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Abstract. The present research is concerned with studying the media coverage delay impact and vaccine impact

to control outbreaks the infectious disease in the population, we suggested that our mathematical modeling divide

the population into three classes: susceptible persons S(t), vaccinated person V(t) and infected persons I(t). The

susceptible individuals are also divided due to media programs into awareness and unawareness of disease danger

and its mode of transmission. We studied the influence of time delay in response to the media program on aware-

ness of the epidemic. We first discussed the existence of the equilibrium points of the system and obtain sufficient

conditions for the local asymptotic stability of all equilibrium points. Further, the existence of Hopf bifurcation

is shown near endemic equilibrium. It is interesting to note that there exists at least one limit cycle around the

unstable endemic equilibrium. In particular, sufficient conditions for a unique stable limit cycle have been pre-

sented. Finally, we verified the feasibility of the results by numerical simulation and give a brief conclusion to
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generalize that the delay effect of media and vaccination can cause unexpected dynamic predictions for interacting

populations.

Keywords: infectious disease; media programs; time delay; vaccination effect; sensitive analysis; hopf bifurcation.

2020 AMS Subject Classification: 92D30, 34D20, 34D23.

1. INTRODUCTION

The study of epidemic systems using mathematical models becomes one of the most im-

portant research topics among applied mathematicians, biologists since the pioneering work of

Kermark and Mckendrick [1]. It is a well-known fact, there are many viral diseases that in-

fect humans and animals for example dengue is caused by a virus of the Flaviviridae family

and there are four distinct. Also, influenza is caused by four serotypes of viruses. As for the

COVID-19 virus being caused by the SARS-CoV-2 virus, many strains have now been detected.

The presence of multiple strains of the pathogen complicates our ability to combat these dis-

eases. Because different genetic strains may have different characteristics. For example, it may

spread more easily, may cause more severe disease, or it may evade the host’s immune response

[2].

Recently, several epidemic models have been proposed with the aim to understand, describe

and control the spread of the SARS-CoV-2 disease. These models analyze the evolution of the

disease over time by dividing the communities into some compartments, which mainly include

the susceptible class (S), the carrier (C), the exposed class (E), the infected class (I) and the

removed class (R).

After the rapid spread of the epidemic, the World Health Organization (WHO) accelerated

the first measures, which is awareness through media programs such as wearing masks, social

distancing to 1.5 m, washing hands for 30 seconds, and others. On the other hand, vaccination

is an important control measure to reduce the spread of infectious diseases. Thus, studying the

effect of vaccines on the disease dynamics is crucial. Many studies on modeling have focused

on the influence of media programs and vaccination such as Mohsen et al. [3], presented a

mathematical model to study two different measures to control the COVID-19. The spread

of SARS-CoV-2 in china by Ivorra et al. [4]. Zeb et al. [5] described a nonlinear SEIQR
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COVID-19epidemic model. Hattaf et al. [6] studied the transmission dynamics of COVID-

19 propagation due to environmental contamination and carrier effect. In [7], Mohsen et al.,

formulated a SARS-CoV-2 model to consider the effect of curfew strategy. Dehingia et al. [8]

developed a mathematical model for within-host SARS-CoV-2. Bai et al. [9] have proposed

and analyzed an epidemic-economic model for SARS-CoV-2 by mathematical model. Also,

the following authors have formulated and explored some COVID-19 model see [10]-[20]. The

remainder of this work is organized as follows. In Section 2, we introduce the proposed SARS-

CoV-2 model with vaccination strategies and awareness measures. In section 3, we present the

existence analysis of the equilibrium solutions. In Section 4, we study the dynamical behaviors

and stability analysis of the proposed model. In Section 5, we discuss the properties of the

Hopf bifurcation. In section 6, we describe the numerical simulations and sensitive analysis to

validate the theoretical results. Finally, conclusions and discussions are presented in Section 7.

2. THE MATHEMATICAL MODEL INVOLVING AWARENESS PROGRAMS

In this work, we investigate the influence of both vaccination and awareness by media on

the infectious diseases. So, it is formulated by the following nonlinear system of ordinary

differential equations, where the 1st part susceptible unaware of the diseases and denoted by

Su(t) with time t, the 2nd part is vaccinated individuals referred by V (t) at time t, the 3rd part

is susceptible of the diseases but has awareness about it and referred by Sa(t) at time t, the 4th

part is referred by I(t) at time t represented by infected persons and the last part M(t) is the

level of awareness that population need. In addition to the above that the total population is

N(t) at time t and the natural birth of susceptible is Λ with fraction 0 < p < 1 (i.e that is mean

p the rate of vaccination from Su(t)). µ the death rate of each population. We assume that the

disease spread by contact between the susceptible population (unaware and aware) and infected

population are denoted by βi for i=1,3 respectively with it is noted that β3 < β1. As well as

the unaware susceptible become aware due to of the awareness programs at rate β2, with the

constant q such that 0 ≤ q < 1, is the media-induced vaccination coverage. Moreover, v and d

are the recovery rate and mortality due to infection respectively. Also, we have some people

convert from awareness level to unaware level due to confuse from media programs at rate ρ .

The influence rate of media campaigns is denoted by γ and the reduction rate is represented by
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θ . finally, in some time when the transfer the unaware susceptible to aware susceptible due to

any loss or random in awareness occurs of delay in time, we denoted for this delay by t−τ (for

τ > 0). Now, from the above facts we can write the model by the following system of nonlinear

(DDEs):

(1)

Ṡu(t) = (1− p)A−β1SuI−β2SuM(t− τ)+ρSa−µSu,

V̇ (t) = pA+qβ2SuM(t− τ)+νI−µV,

Ṡa(t) = (1−q)β2SuM(t− τ)−β3SaI−ρSa−µSa,

İ(t) = β1SuI +β3SaI−νI−dI−µI,

Ṁ(t) = γI−θM,

where Su(0)> 0,V (0)> 0,Sa(0)≥ 0, I(0)≥ 0,M(θ)≥ 0 for θ ∈ [−τ,0] and all the variables

and parameter are presumed to be positive, since (1) is a description of human population.

3. PRELIMINARIES

3.1. Positive Invariance. We study the positive invariance in the following theorem.

Theorem (1): All the solutions of (1) are nonnegative.

Proof: We begin the proof by contradiction(i.e suppose that the theorem is incorrect), then

there exists t∗ > 0 be the first time verifying Su(t∗) = 0,V (t∗) = 0,Sa(t∗) = 0, I(t∗) = 0 and

M(t∗) = 0. Now, by the 1st eq. of (1) we have

Ṡu(t)
∣∣
t=t∗ = (1− p)A︸ ︷︷ ︸

>0

−β1SuI︸ ︷︷ ︸
=0

−β2SuM(t− τ)︸ ︷︷ ︸
=0

+ ρSa︸︷︷︸
≥0

− µSu︸︷︷︸
=0

.

Hence, we should have Su(t) < 0 for all t ∈ (t∗− ε, t∗) with ε > 0. This is contradicts that

Su(t)> 0 for al t ∈ [0, t∗) we have Su(t)> 0 for all t > 0. Also, from 2nd eq. we get:

V̇ (t)
∣∣
t=t∗ = pA︸︷︷︸

>0

+qβ2SuM(t− τ)︸ ︷︷ ︸
>0

+ νI︸︷︷︸
≥0

− µV︸︷︷︸
=0

.

Clearly, by same way above and hence we obtain that V (t) > 0 for all t > 0. Now,from 3rd

eq. of (1) we get:

Ṡa(t)
∣∣
t=t∗ = (1−q)β2SuM(t− τ)︸ ︷︷ ︸

>0

−β3SaI︸ ︷︷ ︸
=0

− ρSa︸︷︷︸
=0

− µSa︸︷︷︸
=0

.
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Hence we obtain that Sa(t)> 0. Therefore, we have I(t)> 0 as shown in the following:

İ(t)
∣∣
t=t∗ = β1SuI︸ ︷︷ ︸

>0

+β3SaI︸ ︷︷ ︸
>0

−(µ +d +ν)I︸ ︷︷ ︸
=0

.

Finally, from the last eq. in (1) and using the same way above we have

Ṁ(t)
∣∣
t=t∗ = γI︸︷︷︸

≥0

− θM︸︷︷︸
=0

.

Consequently, M(t)> 0 for all t > 0.

3.2. Boundedness. Theorem(2): All the solutions of (1) with initial conditions are bounded.

Proof: Let(Su(t),V (t),Sa(t), I(t),M(t)) be any solution of (1) with initial conditions, hence, by

adding the equations is (1) to each other we get:

(Su,V,Sa, I) = A−µSu−µV −µSa−dI−µI.

It easy see that, by fact the total population is denoted by N(t) we get:

Ṅ +µN ≤ A

Then solving the above inequality with result of Gronwall lemma we get N ≤ A/µ + ε.

Similarly, from the last eq. (media programs) of (1) we have:

Ṁ = γI−θM.

This implies that Ṁ(t)+θM(t) = γI.

So,

Ṁ(t)+θM(t)≤ γA/µ.

Then, Ṁ(t))≤ γA/µθ .

3.3. The existence the all possible equilibrium points of System (1). In this subsection, we

see that system (1) has only two equilibria:

(1) The first point is called the disease-free equilibrium point (DFE) and denoted by E◦ =

(Su◦,V◦,0,0,0).

(2) The second point is called the endemic equilibrium point (EE) and denoted by E1 =

(S∗u,V
∗,S∗a, I

∗,M∗)
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Now, discussing the existence conditions of each equilibrium point of (1), and hence the system

(1) has the (DFE) only in case I = 0, then we can write it by E◦ = ((1− p)A/µ, pA/µ,0,0,0),

and it is exists when R0 < 1, where

R0 =
(1− p)β1A

µ(d +ν +µ)
.

The threshold parameter R0 is called the basic reproduction number. On the other hand, if

I 6= 0, we need to check the existence conditions of the (EE). Note that, S∗u,V
∗,S∗a, I

∗ and M∗

represented the positive solution of the following set of equations.

(1− p)A−β1S∗uI∗−β2S∗uI∗+ρS∗a−µS∗u = 0,

pA+qβ2S∗uM∗+νI∗−µV ∗ = 0,

(1−q)β2S∗uM∗−β3S∗aI∗−ρS∗a−µS∗a = 0,

β1S∗uI∗+β3S∗aI∗−νI∗−dI∗−µI∗ = 0,

γI∗−θM∗ = 0.

After solving the above system we get value of last equation in above system in following

(2) M∗ =
γI∗

θ
.

Now, substituting M∗ in the 1st, 2nd and 3rd equations in above system and solving its we get:

(3) S∗u =
(1− p)(β3I∗+ρ +µ)θA

X
,

(4) V ∗ =
pAX +(1− p)(β3I∗+ρ +µ)qβ2γAI∗+νXI∗

X
,

(5) S∗a =
(1−q)(1− p)β2γAI∗

X
,

where

X = ρ(β1θ I∗+µθ +qγβ2I∗)+(β3I∗+µ)(β1θ I∗+µθ + γβ2I∗).

Now, we can simplify the 4th equation in the same system in following:

(6) D1(I∗)2 +D2I∗+D3 = 0.

where

D1 =−(ν +d +µ)(β1θ +β2γ)β3 < 0,
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D2 = (1− p)β3A[β1θ +(1−q)β2γ]− (ν +d +µ)[ρ(β1θ +qβ2γ)+µ(β3θ +β1θ +β2γ)],

D3 = θ(ρ +µ)[(1− p)β1A− (ν +d +µ)µ].

Clearly, by help the Descartes rule, (6) has unique positive real root I∗ if the following condition

holds

(7) R0 > 1.

Hence, we can find the values of S∗u,V
∗,S∗a and M∗ if we know the value of I∗.

Remark. System(1) has more than one endemic equilibrium point (EE) if the (7) not be satis-

fied.

4. STABILITY ANALYSIS

In this section, to discuss the stability of the equilibrium points, we need the calculating the

Jacobian matrix at each points (DFE) and (EE), thus, we state the following theorems. It is

well known that, the general form Jacobian matrix for system (1) at any equilibrium point in

the following:

(8) J =



−(β1I +β2M+µ) 0 ρ −β1Su −β2Sue−λτ

β2M −µ 0 ν qβ2Sue−λτ

(1−q)β2M 0 −(β3I +ρ +µ) −β3Sa (1−q)β2Sue−λτ

β1I 0 β3I β1Su +β3Sa− (ν +d +µ) 0

0 0 0 γ −θ


.

4.1. Stability of (DFE). Theorem(3)The (DFE) is locally asymptotically stable if:

(9) R0 < 1.

Proof: The equation (8) at (DFE), we can be reduces to:

(10) J(E◦) =



−µ 0 ρ
−(1−p)β1A

µ

−(1−p)β2A
µ

0 −µ 0 ν
−q(1−p)β2A

µ

0 0 −(ρ +µ) 0 (1−q)(1−p)β2A
µ

0 0 0 (1−p)β1A
µ

− (ν +d +µ) 0

0 0 0 γ −θ


.
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Then the characteristic equation of (10):

(11) (λ1 +µ)(λ2 +µ)(λ3 +(ρ +µ))(λ4 +θ)[λ5 +(1− p)β1A−µ(µ +d +µ)] = 0.

Consequently, if (9) holds we get the each eigenvalues are always negative and given the (DFE)

is asymptotic stable.

4.2. Stability and Hopf Bifurcation of (EE). Now, we discuss the existence of Hopf bifurca-

tion of the (EE) point of system(1), we can rewrite the matrix (8) with the characteristic equation

around the (EE) in this following form.

(12) J(E1) =



b11 0 b13 b14 b15e−λτ

β2M −µ 0 ν qβ2Sue−λτ

b31 0 b33 b43 b35e−λτ

b41 0 b43 b44 0

0 0 0 b54 b55


.

Here:

b11 =−(β1I∗+β2M∗+µ); b13 = ρ; b14 =−(β1S∗u); b15 =−(β2S∗u)

b31 = (1−q)β2M∗; b33 =−(β3I∗+ρ +µ); b34 =−(β3S∗a); b35 = (1−q)β2S∗u

b41 = β1I∗; b43 = β3I∗; b44 = β1S∗u +β3S∗a− (ν +d +µ); b54 = γ; b55 =−θ .

Hence, the characteristic equation of (12) can be written by form:

(13) (λ +µ)[λ 4 +B1λ
3 +B2λ

2 +B3λ +B4 +(B7λ +B8)e−λτ ].

Here:

B1 =−[b11 +b33 +b44 +b55],

B2 = [b11(b33 +b44)−b13b31−b14b41 +b55(b11 +b33)+b44(b33 +b55)−b34b43],

B3 =−[(b33 +b55)(b11b44−b14b41)+b33b55(b11 +b44)−b34b43(b11 +b55)

−b13b31(b44 +b55)+b13b34b41 +b31b43b14],

B4 = [b33b55(b11b44−b14b41)+b55b13(b34b41−b44b31)+b55b43(b31b14−b11b34)],
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B7 =−[b54(b14b15 +b43b35)],

B8 = [b15b54(b33b41−b31b43)+b54b35(b11b43−b13b41)].

It is easy to verify that condition b44 < 0 guarantees that B1 is positive and the condition

b13b31 < b11(b33 +b44) guarantees that B2 is positive. as well, the conditions b44b31 < b34b41

and b11b34 < b31b14 guarantees that B4 is positive. While, Bi, ı = 3,8 is always positive but, B7

is always negative. Then to discuss the stability of (EE) without delay (i.e τ = 0). Clearlly, we

can rewrite the equation (13) in the following format:

(14) (λ +µ)[λ 4 +B1λ
3 +B2λ

2 +(B3 +B7)λ +(B4 +B8)] = 0.

Then, according to Routh-Hurwtiz criterion, we see that all roots of equation (14), have

negative real part. provided that Bi > 0, i = 1,2, B3+B7 > 0, B4+B8 > 0 and B1B2(B3+B7)−

(B3 +B7)
2−B2

1(B4 +B8)> 0. We obtain that the (EE) without delay is locally asymptotically

stable.

Now, to discuss the stability of (EE) when τ > 0 depends on the roots of equation (13). We

assume that λ = iω (ω > 0) in equation (13) we have:

ω
4− iω3B1−ω

2B2 + iωB3 +B4 +(iωB7 +B8)(Cosωτ− iSinωτ) = 0.

Now, by isolation the real and imaginary parts, which gives:

(15) ωB3−ω
3B1 = B8Sinωτ−ωB7Cosωτω

4−ω
2B2 +B4 =−ωB7Sinωτ−B8Cosωτ.

By squaring the two equation in (15) and adding to each other we get:

(16) ω
8 +ω

6(B2
1−2B2)+ω

4(2B4 +B2−2B1B3)ω
2(B2

3−2B2B4−B2
7)+B2

4−B2
8 = 0,

put h = ω2, equation(16) becomes as follow:

(17) h4 +C1h3 +C2h2 +C3h+C4 = 0,

where

C1 = B2
1−2B2; C3 = B2

3−2B2B4−B2
7, C2 = 2B4 +B2−2B2B3; C4 = (B4 +B8)(B4−B8).
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Now, it easy by according to Descarte rule of sign the equation (16) and (17) has a positive root

denoted by h = ω◦ provided that the following condition holds:

(18) B4 < B8.

Clearly, we get the characteristic equation(13) has at least a pair of pure imaginary roots

±iω◦, corresponding to the time delay τ . Hence, we can rewritten the system (15) but sub-

stituting ω◦ instead of ω and solving the resulting system for τ , we have the following result.

(19) τ j =
1

ω◦
Cos−1 − [ω

4
◦ (B8−B1B7)+ω2

◦ (B3B7−B2B8)+B4B8]

ω2
◦B2

7 +B2
8

+
2 jπ
ω◦

,

where j=0,1,2,......

Now, since equation(13) has least two pure imaginary roots if the condition (18) is satisfing

with τ0 such that τ0 = min.τ j, but if the conditions of Routh-Hurwtiz criterion are hold. Then

all the roots have negative real parts with 0≤ τ < τ0. And hence, let λ (τ) = µ(τ)+ iω(τ) be a

root of equation (13) such that µ(τ0) = 0 and ω(τ◦) = ω◦. Then we get the following theorem.

Theorem(4) If the condition (18) holds we have the roots λ (τ) of equation (130 satisfy the

following transversality condition.

(20)
[

d(Reλ (τ))

dτ

]
τ=τ0

6= 0.

Provided that(
B2

7ω
2
◦ +B2

8
)[
(B3−3B1ω◦)(B3−B1ω

3
◦ )+2ω◦(2−B2)(ω

4
◦ +B4−B2ω

2
◦ )
]

+B7
[
(B3−B1ω

3
◦ )

2 +(ω4
◦ +B4−B2ω

2
◦ )
]
6= 0.

(21)

Proof: By deriving equation (13) with respect to τ , the following is obtain the result:

(22)
{

4λ
3 +3B1λ

2 +2B2λ +B3 +[B7− τ(B7λ +B8)]e−λτ

} dλ

dτ
= λ (B7λ +B8)e−λτ .

Thus,

(23)
[

λ

dτ

]−1

=
(4λ 3 +3B1λ 2 +2B2λ +B3)eλτ

λ (B7λ +B8)
+

B7

λ (B7λ +B8)
− τ

λ
.

Since, λ = iω◦ at τ = τ0, with using equation (13), we can rewrite (23) as following:[
λ

dτ

]−1

τ=τ0

=
−4iω◦−3B1ω◦+2B2iω◦+B3

ω◦(B3−B1ω3
◦ )− iω◦(ω4

◦ +B4−B2ω2
◦ )

+
B7

−B7ω2
◦ + iω◦B8

− τ0

iω◦
.
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Since

(24) Sgn
[

d(Reλ )

dτ

]
τ=τ0

= Sgn

[
Re
(

dλ

dτ

)−1
]

τ=τ0

.

We have:

Re
[

−4iω◦−3B1ω◦+2B2iω◦+B3

ω◦(B3−B1ω3
◦ )− iω◦(ω4

◦ +B4−B2ω2
◦ )

]
=

(B3−3B1ω◦)(B3−B1ω3
◦ )+2ω◦(2−B2)(ω

4
◦ +B4−B2ω2

◦ )

(B3−B1ω3
◦ )

2 +(ω4
◦ +B4−B2ω2

◦ )
2 ,

Re
[

B7

−B7ω2
◦ + iω◦B8

]
=

−B2
7

B2
7ω2
◦ +B2

8
,

Re
[

τ0

iω◦

]
= 0.

We get[
Re
(

dλ

dτ

)−1
]

τ=τ0

=

(
B2

7ω2
◦ +B2

8
)[
(B3−3B1ω◦)(B3−B1ω3

◦ )+2ω◦(2−B2)(ω
4
◦ +B4−B2ω2

◦ )
](

B2
7ω2
◦ +B2

8

)
[(B3−B1ω3

◦ )
2 +(ω4

◦ +B4−B2ω2
◦ )]

2

+
B7
[
(B3−B1ω3

◦ )
2 +(ω4

◦ +B4−B2ω2
◦ )
](

B2
7ω2
◦ +B2

8

)
[(B3−B1ω3

◦ )
2 +(ω4

◦ +B4−B2ω2
◦ )]

2 .

Hence,the transversality condition is satisfied if the condition (22) holds. Now, from the

above result on the local stability and Hopf bifurcation at (EE), we have the following remark:

Remark. Let the condition (7) with conditions of Routh-Hurwtiz criterion and (18) are satisfied

then:

i The (EE) point is locally asymptotically stable for τ < τ0.

ii The (EE) is unstable point for τ > τ0.

iii Near (EE) point the Hopf bifurcation is occur in system (1) for τ = τ0.

5. DIRECTION OF HOPF BIFURCATION AND STABILITY OF BIFURCATION PERIODIC

SOLUTION

In this section, we discuss the the direction and the stability of the Hopf bifurcation by using

center manifold reduction. we first normalize the system (1) We let Y1(t) = Su(τt)−S∗u, Y2(t) =
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V (τt)−V ∗, Y3(t) = Sa(τt)− S∗a, Y4(t) = I(τt)− I∗ and Y5(t) = M(τt)−M∗. Then system (1)

becomes

(25)

Ẏ1 = τ [(1− p)A−β1 (Y1 +S∗u)(Y4 + I∗)−β2 (Y1 +S∗u)(Y5(t− τ)+M∗)+ρ (Y3 +S∗a)−µ (Y1 +S∗u)] ,

Ẏ2 = τ [pA+qβ2 (Y1 +S∗u)(Y5(t− τ)+M∗)+ν (Y4 + I∗)−µ (Y2 +V ∗)] ,

Ẏ3 = τ [(1−q)β2 (Y1 +S∗u)(Y5(t− τ)+M∗)−β3 (Y3 +S∗a)(Y4 + I∗)− (ρ +µ)(Y3 +S∗a)] ,

Ẏ4 = τ [β1 (Y1 +S∗u)(Y4 + I∗)−β3 (Y3 +S∗a)(Y4 + I∗)− (ν +d +µ)(Y4 + I∗)] ,

Ẏ5 = τ [γ (Y4 + I∗)−θ (Y5 +M∗)] .

So, choose τ = τ◦+α , and by linear of (25) at (0,0,0,0,0), we get

(26)

Ẏ1 = (τ +α) [−(β1I∗+β2M∗+µ)Y1−β1S∗uY4−β2Y5(t− τ)] ,

Ẏ2 = (τ +α) [qβ2M∗Y1 +qβ2Y5(t− τ)+νY4−µY2] ,

Ẏ3 = (τ +α) [(1−q)β2M∗Y1 +(1−q)β2S∗uY5(t− τ)− (β3I∗+ρ +µ)Y3−β3S∗Y4] ,

Ẏ4 = (τ +α) [β1I∗Y1 +β3I∗Y3 +(β1S∗u +β3S∗a− (ν +d +µ))Y4] ,

Ẏ5 = (τ +α) [γY4−θY5] .

Hence, the nonlinear term of (25) in following

(27) f = (τ◦+α)



−β1Y1Y4−β2Y1Y5(t− τ)

qβ2Y1Y5(t− τ)

(1−q)β2Y1Y5(t− τ)−β3Y3Y4

β1Y1Y4 +β3Y3Y4

0


.

We consider the phase space C =C
(
[−1,0] ,ℜ5

+

]
, then (25) can be written as

(28) Ẏ (t) = Lα(yt)+ f (α,yt),

where Y (t) = (Y1(t),Y2(t),Y3(t),Y4(t),Y5(t))
T , Yt = Yt(θ) = Y (t +θ),θ ∈ [−1,0], and Lαϕ =

H1(α)ϕ(0)+H2(α)ϕ(−1), ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)
T ∈C. From (28), we can get
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(29)

A1(α) = (τ◦+α)



−(β1I∗+β2M∗+µ) 0 0 −β1S∗u 0

qβ2M∗ −µ 0 ν 0

(1−q)β2M∗ 0 −(β3I∗+ρ +µ) −β3S∗a 0

β1I∗ 0 β3I∗ β1S∗u +β3S∗a− (ν +d +µ) 0

0 0 0 γ −θ


,

(30) A2(α) = (τ◦+α)



0 0 0 0 −β2S∗u

0 0 0 0 qβ2S∗u

0 0 0 0 (1−q)β2S∗u

0 0 0 0 0

0 0 0 0 0


.

And

(31) f (α +ϕ) = (τ◦+α) ·



f11

f21

f31

f41

f51


,

where

f11 =−β1ϕ1(0)ϕ4(0)−β2ϕ1(0)ϕ5(−1),

f22 = qβ2ϕ1(0)ϕ5(−1),

f31 = (1−q)β2ϕ1(0)ϕ5(−1)−β3ϕ3(0)ϕ4(0),

f41 = β1ϕ1(0)ϕ4(0)+β3ϕ3(0)ϕ4(0).

Clearly, Lα linear bounded operator in C. Now, by Riesz theorem, there exists a bounded

variation function matrix η(θ ,α),θ ∈ [−1,0], satisfying that Lαϕ =
∫ 0
−1 ϕ(θ)dη(θ ,α).

Indeed, by choosing Dirac function δ where η(θ ,α)=A1(α)δ (θ)+A2(α)δ (θ +1). By ϕ ∈C,

we define

(32) A(α)ϕ =

dϕ(θ)
dθ

, i f θ ∈ [−1,0),∫ 0
−1 dη(ξ ,α)ϕ(ξ ), i f θ = 0
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(33) R(α)ϕ =
0, i f θ ∈ [−1,0),

f (α,ϕ), i f θ = 0

(28) can be expressed as

(34) Ẏ (t) = A(α)Yt +R(α)Yt

Define A(0) = A,R(0) = R,η(θ ,α) = η(θ)andAi(0) = Ai, i = 1,2.

Now, for ϕ ∈C∗ =C
(
[0,1],ℜ5

+

)
, we denote

(35) A∗ϕ(s) =
−dϕ(s)

ds , i f s ∈ (0,1],∫ 0
−1 dηT (ξ ,0)ϕ(−ξ ), i f s = 0,

where ηT is the transpose of η . The bilinear from can be defined as inner product as

(36) 〈ψ(s),ϕ(θ)〉= ψ̄
T (0)ϕ(0)−

∫ 0

−1

∫
θ

0
ψ̄

T (ξ −θ)dη(θ)ϕ(ξ )dξ ,

where ϕ ∈C, ψ ∈C∗. On the other hand, 〈ψ,Aϕ〉= 〈A∗ψ,ϕ〉. Clearly, ±iτ◦ω◦ are the eigen-

vector of (26), therefore we have the followed results
Theorem 5: Let K(θ) = (1,z1,z2,z3,z4)

T eiθτ◦ω◦ is the eigenvector corresponding to
iτ◦ω◦,K∗(s) = (1,z∗1,z

∗
2,z
∗
3,z
∗
4)

T eisτ◦ω◦ , is eigenvector of A∗ corresponding to −iτ◦ω◦, and
〈K∗(s),K(θ)〉= 1,〈K∗(s), K̄(θ)〉= 0 such that

τ◦



iω◦+β1I∗+β2M∗+µ 0 0 β1S∗u β2S∗ue−iτ◦ω◦

−qβ2M∗ iω◦+µ 0 −ν β2S∗ue−iτ◦ω◦

−(1−q)β2M∗ 0 iω◦+β3I∗+ρ +µ β3S∗a −(1−q)β2S∗ue−iτ◦ω◦

−β1I∗ 0 −β3I∗ iω◦+ν +d +µ− (β1S∗u +β3S∗a) 0

0 0 0 −γ iω◦+θ




1

z1

z2

z3

z4


=



0

0

0

0

0


.
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where

z1 =
−qβ2M∗(iω◦+θ)−(iω◦+θ+qβ2S∗ue−iτ◦ω◦)γz3

(iω◦+µ)(iω◦+θ µ) ,

z2 =
[iω◦+ν+d+µ−(β1S∗u+β3S∗a)]z3−β1I∗

β3I∗ ,

z3 =
(iω◦+θ)(iω◦+β1I∗+β2M∗+µ)
[β1(iω◦+θ)+β2γe−iτ◦ω◦ ]S∗u

,

z4 =
γz3

iω◦+θ
.

And

τ◦



iω◦− (β1I∗+β2M∗+µ) qβ2M∗ (1−q)β2M∗ β1I∗ 0

0 iω◦−µ 0 0 0

0 0 iω◦− (β3I∗+ρ +µ) β3I∗ 0

−β1S∗u ν −β3S∗a iω◦− (ν +d +µ)+(β1S∗u +β3S∗a) γ

−β2S∗ueiτ◦ω◦ qβ2S∗u (1−q)β2S∗u 0 iω◦−θ





1

z∗1

z∗2

z∗3

z∗4


=



0

0

0

0

0


.

Where

z∗1 =
eiτ◦ω◦(iω◦(β3I∗+ρ+µ))−(1−q)β3I∗z∗3

q(iω◦−(β3I∗+ρ+µ)) ,

z∗2 =
β3I∗z∗3

iω◦−(β3I∗+ρ+µ) ,

z∗3 =
−[iω◦−(β3I∗+ρ+µ)][qβ2M∗eiτ◦ω◦+iω◦−(β1I∗+β2M∗+µ)]

I∗{β1[iω◦−(β3I∗+ρ+µ)]+(1−q)β3(β2M∗−1)} ,

z∗4 =
β1S∗u+β3S∗az∗2−νz∗1−[iω◦−(ν+d+µ)+(β1S∗u+β3S∗a)]

γ
.

Now, to find the constant D, and 〈K∗,K〉= 1, 〈K∗, K̄〉= 0, from (40), we have

〈K∗,K〉= (K̄∗)T (0)K(0)−
∫ 0
−1
∫

θ

0 (K̄∗)T (ξ −θ)dη(θ)K(ξ )dξ

= D̄(1, z̄∗1, z̄
∗
2, z̄
∗
3, z̄
∗
4)

T · (1,z1,z2,z3,z4)−
∫ 0
−1
∫

θ

0 D̄(1, z̄∗1, z̄
∗
2, z̄
∗
3, z̄
∗
4)

T eiτ◦ω◦(θ−ξ )dη(θ)(1,z1,z2,z3,z4)
T eiτ◦ω◦ξ dξ

(37) D̄
{

1+ z̄∗1z1 + z̄∗2z2 + z̄∗3z3 + z̄∗4z4 + τ◦(1, z̄∗1, z̄
∗
2, z̄
∗
3, z̄
∗
4)(−β2S∗uz4,qβ2S∗uz4,(1−q)β2S∗uz4,0,0)T e−iτ◦ω◦

}
.

Thus

D =
[
1+ z∗1z̄1 + z∗2z̄2 + z∗3z̄3 + z∗4z̄4 + τ◦ {−β2S∗uz̄4 +qβ2S∗uz∗1z̄4 +(1−q)β2S∗uz∗2z̄4}eiτ◦ω◦

]−1
.
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Then, we obtain 〈K∗,K〉= 1.

In addition of above, we using the adjoint property 〈ϕ,Aφ〉= 〈A∗ϕ,φ〉 it easy to show that

iτ◦ω◦ 〈K∗, K̄〉= 〈−iτ◦ω◦K∗, K̄〉

= 〈A∗K∗, K̄〉

= 〈K∗,AK̄〉

= 〈K∗, iτ◦ω◦K̄〉

=−iτ◦ω◦ 〈K∗, K̄〉 .

Hence, we obtain 〈K∗, K̄〉= 0. The proof completed. Next, we will compute the coordinates

to describe the center manifold at α = 0. Assuming Yt be a solution of (28) when α = 0, we

define in following

(38)

Z(t) = 〈K∗,Yt〉 ,

and

W (z, z̄,θ) = Yt(θ)−2Re{Z(t)K(θ)} .

Now, From (28), with α = 0 and equation (38), we get

(39)

Ż(t) =
〈
K∗,Ẏt

〉
= 〈K∗,AYt〉+ 〈K∗,RYt〉

= 〈A∗K∗,Yt〉+ K̄∗(0) f (0,Yt)

= iτ◦ω◦z+ K̄∗(0) f (0,W (z, z̄,θ)+2Re{Z(t)K(θ)})

= iτ◦ω◦z+ K̄∗(0) f◦(z, z̄).

On the center manifold, we get

(40) W (t,θ) =W (zz, z̄,θ) =W20
z2

2
+W11zz̄+W02

z̄2

2
+ ....

Where, z and z̄ are local coordinates for center manifold in the direction of K∗ and K̄∗. From

(38), clearly we know that W is real if Yt is real. If we consider only the real solutions, we can

rewritten the (40) becomes

(41) Ż(t) = iτ◦ω◦z+g(z, z̄),
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with

(42) g(z, z̄) = g20
z2

2
+g11zz̄+g02

z̄2

2
+g21

z2z̄
2

+ .....

By transformed (38) becomes

(43)
Yt(θ) =W (z, z̄,θ)+2Re{Z(t)K(θ)}

=W (z, z̄,θ)+Z(t)K(θ)+ Z̄(t)K̄(θ)

Y1(t) = z(t)+ z̄(t)+W (1)
20 (0) z2

2 +W (1)
11 (0)zz̄+W (1)

02 (0) z̄2

2 + ....,

Y2(t) = z1z(t)+ z̄1z̄(t)+W (2)
20 (0) z2

2 +W (2)
11 (0)zz̄+W (2)

02 (0) z̄2

2 + ....,

Y3(t) = z2z(t)+ z̄2z̄(t)+W (3)
20 (0) z2

2 +W (3)
11 (0)zz̄+W (3)

02 (0) z̄2

2 + ....,

Y4(t) = z3z(t)+ z̄3z̄(t)+W (4)
20 (0) z2

2 +W (4)
11 (0)zz̄+W (4)

02 (0) z̄2

2 + ....,

Y5(t) = z4z(t)+ z̄4z̄(t)+W (5)
20 (0) z2

2 +W (5)
11 (0)zz̄+W (5)

02 (0) z̄2

2 + ....,

Y2(t−1) = z1z(t)e−iτ◦ω◦+ z̄1z̄(t)eiτ◦ω◦+W (2)
20 (−1) z2

2 +W (2)
11 (−1)zz̄+W (2)

02 (−1) z̄2

2 + ....,

Y3(t−1) = z2z(t)e−iτ◦ω◦+ z̄2z̄(t)eiτ◦ω◦+W (3)
20 (−1) z2

2 +W (3)
11 (−1)zz̄+W (3)

02 (−1) z̄2

2 + ....,

Y4(t−1) = z3z(t)e−iτ◦ω◦+ z̄3z̄(t)eiτ◦ω◦+W (4)
20 (−1) z2

2 +W (4)
11 (−1)zz̄+W (4)

02 (−1) z̄2

2 + ....,

Y5(t−1) = z4z(t)e−iτ◦ω◦+ z̄4z̄(t)eiτ◦ω◦+W (5)
20 (−1) z2

2 +W (5)
11 (−1)zz̄+W (5)

02 (−1) z̄2

2 + .....

Now from (40) and (41), we get

g(z, z̄) = K̄∗(0) f (0,W (z, z̄,θ)+2Re{Z(t)K(θ))}

= τ∗D̄(1,z1,z2,z3,z4) ·



1

d11

d21

d31

d41

d51


= τ◦D̄ [(z3−1)β1Y1Y4 +(z1q+(1−q)z2−1)β2Y1Y5(t−1)+(z3− z2)β3Y3Y4] ,

where

d11 =−β1Y1Y4−β2Y1Y5(t− τ),

d21 = qβ2Y1Y5(t− τ),
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d31 = (1−q)β2Y1Y5(t− τ)−β3Y3Y4,

d41 = β1Y1Y4 +β3Y3Y4,

d41 = 0.

Comparing the rates with (42), then

g20 = K∗ fz2,

g02 = K∗ fz̄2,

g11 = K∗ fzz̄,

g21 = K∗ fz2z̄.

From (38) and (40) we get

Ẇ = Ẏt− Żq(θ)− ¯̇Zq̄(θ)

= AYt +RYt− iτ◦ω◦zq− (q̄∗)T f◦(z, z̄)q+ iτ◦ω◦z̄q̄− (q∗)T f̄◦(z, z̄)q̄

Ẇ =
AW −2Re

{
(q∗)T (0) f◦(z, z̄)q(θ)

}
, i f θ ∈ [−1,0),

AW + f◦(z, z̄)−2Re
{
(q∗)T (0) f◦(z, z̄)q

}
, i f θ = 0

Then, we can rewrite (38) as

(44) Ẇ = AW +H(z, z̄,θ),

where

H(z, z̄,θ) = H20
z2

2
+H11zz̄+H02

z̄2

2
+ .....

Besides,

(45) Ẇ =WzŻ +Wz̄
¯̇Z.

Now by using (40) and (41) in above equation, we get

Ẇ = iτ◦ω◦W20(θ)Z2− iτ◦ω◦W02(θ)Z̄2 + .....

Again by (40) and (45), is given that

H(z, z̄,θ) = (2iτ◦ω◦−A)W20(θ)
z2

2
−AW11(θ)zz̄− (2iτ◦ω◦+A)W02(θ)

z̄2

2
+ .....
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By comparing the coefficients in above equation with those in equation (49), we obtain

(46)

AW20(θ) = 2iτ◦ω◦W20(θ)−H20(θ),

AW11(θ)+H11(θ) = 0,

AW02(θ) =−2iτ◦ω◦W02(θ)−H02(θ).

From (44) and (45), we have for θ ∈ [−1,0)

H(z, z̄,θ) =−2Re{K̄∗(0) f◦(z, z̄)K(θ)}

=−g(z, z̄)K(θ)− ḡ(z, z̄)K̄(θ).

Then,

H20(θ) =−g20K(θ)− ḡ02K̄(θ),

H11(θ) =−g11K(θ)− ḡ11K̄(θ),

H02(θ) =−g02K(θ)− ḡ20K̄(θ).

Based on (46), we have

(47)
Ẇ20(θ) = 2iτ◦ω◦W20(θ)−H20(θ)

= iτ◦ω◦W20(θ)+g20K(θ)+ ḡ02K̄(θ)

(48) Ẇ11(θ) =−H11(θ) = g11K(θ)+ ḡ11K̄(θ)

with θ ∈ [−1,0), resolving for (47) and (48), then

W20(θ) =
ig20K(0)

τ◦ω◦
eiτ◦ω◦θ +

iḡ02K̄(0)
3τ◦ω◦

e−iτ◦ω◦θ +E1e2iτ◦ω◦θ ,

W11(θ) =
−ig11K(0)

τ◦ω◦
eiτ◦ω◦θ +

iḡ11K̄(0)
τ◦ω◦

e−iτ◦ω◦θ +E2,

where, E1 = (E(1)
1 ,E(1)

2 ,E(1)
3 )T and E2 = (E(2)

1 ,E(2)
2 ,E(2)

3 )T Can be deduced by θ = 0. W20(θ)

and W11(θ) are contentious on [−1,0], if θ = 0, then

W20(θ) =
ig20K(0)

τ◦ω◦
+

iḡ02K̄(0)
3τ◦ω◦

+E1,

W11(θ) =
−ig11K(0)

τ◦ω◦
+

iḡ11K̄(0)
τ◦ω◦

+E2.

Now, we know that

AW20(0) =
∫ 0

−1
dη(ξ )W20(θ),
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AW11(0) =
∫ 0

−1
dη(ξ )W11(θ).

So we get

(49) (2iτ◦ω◦I−A1−A2e−2iτ◦ω◦)E1 = 2τ◦ ·


−β1z3−β2z4eiτ◦ω◦

qβ2z4eiτ◦ω◦

(1−q)β2z4eiτ◦ω◦−β3z2z3

β1z3 +β3z2z3

 .

And

(50) (A1 +A2)E2 = τ◦


−β1(z3 + z̄3)−β2(z4 + z̄4)

qβ2(z4 + z̄4)

(1−q)β2(z4 + z̄4)−β3(z2z̄3 + z̄2z3)

β1(z3 + z̄3)+β3(z2z̄3 + z̄2z3)

 ,

with I is identity matrix, thus

(51) E1 = 2τ◦(2iτ◦ω◦I−A1−A2e−2iτ◦ω◦)−1 ·


−β1z3−β2z4eiτ◦ω◦

qβ2z4eiτ◦ω◦

(1−q)β2z4eiτ◦ω◦−β3z2z3

β1z3 +β3z2z3

 ,

(52) E2 = τ◦(A1 +A2)
−1 ·


−β1(z3 + z̄3)−β2(z4 + z̄4)

qβ2(z4 + z̄4)

(1−q)β2(z4 + z̄4)−β3(z2z̄3 + z̄2z3)

β1(z3 + z̄3)+β3(z2z̄3 + z̄2z3)

 .

Consequently, from previous analysis, we can compute the following values

N1(0) =
i

2τ◦ω◦

(
g11g20−2 |g11|2−

|g02|2

3

)
+

g21

2
,

µ2 =
−Re(N1(0))

Re(λ́ (τ◦))
,

β
∗
2 = 2Re(N1(0)),

T2 =
−ImN1(0)+µ2Imλ́ (τ◦)

τ◦ω◦
.
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Clearly, the above values determine the quantities of bifurcating periodic solutions at τ =

τ◦, i.e. µ2 shows the direction of the Hopf bifurcation so for that µ2 > 0 (µ2 < 0) then the

Hopf bifurcation is supercritical (subcritical); Further β ∗ shows the stability of the bifurcating

periodic solutions so that the periodic solutions are stable (un stable) when β ∗2 > 0 (β ∗2 < 0);

Finally, if T2 > 0 (T2 < 0), we have the period of the bifurcating periodic solutions increases

(decreases).

6. NUMERICAL RESULTS

6.1. Numerical simulation. Here, the analytical results we have obtained will be illustrated

by numerical simulations by taking hypothetical values of the parameters in system (1), with

different initial conditions in order to determine the effect of each of them on the dynamic

behavior of the system (1). In the following data with initial point (0.7,0.9,0.6,0.5,0.5), we

obtain that the trajectory of system (1) convergent towards stability of (DFE) point when any

τ ≥ 0, as shown that in figure 1.

p = 0.87; A = 8; β1 = 0.0010; β2 = 0.05; β3 = 0.005;

ρ = 0.05; µ = 0.015;q = 0.6 ν = 0.3; d = 0.002; γ = 0.3; θ = 0.2
(53)

0 200 400 600 800 1000

Time

-50

0

50

100

150

200

250

P
o

p
u

la
ti

o
n

S
u

V

S
u

I

M

FIGURE 1. Stability of (DFE) point in system (1) when τ ≥ 0.

Obviously, Figure (1), shows that the solution of system (1) approaches asymptotically to the

(DFE) point has asymptotically stable E◦ = (233,99,0,0,0).
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Now, to study the stability of the (EE) point for system (1), we can take the same above data

but β1 = 0.010 and 0≤ τ ≤ 4 shown that in figure (2).

0 500 1000 1500

Time

0

50

100

150

200

250

300

P
o

p
u

la
ti

o
n

S
u

V

S
a

I

M

0
300

5

80

In
fe

c
te

d

200

10

60

Vaccination Susceptible Unaware

15

40100
20

0 0

0
15

5

30

M
e
d

ia

10

10

Infected

20

Susceptible aware

15

5
10

0 0

0
300

5

80

M
e
d

ia

200

10

60

Vaccination Susceptible Unaware

15

40100
20

0 0

FIGURE 2. stability of (EE) point of system (1) when 0≤ τ ≤ 4.

Therefore, figure (2) as shown us, the endemic equilibrium point of system (1) is globally

asymptotically stable and is identically to E1 = (22,289,19,2,3).

Now, we discuss the effect of delay on the dynamical behavior of system (1), hence we choose

the data in equation (53) with β1 = 0.010 and τ = τ◦ ≈ 5. Then, the (EE) point of system (1),

become unstable and the solutions of system (1) has periodic as shown that in figure (3) and

figure (4) with kepping data of figure (3) but we put τ = 15 > τ◦ ≈ 5.
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FIGURE 3. The (EE) point is loss stability for the data given by equation (53)

with τ = τ◦ ≈ 5.
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FIGURE 4. The (EE) point is loss stability for the data given by equation (53)

with τ = 15 > τ◦ ≈ 5.
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6.2. Sensitivity Analysis. The goal of discussing sensitivity analysis is to reveal a parametric

effect of disease prevalence in epidemiological modeling. Our goal is to find out the parameters

that control R0 and through which the dynamics behavior of the epidemiological model can

be predicted. And all of this can be studied through the global sensitivity index of R0 and

according to the parameter φ and it is denoted by Π
φ

R0
and is defined by

(54) Π
φ

R0
=

∂R0

∂φ

φ

R0

From the Eq (54), we note that as there is an increase or decrease in parameter rate φ by a

certain percentage say m then the reproduction number R0 also increases or decreases by the

same percentage m. Now, an increase of the value of any one of these parameters β1 and A will

increase the basic reproduction number. While, an increase of the value of other parameters

p,d,ν and µ will decrease R0. Thus, we confirm that results and illustrate in the following

figures (5) and (6)
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FIGURE 5. The relationship between R0 and several parameters.
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FIGURE 6. Sensitivity indices diagram for R0.

7. CONCLUSION

In this work, we investigated the dynamics of the epidemiological model with awareness and

vaccination effect as well as we studied the effect of media programs time delay on the dynamic

behavior of the epidemiological model. Besides determining the basic reproduction number

and points of stability of the model. Then, a hopf bifurcation near the endemic point of pro-

posed model was investigated, we also discussed the sensitive analysis to virtualize determined

scenarios and choose a strategy that minimizes the spreading of the disease. The obtained nu-

merical results are discussed and shown through graphs. For future work, we plan to modify

the proposed model in a fractional order and presenting a results of the changes in the dynamic

behavior of the infectious diseases.

FUNDING

Not applicable.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.



STABILITY AND HOPF BIFURCATION OF AN EPIDEMIOLOGICAL MODEL 27

REFERENCES

[1] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc.

Lond. A. 115 (1927), 700-721. https://doi.org/10.1098/rspa.1927.0118.

[2] WHO, Coronavirus disease 2019 (COVID-19), Situation Report-209, 2020. https://www.who.int/docs/defau

lt-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209.

[3] A.A. Mohsen, H.F. AL-Husseiny, X. Zhou, et al. Global stability of COVID-19 model involving the quaran-

tine strategy and media coverage effects, AIMS Public Health. 7 (2020), 587-605. https://doi.org/10.3934/pu

blichealth.2020047.

[4] B. Ivorra, M.R. Ferrandez, M. Vela-Perez, et al. Mathematical modeling of the spread of the coronavirus dis-

ease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear

Sci. Numer. Simul. 88 (2020), 105303. https://doi.org/10.1016/j.cnsns.2020.105303.

[5] A. Zeb, E. Alzahrani, V.S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19)

containing isolation class, BioMed Res. Int. 2020 (2020), 3452402. https://doi.org/10.1155/2020/3452402.

[6] K. Hattaf, A.A. Mohsen, J. Harraq, et al. Modeling the dynamics of COVID-19 with carrier effect and envi-

ronmental contamination, Int. J. Model. Simul. Sci. Comput. 12 (2021), 2150048. https://doi.org/10.1142/s1

793962321500483.

[7] A.A. Mohsen, H.F. AL-Husseiny, R.K. Naji, The dynamics of Coronavirus pandemic disease model in the

existence of a curfew strategy, J. Interdiscip. Math. 25 (2022), 1777-1797. https://doi.org/10.1080/09720502

.2021.2001139.

[8] K. Dehingia, A.A. Mohsen, S.A. Alharbi, et al. Dynamical behavior of a fractional order model for within-

host SARS-CoV-2, Mathematics. 10 (2022), 2344. https://doi.org/10.3390/math10132344.

[9] J. Bai, X. Wang, J. Wang, An epidemic-economic model for COVID-19, Math. Biosci. Eng. 19 (2022),

9658-9696. https://doi.org/10.3934/mbe.2022449.

[10] S.K. Shafeeq, M.M. Abdulkadhim, A.A. Mohsen, et al. Bifurcation analysis of a vaccination mathematical

model with application to COVID-19 pandemic, Commun. Math. Biol. Neurosci. 2022 (2022), 86. https:

//doi.org/10.28919/cmbn/7633.

[11] N.H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmis-

sion by using the Caputo fractional derivative, Chaos Solitons Fractals. 140 (2020), 110107.

https://doi.org/10.1016/j.chaos.2020.110107.

[12] Y. Sabbar, D. Kiouach, S.P. Rajasekar, et al. The influence of quadratic Levy noise on the dynamic of an

SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-

CoV-2) case, Chaos Solitons Fractals. 159 (2022), 112110. https://doi.org/10.1016/j.chaos.2022.112110.

https://doi.org/10.1098/rspa.1927.0118
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209
https://doi.org/10.3934/publichealth.2020047
https://doi.org/10.3934/publichealth.2020047
https://doi.org/10.1016/j.cnsns.2020.105303
https://doi.org/10.1155/2020/3452402
https://doi.org/10.1142/s1793962321500483
https://doi.org/10.1142/s1793962321500483
https://doi.org/10.1080/09720502.2021.2001139
https://doi.org/10.1080/09720502.2021.2001139
https://doi.org/10.3390/math10132344
https://doi.org/10.3934/mbe.2022449
https://doi.org/10.28919/cmbn/7633
https://doi.org/10.28919/cmbn/7633
https://doi.org/10.1016/j.chaos.2022.112110


28 YASEEN, MOHSEN, AL-HUSSEINY, HATTAF

[13] A.A. Mohsen, H.F. AL-Husseiny, K. Hattaf, et al. A mathematical model for the dynamics of COVID-19

pandemic involving the infective immigrants, Iraqi J. Sci. (2021), 295-307. https://doi.org/10.24996/ijs.202

1.62.1.28.

[14] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci.

Eng. 17 (2020), 2708-2724. https://doi.org/10.3934/mbe.2020148.

[15] S. Djilali, L. Benahmadi, A. Tridane, et al. Modeling the impact of unreported cases of the COVID-19 in the

North African countries, Biology. 9 (2020), 373. https://doi.org/10.3390/biology9110373.

[16] L.X. Feng, S.L. Jing, S.K. Hu, et al. Modelling the effects of media coverage and quarantine on the COVID-

19 infections in the UK, Math. Biosci. Eng. 17 (2020), 3618-3636. https://doi.org/10.3934/mbe.2020204.

[17] A. Zeb, E. Alzahrani, V.S. Erturk, et al. Mathematical model for coronavirus disease 2019 (COVID-19)

containing isolation class, BioMed Res. Int. 2020 (2020), 3452402. https://doi.org/10.1155/2020/3452402.

[18] B.J. Nath, K. Dehingia, V.N. Mishra, et al. Mathematical analysis of a within-host model of SARS-CoV-2,

Adv. Differ. Equ. 2021 (2021), 113. https://doi.org/10.1186/s13662-021-03276-1.

[19] Z.H. Shen, Y.M. Chu, M.A. Khan, et al. Mathematical modeling and optimal control of the COVID-19

dynamics, Results Phys. 31 (2021), 105028. https://doi.org/10.1016/j.rinp.2021.105028.

[20] A.Q. Khan, M. Tasneem, M.B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and

control, Math. Biosci. Eng. 19 (2021), 1944-1969. https://doi.org/10.3934/mbe.2022092.

https://doi.org/10.24996/ijs.2021.62.1.28
https://doi.org/10.24996/ijs.2021.62.1.28
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.3390/biology9110373
https://doi.org/10.3934/mbe.2020204
https://doi.org/10.1155/2020/3452402
https://doi.org/10.1186/s13662-021-03276-1
https://doi.org/10.1016/j.rinp.2021.105028
https://doi.org/10.3934/mbe.2022092

	1. Introduction
	2. The Mathematical Model Involving Awareness Programs
	3. Preliminaries
	3.1. Positive Invariance
	3.2. Boundedness
	3.3. The existence the all possible equilibrium points of System (1)

	4. Stability Analysis
	4.1. Stability of (DFE)
	4.2. Stability and Hopf Bifurcation of (EE)

	5. Direction of Hopf Bifurcation and Stability of Bifurcation Periodic Solution
	6. Numerical Results
	6.1. Numerical simulation
	6.2. Sensitivity Analysis

	7. Conclusion
	Funding
	Conflict of Interests
	References

