulations obviously propose that the
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chronic infection equilibrium of model(1.2) is globally asymptotically steady if R0 > 1. Figure

8 shows that we can choose sufficiently large enough σ and τ that to satisfy the condition R0≤ 1

if all other parameters remain constant, which causes the virus to be cleaned out.

Finally, We can reach the following conclusion: A sufficiently large σ and τ can eliminate

the virus from the system, and both σ and τ play a vital part within the viral contamination

handle. Hence, This research finding may open a new window to think about a new method to

increase the maturation time of the virus and to increase the intracellular time which may cause

to control or cure the disease.
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