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Abstract. Mathematical modelling of in-host dynamics has proven to be useful in the control of infectious diseases.

An in-host model for the transmission dynamics of the human papillomavirus (HPV) among women living with

the human immunodeficiency virus (HIV), incorporating HIV treatment and HPV vaccination is presented. The

developed model considers latency and adaptive immune response through cytotoxic T-lymphocytes (CTLs) on

the co-infection dynamics. The positivity and boundedness of solutions is proven and the disease-free equilibrium

as well as the endemic equilibrium points are computed. The stability of equilibrium points is also proven. The

model exhibits three significant reproduction numbers, that is, the basic reproduction number, R0, the effective

reproduction number, Rc and the immune response reproduction number, RK . The conditions for stability based

on the reproduction numbers are stated and numerical simulations performed. The simulations established that

although the adaptive immune response is effective in the reduction of HPV, it is not adequate, especially among

HIV-positive women. Therefore, HPV vaccination before the onset of sexual activity or among HIV-infected

women in addition to proper adherence to HIV treatment is beneficial in reducing HPV in-host.
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1. INTRODUCTION

The human papillomavirus, (HPV), is a small DNA virus that accounts for most cervical

cancer cases. It is a sexually transmitted infection prevalent among sexually active adults. On

average, it is estimated that about 75% of sexually active adults are infected with HPV at some

point in their lifetime. However, not all HPV infections lead to cervical cancer or other related

cancers, some of the infections are cleared naturally by the host immune system. The triggering

of the immune system is not always spontaneous since the virus will try as much as possible to

evade detection. The development of antibodies for a specific HPV type does not necessarily

guarantee that there will be no re-infection with another HPV type and therefore the reduction

of sexual partners and proper use of condoms is recommended.

Due to immunodeficiency, the human immunodeficiency virus (HIV) alters the natural history

of HPV and therefore promoting a faster progression of high-grade lesions of cervical cancer. In

relation to modelling the dynamics of HIV/HPV co-infection not much work has been presented

in literature due to the complexity of the co-infection dynamics. HIV-positive women tend to be

more susceptible to HPV infection due to immune suppression that is caused by HIV infection.

Verma et al. [1] developed a within-host HIV/HPV co-infection model with immune response.

Their work outlined the effect of HIV tat protein on the proliferation of HPV within the body.

HIV tat protein promotes/enhances the production of HPV oncoproteins E6,E7, responsible

for HPV cell proliferation [2, 3, 4, 1]. These proteins also promote the persistence of HPV and

consequently the occurrence of cervical lesions in the long run. The model presented by Verma

et al. [1] did not consider the contribution of latently infected HPV cells in the persistence of

HPV infection among women living with HIV. We, therefore, add latency to the model and

analyse the dynamics.

McClymont et al. [5] presented a clinical trial study that modelled the impact of vaccination

on the dynamics of HPV among women and girls living with HIV [5]. In their study, eligible

participants were given either a dose, two doses or three doses of the Gardasil vaccine. The

results from the trial indicated that participants who already had high-risk HPV at enrolment

had more breakthrough HPV infections as compared to those without HPV. In addition to this

breakthrough, infections were found to be considerably lower among those who had been given



DYNAMICS OF HIV/HPV CO-INFECTION IN THE HUMAN POPULATION 3

three doses of the vaccine as compared to those who had been given only a dose of the vaccine.

Also, vaccine failure was found to be higher among HIV-positive participants as compared to

HIV-negative participants. Other follow-up trials on the subject matter can be obtained from

[6, 5, 7].

The other key issue that clinical trials have tried to address is the effect of adherence to HIV

treatment. A clinical trial by Minkoff et al. [8] outlined that strict adherence to combined An-

tiretroviral Therapy ( cART) may reduce the HPV burden among HIV-positive women and girls

[8]. Verma et al. [1] proceeded to validate the results in their mechanistic model and showed

that effective adherence to HIV treatment is advantageous in reducing the transmission of HPV

within cells provided other prevention measures such as condom use and reduction of sexual

partners are also implemented. See the following paper for analyses of mathematical models

of co-infection [9, 10] and so on. The present work also explores the effect of adherence con-

sidering that the model incorporates latently infected cells and immune response. We envisage

that the results produced by the current study will help answer the question of whether latent

infections matter in reducing the persistence of HPV infection among HIV-positive women and

girls. We also hope that the current study will lobby more for cheaper yet effective vaccination

options to be offered early to women and girls, especially in areas where HIV is prevalent.

The rest of the paper is organised as follows; in Section 2, we present the model formulation

followed by rigorous mathematical analysis in Sections 3 and 4. In Section 5 we propose and

calculate the effective basic reproduction number for the model with treatment. Finally, the

numerical simulations are presented in Section 6 and a conclusion discussing the results is

presented in Section 7.

2. MODEL FORMULATION

The model presented is an extension of the work by [11, 1]. The new model incorporates;

latently infected cells for both HIV and HPV dynamics, HPV vaccination against high-risk types

HPV (16/18) and HIV treatment. The co-infection model is comprised of ten classes namely;

HIV classes given by, healthy target cells, TH , latently infected cells, LH , actively infected cells,

IH and HIV-free virus, VH . The HPV classes are given by, healthy epithelial cells, Ts, latently

infected cells, L, actively infected cells that are not self-proliferating, I1, actively infected cells
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that are self-proliferating, I2, the HPV virions, V , and the CTL cells, K. Recruitment rates

for healthy target cells, TH , and healthy epithelial cells, Ts are considered to be s, Λ(1+ηVH)

respectively where η is the effect of HIV tat protein [1]. The model assumes that, 0 ≤ η ≤ 1,

where, the case η = 0 means tat protein has no effect on the dynamics and the case η = 1

indicates otherwise [1]. Due to HIV tat protein, there is a disruption of the epithelial tight

junctions and therefore there is a faster proliferation of actively infected cells [1]. Transmission

of HIV infection is considered to occur at a rate, κ . The model includes latency in the HIV

class as outlined in the work by [12, 13, 14]. A fraction, ρ of the transmission can lead to latent

HIV infections, while the (1− ρ) of the transmission leads to active HIV infections. Latent

HPV cells are further assumed to mature into actively infected cells at a rate, ζ . The model

assumes the burst size of actively infected HIV cells to be N1 and the HIV-free virus decays

at a rate, c, while the cells (TH ,LH , IH) are assumed to die at rate d1,d2,d3 respectively. In

modelling the dynamics of HPV within-host we adopt the within-host model by Chazuka et al.

[11]. Transmission of HPV occurs at a contact rate, β and the force of infection is a saturated

incidence function adopted from Verma et al. [1, 15], and given by

βV
γ +Ts

.

Latently infected cells are assumed to mature into actively infected cells, I1 at a rate, ψ. Due

to oncogene expression at a rate, ε, I1 cells can proliferate and become I2 cells. The self-

proliferation of I2 cells occurs at a rate rε, where r, represents the transit-amplifying rate as

indicated by [1, 15]. By the unusual presence of these I2 cells, the adaptive immune response

(Cytotoxic T-cells (CTLs)) are triggered and this occurs at a rate, σ . The model assumes that

only I2 cells trigger immune responses due to unusual cell growth. Upon activation of the

immune response, the CTLs will dock onto the infected cells I1, I2 and kill these infected cells

at a rate, θ . CTLs are assumed to decay at a rate of, ν . The burst size of the HPV virions is

given by N2 and it decays at a rate, δ . Below is the schematic representation of the model and

the model equations governed by differential equations.
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FIGURE 1. Flow diagram for within-host HIV/HPV co-infection in the pres-

ence of immune response.

(1)



ṪH = s−κVHTH−d1TH ,

L̇H = ρκVHTH−d2LH−ζ LH ,

İH = (1−ρ)κVHTh +ζ LH−d3IH ,

V̇H = N1d3IH− cVH ,

Ṫs = Λ(1+ηVH)+φL− βV Ts

(γ +Ts)
−µTs,

L̇ =
βV Ts

(γ +Ts)
−µL−ψL−φL,

İ1 = ψL− εI1−µI1−θKI1,

İ2 = εI1 + rεI2−µI2−θKI2,

V̇ = N2µ(I1 + I2)−δV,

K̇ = σ I2K−νK,

with initial conditions;

TH(0)> 0,LH(0)≥ 0, IH(0)≥ 0,VH(0)≥ 0,Ts(0)> 0,L(0)≥ 0, I1(0)≥ 0, I2(0)≥ 0,

V (0)≥ 0,K(0)≥ 0.
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3. MODEL ANALYSIS

3.1. Positivity and boundedness of solutions.

This sub-section explores the existence of non-negative solutions for model (1).

Theorem 1. For any initial conditions TH0 > 0,LH0 ≥ 0, IH0 ≥ 0,VH0 ≥ 0,Ts0 > 0,

L0 ≥ 0, I10 ≥ 0, I20 ≥ 0,V0 ≥ 0,K0 ≥ 0, model system (1) has a unique solution and this solution

is non-negative and bounded for all t ≥ 0.

Proof. Using the classical differential equations theory [16], it follows that there is a unique

local solution to model system (1) in [0, t). Therefore,

(2)



ṪH(t)|TH=0 = s≥ 0,

L̇H(t)|LH=0 = ρκVHTH ≥ 0, f or VH ≥ 0, TH > 0,

İH(t)|IH=0 = (1−ρ)κVHTH +ζ LH ≥ 0, f or VH , Lh ≥ 0 and TH > 0,

V̇H(t)|VH=0 = N1d3IH ≥ 0, f or IH ≥ 0,

Ṫs(t)|Ts=0 = Λ(ηVH +1)+φL≥ 0, f or VH , L≥ 0,

L̇(t)|L=0 =
βV Ts

(γ +Ts)
≥ 0, f or V ≥ 0 and Ts > 0,

İ1(t)|I1=0 = ψL≥ 0, f or L≥ 0,

İ2(t)|I2=0 = εI1 ≥ 0, f or I1 ≥ 0,

V̇ (t)|V=0 = N2µ(I1 + I2)≥ 0, f or I1, I2 ≥ 0,

K̇(t)|K=0 = 0≥ 0,

hence this proves the positivity of all solutions of system (1) for all t ≥ 0. To prove boundedness,

for the HIV model we can already see that from the first equation of model system (1),

ṪH(t)≤ s−d1TH .

Thus is follows that limsup
t→∞

TH(t) ≤
s

d1
. Hence, TH(t) is ultimately bounded. To show that the

infected cells LH(t), IH(t) are also bounded we state the following Lyapunov function

H (t) = TH +LH + IH

and hence

Ḣ (t) = ṪH + L̇H + L̇H
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= s− (d1TH +d2LH +d3IH)

≤ s−mH (t),(3)

where m = min{d1,d2,d3}. Hence, limsup
t→∞

H (t)≤ s
m
. Thus, H (t) is ultimately bounded, im-

plying that LH and IH which we now denote by B1 and B2 respectively are also bounded. Now

to show the boundedness of VH(t) we have

V̇H(t)≤ N1d3B1− cVH

and thus, limsup
t→∞

VH(t)≤
N1d3IHB1

c
. Therefore, VH(t) is also ultimately bounded. Now for the

HPV model it is observed from the fifth equation of model system(1) that

Ṫs(t)≤ Λ−µTs

and therefore, limsup
t→∞

Ts(t)≤
Λ

µ
, hence, Ts(t) is ultimately bounded. To establish the bounded-

ness of classes, L(t), I1(t), I2(t) and K(t) we state the following Lyapunov function

(4) D(t) = Ts(t)+L(t)+ I1(t)+ I2(t)+
θ

σ
K

and so,

Ḋ(t) = Ṫs + L̇+ İ1 + İ2 +
θ

σ
K̇(t)

= Λ+ηΛVH + rεI2−µ(Ts +L+ I1 + I2)−θKI1−
θν

σ
K

≤ Λ−µ(Ts +L+ I1 + I2)−
θν

σ
K

≤ Λ− pD(t),

where p = min{µ,ν}. Thus, limsup
t→∞

D(t) ≤ Λ

p
, such that D(t) is ultimately bounded. This

implies that classes, L(t), I1(t), I2(t) and K(t) now denoted as B3, B4, B5 and B6 respectively

are also bounded. Now, to show the boundedness of V (t) we have

V̇ (t)≤ N2µ(B4 +B5)−δV

and thus, limsup
t→∞

V̇ (t) ≤ N2µ(B4 +B5)

δ
. Hence it also follows that V (t) is ultimately bounded.

This proves that all the solutions TH(t),LH(t), IH(t),VH(t),Ts(t),L(t), I1(t), I2(t) and K(t) are

all bounded. Therefore every local solution can be prolonged up to any time ta > 0, meaning

that the solution exists globally. This completes the proof. �
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4. EQUILIBRIUM POINTS AND THE CO-INFECTION REPRODUCTION NUMBER

4.1. The infection-free equilibrium. The model exhibits three equilibrium points of inter-

est, that is; the infection-free equilibrium, (E0); the first endemic equilibrium point also known

as the CTL-free equilibrium, (E1) and the second endemic equilibrium point also known as

the CTL-active equilibrium, (E2). The model considers that HIV-positive women and girls

develop HPV hence we use the initial concentrations of the HIV equilibrium denoted by,

ĒH = [T̄H , L̄H ], ĪH ,V̄H ], (refer to [1, 7]). This leads to the simplification of model (1) to;

(5)



Ṫs = Λ(ηVH +1)+φL− βV Ts

(γ +Ts)
−µTs,

L̇ =
βV Ts

(γ +Ts)
−µL−ψL−φL,

İ1 = ψL− εI1−µI1−θKI1, İ2 = εI1 + rεI2−µI2−θKI2,

V̇ = N2µ(I1 + I2)−δV,

K̇ = σ I2K−νK,

and therefore E0, is given by

(6) E0 =

(
Λ[1+ηV̄H ]

µ
,0,0,0,0,0

)
.

4.2. Computation of the basic reproduction number. The model basic reproduction

number, R0, for system (5) is found using the next-generation approach by [17] as follows:

F =



0 0 0
βΛ(ηV̄H +1)

(γµ +Λ(ηV̄H +1))

0 0 0 0

0 0 0 0

0 0 0 0


,V =


(ψ +φ +µ) 0 0 0

−ψ (ε +µ) 0 0

0 −ε (µ− rε) 0

0 −N2µ −N2µ δ
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and the inverse of V is given by

V −1 =



1
(ψ +φ +µ)

0 0 0

ψ

(ε +µ)(µ +ψ +φ)

1
(ε +µ)

0 0

p1
ε

(µ− rε)(ε +µ)

1
µ− rε

0

p2 p3
N2µ

δ (µ− rε)

1
δ



where p1 =
εµ

(ε +µ)(µ− rε)(µ +ψ +φ)
, p2 =

N2µψ(µ + ε− rε)

δ (µ− rε)(ε +µ)(µ +ψ +φ)
and

p3 =
N2µ(µ + ε− rε)

δ (µ− rε)(ε +µ)
. Therefore,

FV −1 =



βΛ(ηV̄H +1)p2

w1

βΛ(ηV̄H +1)p3

w1

N2µβΛ(ηV̄H +1)
δ (µ− rε)w1

βΛ(ηV̄H +1)
δw1

0 0 0 0

0 0 0 0

0 0 0 0


with w1 = (γµ +Λ(ηV̄H +1)). Hence,

(7) R0 = ρFV −1 =
βN2µψΛ(ηV̄H +1)(µ + ε− rε)

δ (µ− rε)(µ + ε)(µ +ψ +φ) [Λ(ηV̄H +1)+ γµ]
.

Expression (7) is positive since µ > rε as indicated in [11] and the effects of tat protein are

assumed to vary from person to person, therefore, affecting the dynamics of HPV in-host as

indicated by [1].
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4.3. The endemic equilibrium. The first and second endemic equilibrium points for the

model are given as follows; the first endemic equilibrium point (CTL-free equilibrium);

(8)

T e
s =

Λ

µ
− Λ(1+ηV̄H)(R0−1) [γµ +Λ(ηV̄H +1)]

µA1
,Le =

Λ(1+ηV̄H)(R0−1)(γµ +Λ(1+ηV̄H))

(µ +ψ)A1
,

Ie
1 =

Λ(1+ηV̄H)ψ(R0−1) [γµ +Λ(1+ηV̄H)]

(µ +ψ)(ε +µ)A1
, Ie

2 =
Λ(1+ηV̄H)ψε(R0−1) [γµ +Λ(1+ηV̄H)]

(µ +ψ)(µ− rε)(ε +µ)A1
,

V e =
N2µψΛ(1+ηV̄H)(µ + ε− rε)[Λ(1+ηV̄H)+ γµ][1−R0]

δ (µ− rε)(µ + ε)(µ +ψ)A1
, Ke = 0,

where A1 = [R0γµ +Λ(1+ηV̄h)(R0−1)],

and the second endemic equilibrium point, E2, (CTL-active) is given by;

T ∗s =
Λσεψ−νΨ0(Ψ1 +θK∗)(Ψ2 +θK∗)

σεψµ
, L∗ =

ν(Ψ1 +θK∗)(Ψ2 +θK∗)
σεψ

,

I∗1 =
ν(Ψ2 +θK∗)

σε
, I∗2 =

ν

σ
, V ∗ =

N2νµ(Ψ4 +θK∗)
δσε

, K = K∗.(9)

Now K∗ is found by solving the quartic polynomial given by

(10) f (K) = a0K4 +a1K3 +a2K2 +a3K +a4,

with

a0 = θ
4
δΨ0Ψ3ν

2 > 0,

a1 = θ
3 [2δν

2
Ψ0Ψ3(Ψ1 +Ψ2)−δΨ0βN2µν

2] ,
a2 = θ

2

[
δΨ0ν

2
Ψ3(Ψ

2
1 +4Ψ1Ψ2 +Ψ

2
2)−β µν

2N2Ψ0(Ψ1 +Ψ2 +Ψ4),

− νψΨ3(δεσΛ+ γµ)

]
,

a3 = θ

[
(Ψ1 +Ψ2)

(
2Ψ0δν

2
Ψ3Ψ1Ψ2(−δεΛνσψΨ3−β µν

2N2Ψ0Ψ4
)
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+ β µνN2(Λσψε−νΨ0Ψ1Ψ2)

]
− γµνψΨ3(Ψ1 +Ψ2),

a4 =

[
δνΨ1Ψ2Ψ3(Λεσψ +νΨ0Ψ1Ψ2)+Ψ4β µνN2(Λεσψ−νΨ0φ1Ψ2)

]

− γµνψΨ1Ψ2,Ψ3

in which Ψ0 = (µ +ψ), Ψ1 = (ε +µ), Ψ2 = (µ− rε), Ψ3 = (µ +ψ +φ), Ψ4 = (µ +ε− rε)

and Ψ5 = (1+ηVH).

To establish the nature of the roots for polynomial (10) we use Descartes’ rule of signs due to

its intractability, hence, we state the following Lemma;

Lemma 1. The fourth-order polynomial function

f (K) = a0K4 +a1K3 +a2K2 +a3K +a4

is subject to the following conditions;

(1) The polynomial has only one unique positive root provided that either

a0 > 0,a1 < 0,a2 < 0,a3 < 0 and a4 < 0, or a0 > 0,a1 > 0,a2 < 0,a3 < 0 and a4 < 0, or

a0 > 0,a1 > 0,a2 > 0,a3 < 0 and a4 < 0, or a0 > 0,a1 > 0,a2 > 0,a3 > 0 and a4 < 0,

(2) The polynomial has no positive roots provided that a0 > 0,a1 > 0,a2 > 0,a3 > 0 and

a4 > 0,

(3) The polynomial has more than one positive root otherwise.

4.4. The immune reproduction number, for the co-infection model. We define the immune

response reproduction number, RK, as the average number of immune response cells that each

actively infected cell, I2, can activate and therefore, RK, is expressed in terms of, Ie
2 as follows;

(11) RK =
σ Ie

2
ν

=
σΛ(1+ηV̄H)ψε(R0−1) [γµ +Λ(1+ηV̄H)]

ν(µ +ψ)(µ− rε)(ε +µ)A1
,

where,
1
ν
, is the average life of an immune response cell and Ie

2 is the number of infected cells at

E1. Therefore, for the CTL-free equilibrium to be stable the following conditions should hold;

(1) E1, is globally asymptotically stable provided that R0 > 1 and RK ≤ 1,

(2) E1, is unstable when R0 > 1 and RK ≥ 1, while E2 is globally asymptotically stable.
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5. LOCAL STABILITY OF E0

To prove the stability of the infection-free equilibrium, (E0) we state following theorem;

Theorem 2. The infection-free equilibrium for the co-infection model system (5) is locally

asymptotically stable provided that R0 < 1 and unstable otherwise.

Proof. The Jacobian matrix for model (5) evaluated at the E0 is given by;

J(E0) =



−µ φ 0 0 −q1 0

0 −q2 0 0 q1 0

0 ψ −q3 0 0 0

0 0 ε −q4 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν


,

where q1 =−
Λ(1+ηV̄H)β

γµ +Λ(1+ηV̄H)
, q2 = (µ +ψ +φ), q3 = (ε +µ), q4 = (µ− rε).

Finding the determinant yields;

Det (J(E0)) = −ν
[
N2µ

2
ψq1(µ− rε)+N2µ

2
ψq1ε−δ µ(µ +ψ +φ)(ε +µ)(µ− rε)

]
,

= δ µ(µ +ψ +φ)(ε +µ)(µ− rε) [1−R0] .(12)

If R0 < 1 then Det (J(E0))> 0 and trace J(E0) =−4µ−φ−ψ−ε(1−r)−δ−ν < 0, since all

parameters are positive and (µ− rε)> 0. Hence it follows that the infection-free equilibrium is

locally asymptotically stable when R0 < 1. This completes the proof. �

5.1. Global stability analysis of E0. To prove that the infection-free equilibrium is globally

asymptotically stable we state and prove the following theorem;

Theorem 3. The infection-free equilibrium for model (5) is globally asymptotically stable pro-

vided that R0 < 1.
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Proof. Let X = Ts ∈ R be the susceptible healthy epithelial cells and the infected population

be represented by Z = (L, I1, I2,V ). Hence We rewrite model system (5) as;

dX

dt
= F(X ,Z ),

dZ

dt
= G(X ,Z ), G(X ,0) = 0,(13)

where

F(X ,Z ) = Λ(1+ηV̄H)+φL−
[

βV
(γ +Ts)

+µ

]
Ts,

G(X ,Z) =



βV Ts

(γ +Ts)
− (µ +ψ +φ)L,

ψL− (ε +µ +θK)I1,

εI1 + rεI2− (µ +θK)I2,

N2µ(I1 + I2)−δV



.

Let the infection-free equilibrium point for the system be given by Q0 = (X ∗,0) where

X ∗ =

[
Λ(ηV̄H +1)

µ
,0,0,0,0,0

]
.

Therefore,

(14)
dX

dt
|Z =0 = Λ(1+ηV̄H)−µX ,

Solving differential equation (14) yields

Ts(t) =
Λ(1+ηV̄H)

µ
+

(
Ts(0)−

Λ(1+ηV̄H)

µ

)
exp−µt .

and it is clear that as t→ ∞, Ts→X ∗. Now to guarantee global stability of model system (5),

the following three conditions should hold

(1) For
dX

dt
= F(X ,0), X ∗ is globally asymptotically stable,

(2) G(X ,Z ) = A Z − Ĝ(X ,Z ), Ĝ(X ,Z )≥ 0 for (X ,Z ) ∈Ω,
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(3) A = DZ G(X ∗,0) is an M-matrix whose off diagonal elements are non-negative and

Ω is the region where the model is biologically feasible.

By linearizing G(X ,Z ) we obtain the following matrix

A =



−(µ +φ +ψ) 0 0
βΛ(1+ηV̄H)

γµ +Λ(1+ηV̄H)

ψ −(ε +µ) 0 0

0 ε −(µ− rε) 0

0 N2µ N2µ −δ


and

A Z =



βV Λ(1+ηV̄H)

γµ +Λ(1+ηV̄H)
− (µ +ψ +φ)L,

ψL− (ε +µ)I1,

εI1− (µ− rε)I2,

N2µ(I1 + I2)−δV

σ I2K−νK


and so

Ĝ(X ,Z ) = A Z −G(X ,Z ) =



βV γ(Ts0−Ts)

(γ +Ts0)(γ +Ts)
,

θKI1,

θKI2,

0


.

Provided that I1 ≥ 0, I2 ≥ 0,K ≥ 0 and Ts0 ≥ Ts, hence it follows that Ĝ(X ,Z )≥ 0. Hence, the

infection-free equilibrium is globally asymptotically stable whenever R0 < 1. This concludes

the proof. �

5.2. Local stability of E1. To prove the local stability of the first endemic equilibrium point,

E1, we use the bifurcation theory by Castillo Chavez and Song [18]. Therefore we state and

prove the following theorem;

Theorem 4. Model system (5) has an asymptotically stable CTL-inactivated endemic equilib-

rium point, E1, whenever R0 > 1 and is unstable otherwise.
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Proof. To investigate the existence of a forward bifurcation, we rewrite model system (5) as

(15)



ẋ1 = f1 = Λ(1+ηV̄H)+φx2−
[

βx5

(γ + x1)
+µ

]
x1,

ẋ2 = f2 =
βx5x1

(γ + x1)
− (µ +ψ +φ)x2,

ẋ3 = f3 = ψx2− (ε +µ +θx6)x3,

ẋ4 = f4 = εx3 + rεx4− (µ +θx6)x4,

ẋ5 = f5 = N2µ(x3 + x4)−δx5,

ẋ6 = f6 = σx4x6−νx6,

where Ts = x1, L = x2, I1 = x3, I2 = x4, V = x5, K = x6. We consider the case where the

bifurcation parameter of interest is the transmission rate β = β ∗ and by solving for β ∗ given

that R0 = 1 yields

(16) β = β
∗ =

δ (µ− rε)(µ + ε)(µ +ψ +φ) [γµ +Λ(1+ηV̄H)]

N2µψΛ(1+ηV̄H)(µ + ε− rε)
.

The Jacobian for system (5) evaluated at the infection-free equilibrium is given

J(ER0=1) =



−µ φ 0 0 −q0 0

0 −q1 0 0 q0 0

0 ψ −q2 0 0 0

0 0 ε −q3 0 0

0 0 N2µ N2µ −δ 0

0 0 0 0 0 −ν


,

where q0 = − β ∗Λ(1+ηV̄H)

γµ +Λ(1+ηV̄H)
, q1 = (µ +ψ + φ), q2 = (ε + µ), q3 = (µ − rε) and β ∗ is

the bifurcation parameter. Based on the local stability theorem when R0 = 1, the Jacobian,

J(ER0=1) has a zero eigenvalue and all other eigenvalues have negative real parts provided the

conditions stated are met, so the Center Manifold theory can be applied. The right eigenvalues

for J(ER0=1) are given by w = (ω1,ω2,ω3,ω4,ω5,ω6), where

(17)

ω1 =−
1

(µ +ψ)
, ω2 =

1
ψ
, ω3 =

1
(µ− rε)

, ω4 =
1
ε
, ω5 =

(µ +ψ +φ)(x∗1 + γ)

ψβ ∗x∗1
, ω6 = 0,
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and x∗1 =
Λ(1+ηV̄h)

µ
. The left eigenvalues for J(ER0=1) are given by u = (u1,u2,u3,u4,u5,u6)

where

(18)

u1 = 0, u2 =
ψ

(µ + ε− rε)(µ +ψ +φ)
, u3 =

1
(µ + ε− rε)

, u4 =
1

(ε +µ)
,

u5 =
β ∗ψx∗1

δ (γ + x∗1)(µ +ψ +φ)(µ + ε− rε)
, u6 = 0.

Therefore, the non-zero partial derivatives for fi for i = 1,2, .....6 are given by

(19)
∂ 2 f2

∂x1x5
=

∂ 2 f2

∂x5x1
=

β ∗γ

(γ + x∗1)
2 ,

∂ 2 f2

∂x5β ∗
=

∂ 2 f2

∂β ∗x5
=

x∗1
γ + x∗1

Computing the bifurcation coefficients a and b yield

a = − N2µψ

δ (µ + ε)(µ− rε)(µ +ψ +φ)(µ +ψ)
< 0

b =
N2µψΛ(ηV̄H +1)

δ (µ− rε)(µ + ε)(µ +φ +ψ) [γµ +Λ(1+ηV̄h)]
> 0.(20)

We state the following theorem;

Theorem 5. Provided that a < 0 and b > 0, the model system (5) will undergo a transcritical

forward bifurcation at R0 = 1.

From Theorem (5) we establish that there is a change in stability when R0 < 1 but close to

unity. The implication of this is that when R0 ≤ 1 we have the only extremum that exists being

the infection-free equilibrium and this equilibrium is globally stable. On the other hand when

R0 ≥ 1 but close to unity we have the endemic equilibrium being the only extremum that is

locally stable. Therefore in this case reducing the reproduction below unity guarantees that

HPV within an HIV-infected population can be controlled. This concludes the proof. �

5.3. Global stability of E1. To prove the global stability of the CTL-inactive endemic equi-

librium for the co-infection model, we state and prove the following theorem;

Theorem 6. The CTL-inactive endemic equilibrium point, E1, is globally asymptotically stable

provided that R0 > 1, RK ≤ 1 and unstable otherwise.
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Proof. To prove the global asymptotic stability of the endemic equilibrium, E1, we define a

Lyapunov function of the form

W = Ts−T e
s −T e

s ln
T e

s
Ts

+L−Le−Le ln
Le

L
+ I1− Ie

1− Ie
1 ln

Ie
1

I1
+ I2− Ie

2− Ie
2 ln

Ie
2

I2

+ V −V e−V e ln
V e

V
+

θ

σ
K.(21)

Differentiating W yields

W ′ = T ′s (1−
T e

s
Ts

)+L′(1− Le

L
)+ I′1(1−

Ie
1

I1
)+ I′2(1−

Ie
2

I2
)+V ′(1− V e

V
)+

θ

σ
K′.(22)

and by substitution of T ′s ,L
′, I′1, I

′
2,V
′,K′ we obtain

W ′ =

[
Λ(ηVH +1)+φL−

(
βV

(γ +Ts)
+µ

)
Ts

](
1− T e

s

Ts

)
+

[
βV Ts

(γ +Ts)
− (µ +ψ +φ)L

]

×
(

1− Le

L

)
+[ψL− (ε +µ +θK)I1]

(
1−

Ie
1

I1

)
+[εI1 + rεI2− (µ +θK)I2]

(
1−

Ie
2

I2

)

+ [N2µ(I1 + I2)−δV ]

(
1− V e

V

)
+

θ

σ
[σ I2K−νK] .

= Λ(ηVH +1)+φL−µTs−
Λ(ηVH +1)T e

s

Ts
− φLT e

s

Ts
+

βV T e
s

γ +Ts
+µT e

s − (µ +ψ +φ)L

− βV TsLe

(γ +Ts)L
+(µ +ψ +φ)Le +ψL− (ε +µ +θK)−

ψLIe
1

I1
+(ε +µ +θK)Ie

1 + εI1 + rεI2

− (µ +θK)I2−
εI1Ie

2
I2
− rεIe

2 +(µ +θK)Ie
2 +N2µ(I1 + I2)−δV − N−2µ(I1 + I2)V e

V
+δV e

+ θ I2K− θν

σ
.

At the endemic equilibrium, we have

(23)

Λ(ηVH +1) = µT e
s +(µ +ψ)Le,

βV T e
s

γ +T e
s
= (µ +ψ +φ)Le,

ψLe = (ε +µ)Ie
1, εIe

1 = (µ− rε)Ie
2, N2µ(Ie

1 + Ie
2) = δV e.
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We further obtain at the endemic equilibrium

W ′ = µT e
s +(µ +ψ)Le +πL−µTs− (µT e

s +(µ +ψ)Le)
T e

s

Ts
− φLT e

s

Ts
+

βV T e
s

γ +Ts
µT e

s − (µ +ψ +φ)L

− βV TsLe

(γ +Ts)L
+(µ +ψ +φ)Le +ψL− (µ + ε +θK)I1−

ψLIe
1

I1
+(µ + ε +θK)Ie

1 + εI1 + rεI2

− (µ +θK)I2−
εI1Ie

2
I2
− rεIe

2 +(µ +θK)Ie
2 +N2µ(I1 + I2)−δV − N2µ(I1 + I2)V e

V

+ N2µ(Ie
1 + Ie

2)+θ I2K− θν

σ
.

Further simplification yields

W ′ = µT e
s

[
2− Ts

T e
s
− T e

s
Ts

]
+µLe

[
2− T e

s
Ts
− L

Le

]
+ψLe

[
2− T e

s
Ts
−

LIe
1

LeI1

]

+ µIe
2

[
1+

Ie
1

Ie
2
− I1

Ie
2
− I2

Ie
2

]
+

βV T e
s

γ +Ts

[
1− TsLe

T e
s L

]
+ εIe

1

[
1−

I1Ie
2

Ie
1I2

]
+ rεIe

2

[
1− I2

Ie
2

]

+ N2(Ie
1 + Ie

2)

[
1− V

V e

]
+N2µ(I1 + I2)

[
1− V e

V

]
+θK

[
Ie
2−

ν

σ

]
.(24)

Since the arithmetic mean is greater than the geometric mean it follows that

2− Ts

T e
s
− T e

s
Ts
≤ 0, 2− T e

s
Ts
− L

Le ≤ 0, 2− T e
s

Ts
−

LIe
1

LeI1
≤ 0

and for the CTL-inactive endemic equilibrium state we have RK < 1 whenever R0 > 1. Then

it means that the condition (Ie
2 −

ν

σ
≤ 0) must be satisfied so that W ′ ≤ 0. We also note that

W ′ = 0 for Ts = T e
s , L = Le, I1 = Ie

1, I2 = Ie
2, V = V e, thus, the largest compact invariant set{

T e
s , Le, Ie

1, Ie
2, V e ∈Ω : W ′ = 0

}
, is the singleton {E1} . Therefore by LaSalle’s invariance

principle [19], the CTL-inactive endemic equilibrium is globally asymptotically stable provided

that R0 > 1 and RK < 1. This completes the proof �

Stability analysis of the CTL-active equilibrium is demonstrated using numerical simulations.

6. NUMERICAL SIMULATIONS

In our numerical simulations, we extend the model to include vaccination against HPV and

ART treatment of HIV-positive individuals. The HPV vaccines currently available inhibit the

occurrence of new infections and hence to model this we introduce the parameter εI which is
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the efficacy of the HPV vaccine. When εI = 0, the HPV vaccine is considered to have failed

while when εI = 1, the vaccine is 100% effective. To model the dynamics of HIV treatment

we consider the action of the reverse transcriptase inhibitor, (RIs) and the protease inhibitors

(PIs). The effect of the reverse transcriptase inhibitors is represented in the model by, εR while

the protease inhibitors are represented by parameter, εP. The conditions for the RIs and the PIs

are that when εR, εP = 0 then there is no treatment effect and when εR, εI = 1 then treatment is

100% effective. The new extended model is given by

(25)



T ′h(t) = s− (1− εR)κVhTh−d1Th,

L′h(t) = ρ(1− εR)κVhTh− (ζ +d2)Lh,

I′h(t) = (1−ρ)(1− εR)κVhTh +ζ Lh−d3Ih,

V ′h(t) = N1d3(1− εP)Ih− cVh,

T ′s (t) = Λ(1+ηV̄h)+φL−
(
(1− εI)βV

γ +Ts
+µ

)
Ts,

L′(t) =
(1− εI)βV Ts

γ +Ts
− (µ +ψ +φ)L,

I′1(t) = ψL− (ε +µ +θK)I1,

I′2 = εI1 + rεI2− (µ +θK)I2,

V ′(t) = N2µ(I1 + I2)−δV,

K′(t) = σ I2K−νK,

and the control reproduction number is given by

Rc =
β (1− εI)(1− εR)(1− εP)N2µψΛ(1+ηV̄h)(µ + ε− rε)

δ (µ− rε)(µ + ε)(µ +ψ +φ) [Λ(1+ηV̄h)+ γµ]
.

Parameter values used in the simulations were either obtained from published literature, calcu-

lated, or closely approximated. To estimate the parameters for the HIV model the following

calculations were performed;

(26) L̄H =
ρκV̄H T̄H

ζ +d2
, ¯IH =

cV̄H

N1d3
, κ =

c(ζ +d2)

T̄HN1 [ζ +d2(1−ρ)]
, s = (κV̄H +d1)T̄H

The initial HIV concentrations used are: T̄H = 5× 105 cells/ml [7], V̄H = 4.8× 104 cells/µl

[1] while using expression (26) we calculate the remaining concentrations which yields L̄H =

237.62 cells/µl , ĪH = 1.04× 103 cells/µl , κ = 5× 10−8 virions per day and s = 6.2× 103

cells/µl/day. A summary of the parameter values and their description is given in Table 1.
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TABLE 1. Parameters values for the HIV/HPV co-infection model.

Parameter Value Source

s 6.2×103/µl/day Calculated

κ 5×10−8 /µl/ day Calculated

d1,d2,d3 [0.03,0.001,1]/µl/ day [20],[1]

ζ 0.1 per µl per day [20]

ρ 0.02 per µl per day [20]

N1 [1000-1250]/µl/day [20], [1]

c [20-23]/µl/day [20], [1],[1]

η varied varied

Λ 36000 cells/µl/day [15]

β 0.0067 µl virions per

day

[1]

δ 0.05 cells per day Est.

µ 0.048 per day [21]

N2 1000 virions per cell [1]

θ 0.01 day−1 [22]

γ 106 [21]

ψ 0.03 day−1 [23]

σ 0.001 cells per ml Est.

ν 0.5 cells/ ml Est.

ε varied between [0−1] [21]

r 0.01 [21]

φ 0.6 day−1 [23]

εI varied varied

ηP varied varied

ηR varied varied
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6.1. Convergence of equilibrium points. Figure 2 presents the convergence of the infection-

free equilibrium. The results presented support the theoretical analysis presented earlier. We

observe that when R0 < 1 the system approaches, E0 = (1.837× 106,0,0,0,0,0) for, η > 0,

(tat protein present) and it approaches the equilibrium E0 = (7.5×105,0,0,0,0,0) for, η = 0,

(tat protein absent). Clearly, the presence of tat protein increases latently infected cells, L(t),

actively infected cells, I1(t), self-proliferating cells, I2(t) and HPV virions as opposed to the

absence of tat protein.

Figure 3 presents the convergence of the CTL-free endemic equilibrium, E1. When

R0 > 1,RK < 1, the model converges to E1 = (2.765× 105,1,114× 106,5.76× 105,1.20×

105,6.68× 108,0), hence, the endemic equilibrium, E1, is globally asymptotically stable pro-

vided R0 > 1 and RK < 1, supporting the theoretical analysis presented earlier. Figure 3

presents the convergence of the CTL-active equilibrium, E2. It is observed that the endemic

equilibrium E2 is globally asymptotically stable when R0 > 1 and RK > 1. We observe a

delay in the activation of immune response cells between (0− 100) days. A decrease in

the I2 cells and HPV virions is observed as the CTL-cells dock and kill infected cells. The

gradual decline observed leads to the endemic equilibrium point, E2 = (3.45× 105,1.403×

106,4433,5000,9.064×106,40.3).

6.2. Vaccination effects on the dynamics of HIV/HPV co-infection. We consider two

cases; the case where co-infection exists and in the absence of vaccination and when there is

vaccination as presented in Figures 4(a-e). Simulations indicate that HPV vaccination among

HIV positive women is beneficial in preventing new HPV infections from occurring. This is

shown by a significant increase in the susceptible epithelial cells and a decrease in actively

infected cells when a 90% vaccine efficacy is applied. The absence of vaccination increases

the probability of HPV infection as evidenced by the dynamics of I1 (blue dashed line) and this

is because HIV exacerbates HPV persistence. On the other hand the presence of vaccination

effectively reduces new infections as evidenced by the dynamics of I1 cells (red dashed line).

Clinical data from the study by Konopnicki et al. and Table 1 was used to produce the dynamics

in Figure 5.
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FIGURE 2. The stability of the infection-free equilibrium for R0 = 0.1553 < 1,

(tat protein absent, η = 0 ) and R0 = 0.2174 < 1 (tat protein present, η =

2.0833× 10−5). The initial conditions used were Ts(0) = 500000, L(0) =

100, I1(0) = 200, I2(0) = 100, V (0) = 100, K(0) = 1 and the rest of the pa-

rameters are from Table 1.

Tat protein is normally not in effect when the CD4+ T-cell count is > 500 cells/µl and

therefore we assume that ηV̄H = 0, [1]. Stages where the CD4+ T-cell count is < 500 cells/µl

there is the action of tat protein hence ηV̄H = 1. For the first 50 days Figure 5(a) indicates an

increase in I1 cells as the CD4+ T-cell count is low. Due to this Figure 5(b) indicates that a rise

in I1 cells exacerbates the production of I2 cells and this consequently HPV viral production is
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FIGURE 3. Stability of the CTL-free equilibrium E1, with R0 = 24.0351 and

RK = 17.6668 and β = 0.0067, σ = 0.00001, η = 2.0833× 10−5. The ini-

tial conditions used are Ts(0) = 500000, L(0) = 1000, I1(0) = 2000, I2(0) =

1000, V (0) = 1000, K(0) = 150 and the rest of the parameters are obtained in

Table 1.

also affected by the CD4+ T-cell count as shown by Figure 5 (c). So a healthy HIV-infected

individual has an immune system that can effectively reduce HPV. Also, during the first 50

days a delay in the immune response is also observed and this is assumed to be as a result of

immune evasion. The consequence of this is a sharp increase in infected cells and the HPV

viral load as shown in Figures 5(a-c). The dynamics of infection change after a period of 50
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FIGURE 4. Dynamics of HPV/HIV co-infection model in the presence of vac-

cination with; ηV̄H = 1,εI = 0, (ii) ηV̄H = 1,εI = 0.90, with initial conditions

Ts(0) = 1000, L(0) = 100, I1(0) = 200, I2(0) = 100, V (0) = 100,K(0) = 150.

In all cases, Rc > 1 and RK < 1 and the rest of parameters are taken from Table

1.

days. We observe the action of the immune response and a gradual decrease in the number of

infected cells and these approach some equilibrium.

6.3. HIV/HPV co-infection in the presence of treatment. To simulate the contribution of

cART we assume that all infected individuals are highly adherent to cART and have initiated it

well in time. Adherence is crucial in the reduction of HPV infection in HIV-positive women.
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FIGURE 5. The HPV/HIV co-infection dynamics, for (i) TH = 8× 105 and

ηV̄H = 0, (ii) TH = 4× 105, ηV̄H = 1 (iii) TH = 2.5× 105, ηV̄H = 1 and (iv)

Th = 105, ηV̄H = 1, R0 > 1. The rest of the parameters are taken from Table

1. It is also assumed that; healthy CD4+ T-cell count is 8× 105 cells/µl , the

chronic HIV stage CD4+T-cell count is 4× 105 cells/µl and 2.5× 105 cells/µl

respectively and the chronic AIDS stage is 105 cells/µl.

Simulations in Figure 6 show two cases that is;“ineffective cART case” (εP = 0,εR = 0.01)

and “effective cART case” ( εP = 0.5, εR = 0.95). Results indicate that adherence to treat-

ment (effective cART case) is indeed crucial in the reduction of HPV prevalence. We therefore

recommend that women and girls living with HIV be educated on the benefits of adherence to

treatment in relation to the reduction in HPV related infections.
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FIGURE 6. HIV/HPV co-infection in the presence of cART, where“ineffective

cART” implies εP = 0, εR = 0.01 and “effective cART” implies εP = 0.5 and

εR = 0.95. The rest of the parameters are from Table 1.

7. CONCLUSION

In this study, we investigated the dynamics of HIV/HPV co-infection, building upon the work

by [1, 11]. Our model specifically considered the impact of latent HPV infections on the per-

sistence of infection among women living with HIV/AIDS. Through mathematical analysis,

we identified three equilibrium points: the disease-free equilibrium, CTL-free endemic equilib-

rium, and CTL-active endemic equilibrium. We established both the global and local stabilities
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of these equilibrium points and provided the conditions for their stability. Notably, the stability

of these points depended on two key parameters: the basic reproduction number, R0, and the

immune response reproduction number, RK . An essential finding of our analysis was the ob-

servation of a forward bifurcation when R0 > 1 but close to one. This implies that reducing R0

to below unity will effectively control HPV among women living with HIV. To gain further in-

sights, we conducted numerical simulations, which explored the dynamics of the model under

two scenarios: vaccination and the presence of cART. The results highlighted the benefits of

vaccinating women living with HIV, especially when the vaccine’s efficacy exceeds 60%, align-

ing with the current HPV vaccine efficacy levels. Additionally, combining vaccination with

proper adherence to cART proved to be effective in reducing HPV infection. In conclusion,

our model emphasises the importance of widespread vaccination for women and girls, early

initiation of cART, and adherence to cART in combating HPV infection among women. We

believe that these findings contribute significantly to a better understanding of HPV dynamics

in immune-compromised individuals.
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