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Abstract. In this article, we propose a new continuous mathematical approach to model and analyze the dynamics

of the population of heavy drinkers and their health complications. The model has several compartments, including

a new one that represents the number of heavy drinkers with different complications associated with excessive

alcohol consumption. We study the stability of the model using mathematical theories such as the Routh-Hurwitz

criteria for local stability, in order to study the equilibrium without and with excessive alcohol consumption, and the

construction of Lyapunov functions makes it possible to study global stability. A sensitivity analysis is performed

to determine which parameters have the most significant impact on the number of reproductions R0. The results

were validated using numerical simulations carried out under MATLAB. This model may be useful in guiding

public health policies aimed at reducing the number of drinkers and the complications associated with alcohol

consumption.
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1. INTRODUCTION

Addiction is a dangerous social scourge that must be combated. But the term ”addiction”

is defined as a dependence on a substance or behavior, with serious consequences for health

and behavior. An addiction is characterized by an often strong, even compulsive desire to

consume or engage in a behavior. Thus, so that the person finds himself unable to abstain from

taking a substance or engaging in a behaviour; he loses control over substance use or behavior.

This consumption or behavior has negative repercussions on the addict and those around him.

Specialists distinguish between physical addiction and behavioral addiction. Physical addiction

specifically means addiction to drugs, alcohol, and sedatives, while behavioral addiction refers

to activities that obsess a person and waste significant time in the practice of this activity, that

makes his behavior unacceptable. On the contrary, it is a source of evil for him and those around

him. In this context, we can talk about addiction to the Internet, shopping, work, food, sports,

food, sex, phone ...

Addiction to psychotropic substances.

It defines dependence on tobacco, drugs, and alcohol ”if the use of drugs or alcohol continues,

it impacts physical or psychological dependence, or both. At the beginningThe drug gives the

addict at first a feeling of happiness and calm, then he rushes to gradually increase the dose to

enter the cycle of addiction and become a prisoner of drugs and alcohol his only obsession is

to get it at any cost. The drug and alcohol addict tries to escape from social events, becomes

emotional, and may resort to theft or even murder.

The causes of addiction are multiple: some of these reasons are related to social and cul-

tural factors, the problems and pressures experienced by the individual, also it’s related to the

accompaniment of bad friends who push young people, especially to the abuse of drugs or al-

cohol. Moreover, the causes of addiction may be psychological, with some people suffering

from mental illness or chronic depression and anxiety, or neurological diseases, or who have a

pathological, unstable or antisocial personality, to drugs or alcohol.

Behavioral addiction.

Behavioral addiction can be defined as the control of an idea over a person to turn into an

obsession, which takes a lot of his time and interests, and seeks to reach it by all means, despite
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his awareness of its consequences and risks. This type of addiction is very common, but it is

not as visible and obvious as in the case of physical addiction.

We are interested in this work on alcohol dependence. In recent years, with the improvement

of our standard of living, lifestyles have diversified, and alcohol consumption has become in-

creasingly an important part of people’s daily lives. Yet, the current situation of alcoholism in

the world is truly worrying. Alcohol addiction has become one of the public health and social

problems facing the world. Alcoholism has very serious consequences such as marital harm,

child abuse, crime, social violence, and other serious consequences of criminal acts. It also

contributes to traffic accidents. In general, the higher the volume of alcohol consumption, the

more alcohol causes about 200 different types of diseases and conditions, including injuries and

mental and behavioral disorders.

According to the WHO in 2016, the harmful use of alcohol resulted in some 3 million deaths

(5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years (DALY), or

5.1% of all DALY in that year. Mortality resulting from alcohol consumption is higher than

that caused by diseases such as tuberculosis, HIV/AIDS and diabetes. Among men in 2016,

an estimated 2.3 million deaths and 106.5 million DALY were attributable to the consumption

of alcohol. Women experienced 0.7 million deaths and 26.1 million DALY attributable to the

consumption of alcohol.

Alcohol caused approximately 0.4 million of the 11 million deaths worldwide in 2016

from communicable, maternal, perinatal and nutritional diseases, accounting for 3.5% of these

deaths.

Harmful use of alcohol caused some 1.7 million deaths from non-communicable diseases in

2016, including some 1.2 million deaths from digestive and cardiovascular diseases (0.6 million

for each condition ) and 0.4 million deaths from cancer. Globally, an estimated 0.9 million

injury deaths are attributable to alcohol, including around 370,000 deaths from road traffic

accidents, 150,000 from self-harm and around 90,000 from interpersonal violence . Among

road accidents, 187,000 alcohol-attributable deaths involved people other than drivers.[1,2]

Certain diseases caused by excessive alcohol consumption.
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Excessive use of alcohol often leads to many harmful consequences for the drinkers them-

selves and society. And it causes serious health problems, including an increased risk of several

diseases, like certain types of cancer such as cancer of the mouth, throat, liver, esophagus, colon

and breast, liver diseases (fatty liver, alcoholic liver and cirrhosis), digestive system diseases

(gastritis and inflammation of the liver Pancreatic), heart problems lead to high blood pressure

and increase the risk of an enlarged heart, heart failure or stroke, neurological complications,

weak immune system, sexual function problems and menstrual problems. Alcohol use also

contributes to death and disability through road accidents, injuries, violence, crime and suicide,

especially among young people. In its Global Status Report on Alcohol and Health, published

in 2018, the World Health Organization reported that in 2016, deaths from alcohol consumption

were higher than from diseases such as tuberculosis, HIV/AIDS and diabetes. Of the 3 million

deaths caused by the harmful use of alcohol (5.3% of all deaths worldwide), 28% of deaths

have been attributed to road traffic accidents, violence and suicide, 21% have been attributed to

diseases affecting the digestive system, and 19% were attributed to cardiovascular diseases, and

32% were attributed to infectious diseases, cancers, mental disorders, or other conditions.

Mathematical epidemiological models have become important tools that predict the dynam-

ics of infectious diseases and provide effective measures to analyze and study and control their

spread. Many studies use epidemiological mathematical models to study the dynamics of al-

cohol consumption, analyze consumer behavior and propose solutions to reduce the risks to

consumers and society as well as to minimize the number of excessive alcohol consumers. For

example, S. H. Ma et al.[15] modeled alcoholism as a contagious disease and used optimal

control to study their mathematical model with sensitization and delay programs. Wang et al.

[19] proposed and analyzed a nonlinear model of alcoholism and used optimal control to pre-

vent the interaction between susceptible individuals and infected individuals. Sharma et al.

[12] developed a mathematical model of alcohol abuse and discussed the existence, local and

global stability of the endemic equilibrium without alcohol consumption and sensitivity analy-

sis of a number of basic reproduction R0. Huo et al. [17] focused on the global ownership of

a consumption model with public health education campaigns. They conclude that educational

campaigns have a positive effect on controlling consumption dynamics. Giacobbe et al. [17]
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considered a mathematical model that describes the dynamics of a population divided into three

categories and used an additional variable that represents an external influence. They studied

the existence of an endemic equilibrium and analyzed the stability of the equilibrium. Agrawal

et al. [22] developed a nonlinear SHTR mathematical model of alcohol abuse with a nonlin-

ear incidence rate. The stability analysis of the model they proposed shows that the system is

locally asymptotically stable at equilibrium without alcohol E0 when R0 ≤1.

Motivated by the fact that mathematical models have proven to be useful in understanding the

dynamics of several social phenomena, in this study we propose a new model concerned with

the study of excessive alcohol consumption and its complications on diseases. We examined the

local stability of this model using the Routh-Hurwitz criteria and discussed its global stability

using the Lyapunov function

So, we will study the dynamics and the analysis of a mathematical model of excessive al-

cohol consumption and their complications PMHC1C2C3.....CnQ which contains the following

additions:

• A compartment Ci that represents the number of the heavy drinkers with i complications

associated with prolonged and excessive alcohol consumption where, i = {1,2, .......,n} n com-

plications.

• The death rate induced by the heavy drinkers δ 0.

• The death rate induced by the heavy drinkers with i complications δ i.

The drinkers classes of this model are divided into n+4 compartments: Potential drinkers

(P), Moderate drinkers (M), Heavy drinkers (H), heavy drinkers with i complications (Ci) and

quitters of drinking(Q).

Among the opportunities for reducing the harmful use of alcohol worldwide are inclusion

of alcohol-related targets in major global policy and strategic frameworks such as the 2030

Agenda for Sustainable Development, increased health consciousness in populations, decreased

youth alcohol consumption as observed in a wide range of countries, recognition of the role of

alcohol control policies in reducing health and gender inequalities, and accumulating evidence

of effectiveness and cost-effectiveness of a number of alcohol control measures [2].
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The paper is organized as follows. In Section 2, we present our PMHC1C2C3.....CnQ mathe-

matical model that illustrates the dynamics of excessive alcohol consumption and their compli-

cations.In Section 3; we discuss basic properties and positivity of solutions. In section 4 ; we

analyse the local and global stability and

the problem of parameters sensitivity. Numerical simulations are given in Section 5. Finally,

we conclude the paper in Section 6.

2. A MATHEMATICAL MODEL

We propose a continuous model PMHC1C2C3...CnQ to describe and analyze the dynamics

of the population of excessive alcohol consumers and their health complications. We divided

the population into several compartments, including potential drinkers P(t), moderate drinkers

M(t), heavy drinkers and heavy drinkers with different complications Ci(t) and quitters of

drinking Q(t).

Figure1: Schematic diagram of the fourten drinking classes in the model

We consider the following system of six non-linear differential equations:

(1)



dP(t)
dt = b−β 1

PM
N −µP

dM(t)
dt = β 1

PM
N −(β 2+µ)M

dH(t)
dt = β 2M− (µ +α0 +δ 0−

n
∑

i=1
α i)H

dCi(t)
dt = α iH−(µ + γ i +δ i)Ci(t)

dQ(t)
dt = α0H+

n
∑

i=1
γ iCi−µQ
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Potential drinkers P:

(2) dP(t)
dt = b−β 1

PM
N −µP

The potential drinkers P(t) represents individuals who are older than the age of majority, is

increased by the recruitment rate denote b and decreased by the rates β 1
PM
N and µP , where, µ

is the natural death rate, β 1 is the transmission rate from P to M .

Moderate drinkers M:

(3) dM(t)
dt = β 1

PM
N −β 2M−µM

The moderate drinkers M(t) is increased by the rates β 1
PM
N and decreased by the rates β 2M

and µM, where, β 2 is the transmission rate from the M to H .

Heavy drinkers H:

(4) dH(t)
dt = β 2M− (µ +α0 +δ 0+

n
∑

i=1
α i)H

The number of the heavy drinkers H(t) it comprises the addicted individuals. The compart-

ment become larger as the number of heavy drinkers increases by the rate β 2M and decreases

by the rates α0H,
n
∑

i=1
α iH and (µ +δ 0)H. where, δ 0 is the death rate induced by H.

Heavy drinkers with complication Ci:

(5) dCi(t)
dt = α iH−(µ + γ i +δ i)Ci(t)

The heavy drinkers with liver complications associated with prolonged and excessive alcohol

consumption (alcoholic hepatitis, fibrosis and cirrhosis), is increased by the rate α iH and de-

creased by the rates γ iCi , µCi and µδ i. where, δ i is the death rate induced by the i complication

of heavy drinkers.

four i = 1, C1 represent the number of heavy drinkers with liver disease complications,

four i = 2, C2 represent the number of heavy drinkers with pancreatitis complications,

four i = 3, C3 represent the number of heavy drinkers with cancer complications,

four i = 4, C4 represent the number of heavy drinkers with ulcers and gastrointestinal prob-

lems complications,
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four i = 5, C5 represent the number of heavy drinkers with immune system dysfunction com-

plications,

four i = 6, C6 represent the number of heavy drinkers with brain damage complications,

four i = 7, C7 represent the number of heavy drinkers with malnourishment and vitamin

deficiencies complications,

four i = 8, C8 represent the number of heavy drinkers with osteoporosis complications,

four i = 9, C9 represent the number of heavy drinkers with heart disease complications,

four i = 10, C10 represent the number of heavy drinkers with accidents and injuries compli-

cations,

Quitters of drinking Q :

(6) dQ(t)
dt = α0H+

n
∑

i=1
γ iCi−µQ

Q(t) refers to the individuals who temporarily and permanently quit drinking, is increased by

the rates α0H and
n
∑

i=1
γ iCi and decreased by the rate µQ.

The total population size at time t is denoted by N(t) with N (t)=P(t)+M(t)+H(t)+C1(t)+

C2(t)+ .....+Cn(t)+Q(t).

We consider system (1) with the following parameter values.

3. BASIC PROPERTIES

3.1. Invariant Region. It is necessary to prove that all solutions of system (1) with positive

initial data will remain positive for all times t > 0. This will be established by the following

lemma.

Lemma 1. All feasible solution P(t),M(t),H(t),C1(t),C2(t)......Cn(t)and Q(t) of system equa-

tion (1) are bounded by the region

(7) Ω =

{
(P,M,H,C1,C2, ..,Cn,Q) ∈ IR6

+ : P+M+H +C1 +C2..+Cn +Q≤ b
µ

}
Proof. From the system equation(1)

(8)
dN(t)

dt
=

dP(t)
dt

+
dM(t)

dt
+

dH(t)
dt

+
dC1(t)

dt
+

dC2(t)
dt

......+
dCn(t)

dt
+

dQ(t)
dt

dN(t)
dt = b−µN(t)−δ 0H−

n
∑

i=1
δ iCi
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implies that dN(t)
dt ≤ b−µN(t)

It follows that

(9) N(t)≤ b
µ
+N(0)e−µt

Where N(0) is the initial value of total number of people, thus, lim
t→+∞

supN(t) ≤ b
µ

Then

P(t)+M(t)+H(t)+C1(t), .......+Cn(t)+Q(t)≤ b
µ

Hence, for the analysis of model (1), we get the region which is given by the set:

Ω =
{
(P,M,H,C1, ..,Cn,Q) ∈ IR6

+ : P+M+H +C1 + ...+Cn +Q≤ b
µ

}
Which is a positively invariant set for (1), so we only need to consider dynamics of system

on the set Ω non-negative of solutions.

3.2. Positivity of solutions of the model.

Theorem 2. If P(0)≥ 0,M(0)≥ 0,H(0)≥ 0,C1(0)≥ 0,C2(0)≥ 0........,Cn(0)≥ 0 and Q(0)≥

0, then the solution of system equation(1) P(t),M(t), H(t),C1(t) ........,Cn(t)and Q(t) are posi-

tive for all t > 0.

Proof. From the second equation of system (1), we have:
dM(t)

dt = β 1
PM
N −β 2M−µM⇒ dM(t)

dt ≥−(β 2 +µ)M

Using a Gronwall lemma, we have

(10) M(t)≥M(0)exp [−(β 2 +µ) t]> 0

Similarly, From the third equation of system (1), we have:
dH(t)

dt = β 2M− (µ +α0 +δ 0+
n
∑

i=1
α i)H ⇒ dH(t)

dt ≥−(µ +α0 +δ 0+
n
∑

i=1
α i)H

implies that

(11) H(t)≥ H(0)exp

[
−(µ +α0 +δ 0+

n

∑
i=1

α i)t

]
> 0

Similarly, From the forth equation of system (1), we have:
dCi(t)

dt = α iH−(µ + γ i +δ i)Ci(t)⇒ dCi(t)
dt ≥−(µ + γ i +δ i)Ci(t)

implies that
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(12) Ci(t)≥Ci(0)exp [−(µ + γ i +δ i) t]> 0

Similarly, From the sixth equation of system (1), we have:
dQ(t)

dt = α0H+
n
∑

i=1
γ iCi−µQ⇒ dQ(t)

dt ≥−µQ

implies that

(13) Q(t)≥ Q(0)exp [−µt]> 0

Therefore, we can see that P(t)> 0, M(t)> 0, H(t)> 0, C1(t)> 0, C1(t)> 0........, Cn(t)> 0

and Q(t)> 0 ∀t ≥ 0, this completes the proof.

Since the first tree equations in system (1) are independent of the variables Ci and Q, it is

sufficient to consider the following reduced system:

(14)


dP(t)

dt = b−β 1
PM
N −µP

dM(t)
dt = β 1

PM
N −(β 2+µ)M

dH(t)
dt = β 2M− (µ +α0 +δ 0+

n
∑

i=1
α i)H

4. MODEL ANALYSIS

4.1. Equilibrium states. We first find the equilibrium of the PMH model, by setting the right-

hand side of the system (14) to zero, we get two equilibrium states, namely the drinking-free

state E0
(

b
µ
,0,0

)
and the endemic state E∗ (P∗,M∗,H∗).

Where

(15) P∗ = b
µR0

(16) M∗ = b(R0−1)
β 1

(17) H∗ = bβ 2(R0−1)

β 1(µ+α0+δ 0+
n
∑

i=1
α i)

(18) R0 =
β 1

µ+β 2

R0 is the basic reproduction number.
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4.2. Local stability analysis.

4.2.1. The drinking-free equilibrium. In this section, we analyze the local stability of the

drinking-free equilibrium

Theorem 3. The drinking-free equilibrium E0
(

b
µ
,0,0

)
of the system (16) is asymptotically

stable if R0 < 1 and unstable if R0 > 1.

Proof. We now consider the stability local of the drinking-free equilibrium, for the system

defined by (14), the matrix Jacobian is given by:

(19) J(E) =


−β 1

M
N −µ −β 1

P
N 0

β 1
M
N β 1

P
N −β 2−µ 0

0 β 2 −(µ +α0 +δ 0+
n
∑

i=1
α i)


The Jacobian matrix for the drinking-free equilibrium is given by:

(20) J(E0) =


−µ −β 1 0

0 β 1−β 2−µ 0

0 β 2 −(µ +α0 +δ 0+
n
∑

i=1
α i


where P0 =

b
µ
= N.

The characteristic equation of this matrix is given by det(J(E0)− λ I3) = 0 where I3 is a

square identity matrix of order 3.

The following eigenvalues where obtained:

(21)

λ 1 =−µ

λ 2 =−(β 2 +µ−β 1) =−(µ +β 2)
(

1− β 1
µ+β 2

)
λ 3 =−(µ +α0 +δ 0+

n
∑

i=1
α i

(22) R0 =
β 1

µ +β 2

Therefore, all the Eigenvalues of the characteristic equation are negatives if R0 < 1.

Therefore, we conclude the drinking-free equilibrium is locally asymptotically stable if R0 <

1 and unstable if R0 > 1.
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4.2.2. Endemic equilibrium. In this section, we analyze the local stability of the endemic

equilibrium.

To find the drinking present equilibrium of the system of equation (16) setting dP(t)
dt =

0, dM(t)
dt = 0 and dH(t)

dt = 0. provided that at least one of the infected compartments is non zero.

We evaluate the equilibrium of system (14) by setting the right-hand side of equation of system

(14) to zero and then solve for P∗,M∗and H∗.

We obtained system (23) :

(23)


dP(t)

dt = b−β 1
PM
N −µP

dM(t)
dt = β 1

PM
N −(β 2+µ)M

dH(t)
dt = β 2M− (µ +α0 +δ 0+

n
∑

i=1
α i)H

From the fourth equation in the system (23), we have

(24) M =

µ +α0 +δ 0+
n
∑

i=1
α i

β 2
H

From the second equation in the system (23), we have

(25) P∗ = N
[
(µ +β 2)

β 1

]

(26) P∗ =
b

µR0

From the first equation in the system (23), we have

(27) M∗ =
b(R0−1)

β 1

equation (3) gives

(28) H∗ =
bβ 2(R0−1)

β 1(µ +α0 +δ 0+
n
∑

i=1
α i)

Theorem 4. if R0 > 1, E∗ is locally asymptotically stable .

Proof. We present E∗ (P∗,M∗,H∗) as endemic equilibrium of system (23) and P∗ 6= 0,M∗ 6= 0,

H∗ 6= 0
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The Jacobian matrix is

(29) J(E∗) =


−β 1

M∗
N −µ −β 1

P∗
N 0

β 1
M∗
N β 1

P∗
N −β 2−µ 0

0 β 2 −(µ +α0 +δ 0+
n
∑

i=1
α i)


where

P∗=
b

µR0

M∗=
b(R0−1)

β 1
(30)

H∗=
bβ 2(R0−1)

β 1(µ +α0 +δ 0+
n
∑

i=1
α i)

The eigenvalue of matrix J(E∗) is λ 1 =−(µ +α0 +δ 0+
n
∑

i=1
α i). The characteristic equation

of this matrix is given by det(J(E∗)−λ I2) = 0, where I2 is a square identity matrix of order 2.

(31) P(λ ) = a1λ
2 +a2λ +a3

where

P∗=
b

µR0

M∗=
b(R0−1)

β 1
(32)

a1 = 1 > 0

a2 = β 1
M∗

N
+µ +β 2 +µ−β 1

P∗

N

a2 = β 1
M∗

N
+µ > 0 i f R0 > 1.

a3 =

(
β 1

M∗

N
+µ

)(
β 2 +µ−β 1

P∗

N

)
+β

2
1

P∗

N
M∗

N

a3 = β
2
1

P∗

N
M∗

N
> 0 i f R0 > 1.

By Routh-Hurwitz criterion [22], the system(2) is locally asymptotically stable if a1 > 0,

a2 > 0, a3 > 0 and a1a2 > a3.
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The jury criterion [22] implies that he two roots λ 1,λ 2 of the equation P(λ ) = 0 satisfy |λ i| ≤

0 for i = 1,2. The linearization theory implies that the positive equilibrium E∗ (P∗,M∗,H∗) of

system (2) is locally asymptotically stable if R0 > 1, i.e, the endemic equilibrium E∗ of system

(2) is locally asymptotically stable.

4.3. Global stability.

4.3.1. Global stability of the drinking-free equilibrium. We will investigate the global stabil-

ity of E0 when R0 ≤ 1:

Theorem 5. If R0 ≤ 1, E0 is globally asymptotically stable .

Proof. Consider the following Lyapunov function [...],

(33) V = M

dV
dt

=
dM(t)

dt

=

[
β 1P
N
− (µ +β 2)

]
M(34)

= β 1

[
R0P −N

R0

]
M < 0(35)

implies that

(36)
dV
dt

< 0

dV
dt = 0 implies that M = 0. Hence, by Lasalle’s invariance principle [23], E0 is globally

asymptotically stable.

4.3.2. Global stabilty of the endemic equilibrium. Our final result in this section is for the

global stability of E∗.

Theorem 6. Drinking-present equilibrium point E∗ is globally asymptotically stable if R0 > 1.

Proof. Consider the Lyapunov function V :

V : Γ → IR

V (P,M) = c1

[
P−P∗ ln(

P
P∗

)

]
+ c2

[
M−M∗ ln(

M
M∗

)

]
(37)

where c1 and c2 are positive constant to be chosen latter and Γ = {(P,M) ∈ Γ/P > 0,M > 0}
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Then, the time derivative of the Lyapunov function is given by

(38)
dV (P,M)

dt
=−bc1

[P−P∗]2

PP∗
+

β 1
N

(c2− c1) [P−P∗] [M−M∗] .

Then, the time derivative of the Lyapunov function is given by

(39)
dV (P,M)

dt
=−bc1

[P−P∗]2

PP∗
+

β 1
N

(c2− c1) [P−P∗] [M−M∗] .

For c1 = c2 = 1, we have

(40)
dV (P,M)

dt
=−b

[P−P∗]2

PP∗
≤ 0

Also, we obtain

(41)
dV (P,M)

dt
= 0 =⇒ P = P∗

Hence by LaSalle’s invariance principle [23] the free equilibrium point E∗ is globally asymp-

totically stable on Γ.

4.4. Sensitivity Analysis of R0. To examine the sensitivity of R0 to each of its parameters, fol-

lowing normalized forward sensitivity index with respect to each of the parameters is computed

[3].

Using the approach in Chitnis et al. [24], we calculate the normalized forward sensitivity

indices of R0. Let

(42) AR0
m =

m
R0
∗ ∂R0

∂m

denote the sensitivity index of R0 with respect to the parameter m. We get

(43) R0 =
β 1

µ +β 2

(44) AR0
β 1

= 1

(45) AR0
β 2

=− β 2
µ +β 2

< 0

(46) AR0
µ =− µ

µ +β 2
< 0
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From the above discussion we observe that the basic reproduction number R0 is most sensitive

to changes in β 1. if β 1 will increase R0 will also increase with same proportion and if β 1 will

decrease in same proportion, µ and β 2 have an inversely proportional relationship with R0.

We conclude that the basic reproduction number (R0) is most sensitive to changes in β 1. An

increase in β 1 will cause an increase in R0 with same proportion and a decrease in β 1 will cause

a decrease in R0 in same proportion. µ and β 2 have an inversely proportional relationship with

R0, so an increase in any of them will bring about a decrease in R0. However, the size of the

decrease will be proportionally smaller. Recall that µ is the natural death rate of the popula-

tion. It is clear that increase in either of these rates is neither ethical nor practical. Thus we

choose to focus on one parameters: β 1the transmission rate from potential drinker to moderate

drinker. Given R0’s sensitivity to β 1, it seems sensible to focus efforts on the reduction of β 1.

In other words, this sensitivity analysis tells us that prevention is better than cure. Efforts to

increase prevention are more effective in controlling the spread of habitual drinkers than efforts

to increase the numbers of individuals accessing treatment.

Parameter Description Sensitivity index

β 1 The effective contact rate +1

µ The natural death rate −0,2

β 2 coefficient of transmission the M at H −0,1

In this section, we illustrate some numerical solutions of model (1) for different values of

the parameters to compair it with the qualitative results. We use the following different initial

values such that P+M+H +C1 +C2.....+Cn +Q = 1000.

5. NUMERICAL SIMULATIONS

This section includes the numerical simulation of the model proposition 1 describing the dy-

namics of excessive alcohol consumption and its complications, the resolution of the system (1)

was created using the technique of implicit finite differences of the Gauss-Seidel type devel-

oped by Gumel et al [28], presented in [29] and noted GSS1 method. We start with a graphical

representation of the equilibrium without consumption E0 = (1000;0;0;0;0), using the estimated

values of the parameters shown in Table 1, R0= 0 and R0 ≺0 and the state variables initial are

chosen as P + M + H + Ci + Q = 1000.

We consider system (1) with the following parameter values.
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Table 1: Description of parameters of the model (1).

Parameter Desciption value Source

b Recruitment rate of potentiel drinkers 100 Assumed

β 1 the transmission rate from P to M 0.02 Assumed

β 2 the transmission rate from M to H 0.160 Assumed

µ The natural death rate 0.4 Assumed

α0 The rate of the H they becomes R and Q 0.05 Assumed

α1 The rate of H reached by with C1 0.04 Assumed

α2 The rate of H reached by C2 0.03 Assumed

α3 The rate of H reached by C3 0.03 Assumed

α4 The rate of H reached by C4 0.04 Assumed

δ 0 The death rate induced by the H 0.02 Assumed

δ 1 The death rate induced by the C1 0.003 Assumed

δ 2 The death rate induced by the C2 0.004 Assumed

δ 3 The death rate induced by the C3 0.025 Assumed

δ 4 The death rate induced by the C4 0.0015 Assumed

γ1 The cure rate of C1 and R and Q 0.001 Assumed

γ2 The cure rate of C2 and R and Q 0.002 Assumed

γ3 The cure rate of C3 and R and Q 0.002 Assumed

γ4 The cure rate of C3 and R and Q 0.0015 Assumed
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Therefore, the solution converges to the equilibrium E0(P(0), 0, 0, 0, 0, 0). It is clearly

globally asymptotically stable as soon as R0 < 1, this numerical verification confirms the result

stated in model 1 concerning the stability.

Fig: 2. Global asymptotic stability equilibrium without excessive alcohol consumption

E0 for different initial values of each variable state,

Fig:2(a): the number of potential drinkers increases and approaches the number P(0) =1000

Fig: 2(b)

Fig: 2(c)
Fig: 2(b and c) the number of moderate drinkers and the number of haevy drinkers decreases

and approaches zero
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Fig: 2(d)

Fig: 2 (e)
Fig: 2(d) the number of heavy drinkers with complications of liver disease is decreasing and

approaching zero

Fig: 2(e) the number of heavy drinkers with complications of pancreatitis disease is decreas-

ing and approaching zero

Fig: 2(f)
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Fig: 2(g)
Fig: 2(f) the number of heavy drinkers with complications of Cancer disease is decreasing

and approaching zero

Fig: 2(g) the number of heavy drinkers with disease complications of ulcers and gastroin-

testinal problems is decreasing and approaching zero

Fig: 2(h) the number of quitters of drinking decreases and approaching zero

We start from a graphic representation of the balance E* of excessive alcohol consumption

and its complications and we take the same parameters and different initial values given in table

1, From these . . . figures, using the different values of the variables P (0), M(0), H(0), Ci (0),

R(0) and Q(0), we obtained the following remarks (Figure 3):

(i) the number of potential drinkers increases and approaches the the value P* = 275(see

Figure 3(a))

(ii) the number of moderate drinkers decreases rapidly at first, then increases slightly and

approaches the value M* = 400 (see Figure 3(b))

(iii) the number of heavy drinkersdecreases and approaches the value H*=460 (see Figure

2(c)).
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(iv) the number of heavy drinkers with complications of liver disease decreases and ap-

proaches the value C1*=120 (see Figure 2(d))

(v) the number of heavy drinkers with complications of pancreatitis disease decreases and

approaches the value C2*=110 (see Figure 2(e))

(vi) the number of heavy drinkers with complications of Cancer decreases and approaches

the value C3*=92.5 (see Figure 2(f))

(vii) the number of heavy drinkers with disease complications of ulcers and gastrointestinal

problems decreases and approaches the value C4*=82(see Figure 2(g))

(viii) the number of quitters of drinking decreases and approaches the value Q= 17.5 (see

Figure 3(h))

Therefore, the solution curves to the equilibrium E*(P*, M*, H*, Ci*, R*, Q*) when R0>1.

Hence, model (1) is globally asymptotically stable.

Fig. 3. Global asymptotic stability equilibrium with excessive alcohol consumption E0

for different initial values of each variable state,

50 100 150 200 250 300 350 400 450 500

Time(days)

100

200

300

400

500

600

700

M
o

d
e

ra
te

 d
ri

n
k

e
rs

 

P(0)=300

P(0)=600

P(0)=100

Fig: 3(a)
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6. DISCUSSION

In this work, we formulated a continuous mathematical model that describes the population

dynamics of heavy drinkers and their complications. We studied the stability of this model

using the Routh-Hurwitz criteria to analyze the local stability, we proved that the equilibrium

point E0 is local asymptotic stable if R0<1. We also examined the global stability at l using

the Lyapunov function and we also demonstrated that if R>0 then the equilibrium point with
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alcohol consumption is globally asymptotically stable. We calculated the basic reproduction

number R0 and studied the sensitivity analysis of the model parameters to determine which

parameters have a high impact on the reproduction number. Numerical simulations are carried

out by MATHLAB to illustrate the theoretical results. These findings could be used to inform

public policies and public health interventions aimed at reducing excessive alcohol consumption

and its health consequences.
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