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Abstract. In this article, we present a mathematical model of transmission tuberculosis which takes account

the contamination by consuming unpasteurised dairy products. We have determined the equilibrium points, whose

local stability is guaranteed by Lyapunov’s indirect method using the Routh-Hurwitz stability criterion. The results

obtained show that, even if there are no bacteria in the environment, the probability of infection with tuberculosis

remains high, and this is due to the consumption of unpasteurised dairy products. Finally, we introduce some

numerical simulations graphics to validate our results.
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1. INTRODUCTION

Tuberculosis is a disease that has been present since the dawn of humanity. It is a potentially

fatal infectious disease caused by a bacterium called Mycobacterium tuberculosis or Koch’s

bacillus (BK), named by the doctor who discovered it in 1882, Robert Koch . This bacterium is

an immobile, straight or slightly curved aerobic bacillus, its average length is 2µm to 4µm for
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a diameter of 0.2µm to 0.5µm [1].

This infectious disease is the 13th leading cause of death and the second due to an infectious

disease. In fact, 1.5 million people died of tuberculosis in 2020 and 214 000 of whom was also

infected by the human immunodeficiency virus. According to the World Health Organization,

9.9 million people have developed tuberculosis worldwide, between 5.5 million men, 3.3 mil-

lion women and 1.1 million children. 86% of new tuberculosis cases recorded in 2020 occurred

in the 30 countries with the highest disease burden. Two-thirds of those cases are concentrated

in eight countries, with India leading, followed by China, Indonesia, the Philippines, Pakistan,

Nigeria, Bangladesh and South Africa [2]. Concerning Morocco, 29 000 cases of tuberculo-

sis were detected and treated in 2020 [3]. The disease is concentrated in urban areas and has

particularly affected disadvantaged neighborhoods in large cities, which is linked to unsanitary

housing, overcrowding, malnutrition, precariousness and poverty. And, despite the great ef-

forts made to prevent and control tuberculosis, which is still among the main priorities of the

Ministry of Health and Social Welfare in Morocco, the disease continues to spread and settle

in various parts of the country. As a result, this old global scourge claimed the lives of around

3000 person in 2020 in Morocco [2].

Tuberculosis often affects the lungs, this form is called pulmonary tuberculosis. Moreover,

there is the extra-pulmonary tuberculosis which can attack other organs. It is transmitted from

person to person through the air. When a person with pulmonary tuberculosis coughs, sneezes,

or spits, he project tubercle bacillus into the air, then, an individual may become infected with

tuberculosis if he or she inhales those tubercle bacillus[2]. In addition, tuberculosis can also

be bovine, it is an infectious disease transmissible to humans caused mainly by the bacterium

Mycobacterium bovis (M. bovis). Cattle are considered to be the host range of M. bovis, and

are the principle source of infection for humans. Nevertheless, the disease has been reported in

many other domesticated and non-domesticated animals [4]. So, an individual can contract this

disease by inhaling infectious droplets, by contact with infected tissues in slaughterhouses and

butcher shops, or by consuming raw milk from infected cows and unpasteurized dairy products

sold by merchants walkers without any respect for health prevention conditions. According to
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estimates by the World Organization for Animal Health, in some countries up to 10% of human

tuberculosis cases are of bovine origin [5].

People infected with the tubercle bacillus have a 5 to 10% risk of developing the disease. This

risk is much higher in people with a weakened immune system, especially those living with

HIV, suffering from malnutrition or diabetes, smokers...[6]. Tuberculosis then becomes active,

contagious and symptomatic. Symptoms such as cough with sometimes bloody sputum, chest

pain, weakness, weight loss, fever, and night sweats may remain mild for many months. The

disease is remediable provided an early diagnosis, and its treatment is based on combinations of

antibiotics given for at least 6 months, sometimes longer, accompanied by patient support from

a health worker or trained volunteer. Compliance with the protocol is absolutely necessary,

otherwise drug resistance will appear. According to statistics, the diagnosis and treatment of

tuberculosis has saved 66 million lives since 2000 [2].

Mathematical models appears to be a good tool for understanding the spread of infectious

diseases. Several models exist in the literature to model the transmission of tuberculosis[7],[8].

The first one is built by the statistician Waaler in 1962. He used an unknown function of the

number of infectious individuals to formulate the infection rate, and he predicted that the time

trend of tuberculosis is improbable to increase, but his linear model did not model all the me-

chanics of transmission [9]. In 1967, Brogger developed a model based on Waaler’s model. He

changed the method used for calculating infection rates. His objective was to compare differ-

ent control strategies such as treating more cases, the vaccination, and mass roentgenography.

In the same year, ReVelle modeled the tuberculosis dynamics using a nonlinear system of or-

dinary differential equations. His aim is to develop an optimization model to select control

strategies that could be carried out at a minimal cost [9]. Incomplete treatment, wrong therapy,

and co-infection with other diseases, like HIV, may develop a new form of tuberculosis known

as multi-drug resistant. Many models that include this type of tuberculosis have been developed

[10], [11]. Most recently, an age-structured tuberculosis model is constructed to look at optimal

vaccination strategy problems. The basic reproductive number is calculated and used to study

cost related optimization problems [12].
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In the present work, we model, analyze and simulate a mathematical model of the dynam-

ics of tuberculosis with contamination by the consumption of unpasteurized dairy products.

The purpose is to study the role of some control measures available in the event of an epi-

demic. This choice is motivated by an administrative note issued on 9 June 2022, written by

the provincial delegate of the Ministry of Health of the Casablanca-Settat region, concerning an

upsurge in cases of tuberculosis. He linked this significant increase in cases of tuberculosis to

the consumption of dairy products sold by vendors in the streets and around mosques without

any respect for hygiene conditions. First, we present the description of the model proposed,

then we present its mathematical analysis. Here we show the positivity of the solution and its

boundedness, the computation of different equilibrium points and the analysis of their stability.

Numerical simulations are presented and their results are discussed.

2. FORMULATION OF THE EPIDEMIC MODEL

The aim of this article is to study the role of some control measures available in an epidemic.

These measures include reducing the rate of infection, eliminating dairy products contaminated

with tuberculosis, and observing hygiene measures in the manufacturing process of these prod-

ucts.

We present, in this article, a mathematical model for the tuberculosis transmission. In this

model, we are interested in three main components, namely: the human population, Mycobac-

terium tuberculosis and dairy products.

The human population comprises three compartments such that at the instant t ≥ 0: S(t) are the

susceptible individuals to be infected, I(t) are the infected individuals with tuberculosis, and

R(t) are the recovered individuals from tuberculosis. Thus, the size of the human population is

given by: N(t) = S(t)+ I(t)+R(t).

The model diagram of tuberculosis transmission taking account consuming dairy products un-

pasteurised is as follow:
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FIGURE 1. Compartmental model for the transmission dynamics of Tuberculo-

sis.

Susceptible individuals grow at the rate µ , proportional to the total population N, and die

at rate µ , proportional to the susceptible population S. Susceptible individuals can be infected

with a force of infection βK , that will be defined later. In fact, there are two modes of trans-

mission of tuberculosis: the direct mode, that is to say when the bacterium is transmitted by

close contact between an infected subject and a susceptible host, and the indirect mode, when

the transmission takes place through a food such as unpasteurized dairy products. An infected

individual may recover at the rate γ , die naturally at the rate µ , or die from tuberculosis at the

rate δ .

The bacteria population obey the logistical law with a carrying capacity of K. Its growth rate is

rb and its death rate is µb.

As for dairy products, a distinction is made between non-contaminated products Ln(t) and con-

taminated products Lc(t). It is supposed that the dairy products L(t) are produced at the rate α

and that the uncontaminated ones become contaminated, either by direct contact with the bacte-

ria or by contact of the contaminated products with a force of infection βL, that will be defined

later, and eliminated by a rate of µl . See Table 1 for a clear description of the parameters used.
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Parameter Description

rB Rate of bacterial growth

µB Rate of bacterial death

µ Recruitment or natural mortality rate

α Production rate of dairy products

µl Elimination rate of dairy products

γ Recovery rate

δ Disease caused death rate

βK Force of infection at which the susceptible individuals become infected

βL Force of infection at which the dairy products become infected

TABLE 1. Description of parameters used in the tuberculosis model

Based on FIGURE 1, and the description of the model, we have the following system of non

linear ordinary differential equations:

(1)



dS
dt = µN− (µ +βK)S

dI
dt = βKS− (µ +δ + γ)I

dR
dt = γI−µR

dB
dt = rBB

(
1− B

K

)
−µBB

dLn
dt = αL− (µl +βl)Ln

dLc
dt = βLLn−µlLc

where: 
βK(t) = β1B+β2Lc

βL(t) = β3B+β4Lc.

Noted that:

• β1 is the rate at which susceptible individuals become infected by the bacteria in the

environnement.

• β2 is the rate at which susceptible individuals become infected by consuming contami-

nated dairy products.
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• β3 is the rate at which non contaminated dairy products become infected by contacting

the bacteria.

• β4 is the rate at which non contaminated dairy products become infected by contacting

the contaminated one.

To reduce the number of variables, we apply the following change of variables:

s =
S
N
, i =

I
N
, r =

R
N
, b =

B
K
, ln =

Ln

L
, lc =

Lc

L

so,

β̂1 = β1K, β̂2 = β2L, β̂3 = β3K, β̂4 = β4L.

On the other hand, we have: S+ I +R = N, thus r = 1− s− i,

and Ln +Lc = L, thus ln = 1− lc.

So, the reduced system is given as:

(2)



ds
dt = µ− (µ + β̂K)s

di
dt = β̂Ks− (µ +δ + γ)i

dlc
dt = β̂L− (β̂L +µl)lc

db
dt = rBb(1−b)−µBb

where 
β̂K(t) = β̂1b+ β̂2lc

β̂L(t) = β̂3b+ β̂4lc

taking into account the following initial conditions:

s(0)> 0, i(0)≥ 0, lc(0)≥ 0, b(0)≥ 0,

in order to be biologically meaningful.

3. MATHEMATICAL ANALYSIS

In this section, the model is analysed. We show the positivity and boundedness of the solution

and we calculate the equilibrium points.
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3.1. Positivity and boundedness of the system solution. The formulated model will be epi-

demiologically meaningful if all its variables are positive at any time t.

Theorem 3.1. The solutions of the system (s(t), i(t), lc(t), b(t)) for all t ≥ 0 are bounded in

the set Ω, which is given by

Ω =
{
(s(t), i(t), lc(t),b(t)) ∈ R4

+;0 < s+ i≤ 1,0≤ lc ≤ 1,0≤ b≤ 1
}
,

taking into account the following initial conditions:

s(0)> 0, i(0)≥ 0, lc(0)≥ 0, b(0)≥ 0.

Proof 3.1. Let (s(t), i(t), lc(t),b(t)) be a solution of the system (2) with the previous initial

conditions.

From the first equation of the system (2), we can state that:

ds
dt
≥−(µ + β̂K)s

ds
s
≥−(µ + β̂K)dt

ln
∣∣∣∣ s(t)
s(0)

∣∣∣∣≥−µt−
∫ t

0
β̂K(τ)dτ

then

s(t)≥ s(0)e−µt−
∫ t

0 β̂K(τ)dτ .

Since s(0)> 0, then s(t)> 0 for all t ≥ 0.

The second equation of the system (2) gives:

di
dt
≥−(µ +δ + γ)i

di
i
≥−(µ +δ + γ)dt

ln
∣∣∣∣ i(t)
i(0)

∣∣∣∣≥−(µ +δ + γ)t

then

i(t)≥ i(0)e−(µ+δ+γ)t .
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Since i(0)≥ 0, then i(t)≥ 0 for all t ≥ 0.

Also, by setting n = s+ i, the variation of the total population is given by:

dn
dt

=
ds
dt

+
di
dt

= µ−µs−µi−δ i− γi = µ−µn− (δ + γ)i

so:

(3)
dn
dt
≤ µ(1−n)

Integrating the inequation (3) from 0 to t, we obtain :

n(t)≤ 1+C0e−µt

where C0 is a constant.

Since lim
t→+∞

1+C0e−µt = 1, s(t)> 0 and i(t)≥ 0, for all t ≥ 0, we have:

∀t ≥ 0, 0 < n(t)≤ 1.

The third equation of the system (2) gives:

dlc
dt
≥−(β̂L +µl)lc

by similar ideas, it yields :

lc(t)≥ lc(0)e−µlt−
∫ t

0 β̂l(τ)dτ .

Since lc(0)≥ 0, then lc(t)≥ 0 for all t ≥ 0.

On the other side, from the equation:

dlc
dt

= β̂L− (β̂L +µl)lc

we get:
dlc
dt
≤ β̂L− β̂Llc

dlc
dt
≤ β̂L(1− lc)

Applying integration, we prove that:

lc(t)≤ 1+C1e−
∫ t

0 β̂L(τ)dτ .
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Since

lim
t→+∞

1+C1e−
∫ t

0 β̂L(τ)dτ = 1

and

∀t ≥ 0, lc(t)≥ 0,

we get:

∀t ≥ 0, 0≤ lc(t)≤ 1.

From the equation that governs the variations of the bacteria, we get:

(4)
db
dt

= (rB−µB)b− rBb2

thus:
1
b2

db
dt

= (rB−µB)
1
b
− rB

putting:

(5) z =
1
b
,

the equation (4) becomes:

(6)
dz
dt

=−(rB−µB)z+ rB.

The solution of the equation (6) is:

z(t) = ke−(rB−µB)t +
rB

rB−µB

where k is a constant.

Substituting the expression of z(t) in the equation (5), it yields:

b(t) =
1

ke−(rB−µB)t + rB
rB−µB

.

As a result,

lim
t→+∞

b(t) =
1
rB

rB−µB

= 1− µB

rB

However, the existence of the bacteria requires that its mortality rate must be lower than its

growth rate, so µB
rB

< 1, and 1− µB
rB

< 1, thus

∀t ≥ 0, 0≤ b(t)≤ 1.
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3.2. Equilibrium Points of the system. The equilibrium points of the dynamical system (2)

is obtained by resolving the system:

(7)



µ− (µ + β̂K)s = 0

β̂Ks− (µ +δ + γ)i = 0

β̂L− (β̂L +µl)lc = 0

rBb(1−b)−µBb = 0

The fourth equation of the system (7) yields:

b(rB(1−b)−µB) = 0

which gives:

b1 = 0 ou b2 = 1− µB

rB
.

Knowing that ∀t ≥ 0,b(t)≥ 0, we can state that b2 exists only if µB < rB.

• Case 1:

If b1 = 0, then β̂L(t) = β̂4lc.

The third equation becomes:

β̂4lc− β̂4l2
c −µllc = 0

lc(β̂4(1− lc)−µl) = 0

Thus,

lc1 = 0 ou lc2 = 1− µl

β̂4
.

Since ∀t ≥ 0, lc(t)≥ 0, then lc2 exists only if µl < β̂4.

• Case 1.1:

If b1 = 0 and lc1 = 0, the second equation of the system (7) yields i = 0, and its

first equation gives s = 1.

Then, the non-endemic equilibrium point of the system (7) is given by:

P0 = (s, i, lc1,b1) = (1,0,0,0)
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• Case 1.2:

If b1 = 0 and lc2 = 1− µl

β̂4
, we obtain: β̂K = β̂2lc2 .

So, the first equation of the system (7) gives:

s1 =
µ

µ + β̂2lc2

.

Substituting the expression of s1 in the second equation of the system (7), it yields:

i1 =
µβ̂2lc2

(µ +δ + γ)(µ + β̂2lc2)
.

Thus, the endemic equilibrium point with contamination only by consuming un-

pasteurized dairy products is given by:

P1 = (s1, i1, lc2,b1) =

(
µ

µ + β̂2lc2

,
µβ̂2lc2

(µ +δ + γ)(µ + β̂2lc2)
,1− µl

β̂4
,0

)
• Case 2:

If b2 = 1− µb
rb

, then: 
β̂K(t) = β̂1b2 + β̂2lc3

β̂L(t) = β̂3b2 + β̂4lc3

the third equation of the system can be written as:

β̂L(1− lc3)−µllc3 = 0

with the expression of β̂L, it becomes:

β̂4l2
c3
+(β̂3b2− β̂4 +µl)lc3− β̂3b2 = 0.

By setting: 
Ψ0 =−β̂3b2

Ψ1 = β̂3b2− β̂4 +µl

Ψ2 = β̂4

we get:

Ψ2l2
c3
+Ψ1lc3 +Ψ0 = 0
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whose discriminant is given by: ∆ = Ψ2
1−4Ψ2Ψ0,

since, Ψ0 < 0 and Ψ2 > 0, then ∆ > 0.

Thus:

lc3 =
−Ψ1 +

√
Ψ2

1−4Ψ2Ψ0

2Ψ2
, lc3 =

−Ψ1−
√

Ψ2
1−4Ψ2Ψ0

2Ψ2

We have already demonstrated that lc3 > 0 for all positive initial condition, so we will choose

lc3 which is in R∗+, that it will be noted l+c3
.

Hence, it is easy to get:

s2 =
µ

µ + β̂1b2 + β̂2l+c3

,

and from the second equation of the system (7), we obtain:

i2 =
µ(β̂1b2 + β̂2l+c3

)

(µ +δ + γ)(µ + β̂1b2 + β̂2l+c3)
.

Consequently, the endemic equilibrium point is given by:

P2 = (s2, i2, l+c3
,b2) =

(
µ

µ + β̂1b2 + β̂2l+c3

,
µ(β̂1b2 + β̂2l+c3

)

(µ +δ + γ)(µ + β̂1b2 + β̂2l+c3)
, l+c3

,1− µB

rB

)

In the next section, we demonstrate the local stability of the different equilibrium points.

4. LOCAL STABILITY OF THE EQUILIBRIUM POINTS

Using the theorem of Poincarré-Lyapunov in [13], [14], an equilibrium point is locally

asymptotically stable if and only if all the eigenvalues of the Jacobian matrix of the dynam-

ical system evaluated at this equilibrium point are strictly negatives. In this regard, we will use

the Routh-Hurwitz criterion for the second-degree polynomial [13]. It shows that if all the co-

efficients of the characteristic polynomial are strictly positives, then it does not admit a positive

root.

Proposition 4.1. The non-endemic equilibrium point P0 is locally asymptotically stable if

β̂4 < µl and rB < µB.
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Proof 4.1. The Jacobian matrix of the dynamical system (2) at P = (s, i, lc,b) is given by:

J(P) =


−µ− β̂K 0 −β̂2s −β̂1s

β̂K −(µ +δ + γ) β̂2s β̂1s

0 0 β̂4− β̂3b−µl−2β̂4lc β̂3− β̂3lc

0 0 0 rB−µB−2rBb


The Jacobian matrix on the point P0 is given by:

J(P0) =


−µ 0 −β̂2 −β̂1

0 −(µ +δ + γ) β̂2 β̂1

0 0 β̂4−µl β̂3

0 0 0 rB−µB


Its eigenvalues are: 

λ1 =−µ,

λ2 =−(µ + γ +δ ),

λ3 = β̂4−µl,

λ4 = rB−µB.

Since all the parameters of the system are strictly positives, λ1 and λ2 are strictly negatives.

Therefore, The nonendemic equilibrium point P0 is locally asymptotically stable if and only if

λ3 and λ4 are strictly negatives, that is if β̂4 < µl and rB < µB.

Proposition 4.2. The endemic equilibrium point with contamination only by consuming unpas-

teurized dairy products P1 is locally asymptotically stable if and only if µl < β̂4 and rB < µB.

Proof 4.2. The Jacobian matrix on the point P1 is given by:

J(P1) =


−µ− β̂2lc2 0 −β̂2s1 −β̂1s1

β̂2lc2 −(µ +δ + γ) β̂2s1 β̂1s1

0 0 β̂4−µl−2β̂4lc2 β̂3− β̂3lc2

0 0 0 rB−µB


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Putting:

J(P1) =

J1(P1) J2(P1)

J3(P1) J4(P1)


such as:

J1(P1) =

−µ− β̂2lc2 0

β̂2lc2 −(µ +δ + γ)

 J2(P1) =

−β̂2s1 −β̂1s1

β̂2s1 β̂1s1



J3(P1) =

0 0

0 0

 J4(P1) =

β̂4−µl−2β̂4lc2 β̂3− β̂3lc2

0 rB−µB

 .

The characteristic polynomial associated to the matrix J1(P1) is:

P(λ ) =

∣∣∣∣∣∣−µ− β̂2lc2−λ 0

β̂2lc2 −(µ +δ + γ)−λ

∣∣∣∣∣∣= λ
2 +λΦ1 +Φ0

where: 
Φ1 = 2µ + β̂2lc2 +δ + γ > 0

Φ0 = (µ +δ + γ)(µ + β̂2lc2)> 0.

It’s clear that the coefficients of P(λ ) are strictly positives. Thus, by Routh-Hurwitz Criterion,

its eigenvalues have a strictly negative real part.

As for J4(P1), its eigenvalues are given by:

λ1 = β̂4−µl−2β̂4lc2

= β̂4−µl−2β̂4

(
1− µl

β̂4

)

= β̂4−µl−2β̂4 +2µl

= µl− β̂4,

and

λ2 = rB−µB.

λ1 < 0 if and only if µl < β̂4, and λ2 < 0 if and only if rB < µB.

Therefore, The endemic equilibrium point with contamination only by consuming unpasteurized

dairy products P1 is locally asymptotically stable if and only if µl < β̂4 and rB < µB.
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Proposition 4.3. Thus, The endemic equilibrium point P2 is locally asymptotically stable if and

only if β̂4 <C and rB < 2rBb2 +µB where C = β̂3b2 +µl +2β̂4l+c3
.

Proof 4.3. The Jacobian matrix on the point P2 is given by:

J(P2) =


−µ− β̂1b2− β̂2l+c3

0 −β̂2s2 −β̂1s2

β̂1b2 + β̂2l+c3
−(µ +δ + γ) β̂2s2 β̂1s2

0 0 β̂4− β̂3b2−µl−2β̂4l+c3
β̂3− β̂3l+c3

0 0 0 rB−µB−2rBb2


Putting:

J(P2) =

J1(P2) J2(P2)

J3(P2) J4(P2)


such as:

J1(P2) =

−µ− β̂1b2− β̂2l+c3
0

β̂1b2 + β̂2l+c3
−(µ +δ + γ)

 J2(P2) =

−β̂2s2 −β̂1s2

β̂2s2 β̂1s2



J3(P2) =

0 0

0 0

 J4(P2) =

β̂4− β̂3b2−µl−2β̂4l+c3
β̂3− β̂3l+c3

0 rB−µB−2rBb2


The characteristic polynomial associated to the matrix J1(E2) is given by:

P(λ ) =

∣∣∣∣∣∣−µ− β̂1b2− β̂2l+c3
−λ 0

β̂1b2 + β̂2l+c3
−(µ +δ + γ)−λ

∣∣∣∣∣∣
= λ

2 +ϒ1λ +ϒ0;

where:

ϒ1 = β̂1b2 + β̂2l+c3
+2µ +δ + γ > 0

ϒ2 = (µ + β̂1b2 + β̂2l+c3
)(µ +δ + γ)> 0.

Since all the coefficients of P(λ ) are strictly positives, then P(λ ) does not have positive roots.

Therfore, by Routh-Hurwitz Criterion, its eigenvalues have a strictly negative real part.
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As for the matrix J4(P2), its eigenvalues are:

λ1 = β̂4− β̂3b2−µl−2β̂4l+c3

=
(

β̂3b2 +µl +2β̂4l+c3

)(
β̂4

β̂3b2 +µl +2β̂4l+c3

−1

)

=C

(
β̂4

C
−1

)

where: C = β̂3b2 + µl + 2β̂4l+c3
is a positive constant, and λ2 = rB− µB− 2rBb2. So, λ1 < 0 if

and only if β̂4 < C, and λ2 < 0 if and only if rB < 2rBb2 + µB. Thus, the endemic equilibrium

point P2 is locally asymptotically stable if and only if β̂4 <C and rB < 2rBb2 +µB.

5. NUMERICAL SIMULATION

Numerical simulations for the tuberculosis model given by the system (2) are done using

Matlab, whose objective is the description of the behavior of the system solutions over time,

and the affirmation of the results obtained.

For the simulation of the nonendemic equilibrium point, we start with initial conditons: s0 = 0.4,

i0 = 0.1, lc0 = 0.2, b0 = 0.4. We will run simulation, in an interval of 150 days, and we obtain

the numerical solution for the system (2). We defined the values of the parameters in Table 2.

Parameter Values

rB 0.18

µB 0.4

µ 0.028

µl 0.5

γ 0.08

δ 0.1

β̂1 0.004

β̂2 0.006

β̂3 0.03

β̂4 0.05

TABLE 2. Parameters values used in the the nonendemic model
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FIGURE 2. The dynamic behavior of compartments s, i, lc and b for the nonen-

demic equilibrium point

For the simulation of the endemic equilibrium point with contamination only by consuming

unpasteurized dairy products, we start with initial conditons: s0 = 0.5, i0 = 0.1, lc0 = 0.1,

b0 = 0.1. We will run simulation, in an interval of 150 days, and we obtain the numerical

solution for the system (2). We defined the values of the parameters used in Table 3.

Parameter Values

rB 0.05

µB 0.089

µ 0.028

µl 0.1

γ 0.004

δ 0.0035

β̂1 0.01

β̂2 0.07

β̂3 0.004

β̂4 0.2

TABLE 3. Parameters values used in the endemic model with contamination

only by consuming unpasteurized dairy products
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FIGURE 3. The dynamic behavior of compartments s, i, lc and b for the endemic

equilibrium point with contamination only by consuming unpasteurized dairy

products

For the simulation of the endemic equilibrium point, we start with initial conditons: s0 = 0.5,

i0 = 0.1, lc0 = 0.2, b0 = 0.0005. We will run simulation, in an interval of 150 days, and we

obtain the numerical solution for the system (2). We defined the values of the parameters used

in Table 4.

Parameter Values

rB 0.32

µB 0.2

µ 0.09

µl 0.06

γ 0.07

δ 0.004

β̂1 0.15

β̂2 0.20

β̂3 0.004

β̂4 0.1

TABLE 4. Parameters values used in the simulation of the endemic equilibrium

point
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FIGURE 4. The dynamic behavior of compartments s, i, lc and b for the endemic

equilibrium point

6. CONCLUSION

We have presented in this article a compartmental mathematical model of the dynamics of tu-

berculosis in Morocco, that took in consideration the infection by consumption of unpasteurised

dairy products. We have calculate the equilibrium points and studied their local stability using

eigenvalues analysis. In the end, numerical simulations are presented to illustrate the results

obtained. This research confirms that the elimination of unpasteurized dairy products allows

the reduction in the rate of infection by tuberculosis, and consequently the number of people

infected with this bacillus. In addition, it is recommended to know some practices aimed at

ensuring food safety, including washing hands regularly, separating raw dairy products from

cooked dairy products, and the pasteurization which remains the most effective measure to pre-

vent the food transmission of pathogens, including M. Bovis, to humans.
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