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Abstract. In this study, we take into account a predator-prey system with two delays, the prey is sea urchins and

the predator is crabs. The focus is given to the Allee effect where the prey population undergoes, the poisoning

of few predators, and a fishing effect on both species considered as selective for the prey. We aim to analyze

the system’s stability around interior equilibrium using the theory of bifurcations and determine stability intervals

related to delays. The theory of normal form and the center manifold are used to determine the direction of the

bifurcations. Finally, numerical simulations are given by numerical methods in DDE-Biftool Matlab package to

illustrate the theoretical results.
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INTRODUCTION

Across the seas, marine resources are at risk of extinction due to several factors: predation by

strange species, affectation through chemicals or toxic species, and overexploitation. Therefore,

marine biodiversity is threatened, requiring the intervention of relevant agencies to ensure the
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preservation of these resources through several facets, these include limited access and selective

fishing based on size and age to protect the juvenile population from early fishing.

Mathematical models stand as a tool allowing the study of biological phenomena and their

influence on the dynamics of populations, they identify the interactions between marine species,

the variation of their density as well as the effect of toxins.

The exponential growth established by Malthus remains among these mathematical models, it

considers that the species density evolves exponentially with a constant growth rate. However,

Verhulst criticizes this concept and claims that the environment has a maximum capacity of

inhabitants that it cannot exceed when the population size approaches the carrying capacity,

competing on the natural resources and causing a decrease in growth rate.

ẋ(t) = x(r−dx)

Among the threatened marine species, sea urchins are distinguished as essential invertebrate

herbivores in the Mediterranean that undergo the Allee effect with an aggregate behavior. Sea

urchins are characterized by external fertilization: reproduction decreases if the density is in-

sufficient to create effective reproductive aggregates. Therefore, there is a positive dependence

between the growth rate and size of the sea urchin population.

ẋ(t) = x
(

ax
x+b

− c−dx
)

Our model considers sea urchins as prey of crabs. With this prey-predator model of two

exploitable species, we use the equations of Lotka-Volterra while adding the fishing effect.

Some types of sea urchins are toxic; this toxicity affects crabs after a certain time of predation

of these Sea urchins.  ẋ(t) = x
( ax

x+b − c−dx
)
−g1xy−E1x

ẏ(t) =−my+g2xy−g3x(t− τ)y(t− τ)−E2y

Sea urchins play a vital role in maintaining the balance of ecosystems. Given the decline

in available stocks, action has been taken to regulate catches of this species. A minimum size

designating an early age has been set for fishing to protect the juvenile population.
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Finally, our model is expressed in the following form

(1)

 ẋ(t) = x
( ax

x+b − c−dx
)
−g1xy−E1x(t− τ1)

ẏ(t) =−my+g2xy−g3x(t− τ2)y(t− τ2)−E2y

such that x sets for sea urchin biomass, and y represents crab biomass. The following table

summarizes the different parameters and their explanations.

Parameter Meaning

a Per capita maximum filtering rate of population

b Strength of Allee effect

c Death rate for preys

d Strength of intracompetition

g1 Mortality rates due to predation effect

g2 Reproductive rates of predators based on prey encountered

m Predator death rate

g3 Mortality rates by toxicity effect

τ1 age selection for harvesting

τ2 lag for affectation by toxicity

TABLE 1. The meaning of bioeconomical parameters

With initial conditions x(θ) = φ1(θ) > 0 and y(θ) = φ2(θ) > 0 for all θ ∈ [−τ,0], where

τ = max{τ1,τ2} are φi are continuous functions.

The remainder of this paper is organized as follows. After presenting the model in the in-

troduction, section 1 focuses on the existence and boundedness of the system’s solutions. The

stability of the interior equilibrium point is given in section 2, in addition to the search of bi-

furcation points according to the delay parameters values τ1 and τ2. Section 3 discusses the

stability and direction of Hopf bifurcation, which is followed in section 4 by the global stability.

Finally, the numerical simulations of theoretical results are provided in section 5.
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1. EXISTENCE AND BOUNDEDNESS OF THE SOLUTION

1.1. Boundedness of solutions. The first equation of system (1) verifies the following in-

equality

ẋ 6 x
(

ax
x+b

− c−dx
)

6 x(a− c−dx)

6 x
(

1− d
a− c

x
)
(a− c)

So ∃M > 0 such that x 6 M.

We consider w(t) = x(t)+ y(t)

ω̇(t)+ pω(t)6 x
( ax

x+b − c−dx
)
+g2xy−g1xy+ px+ py−my

For p < m, we have

ẇ(t)+ pw(t)6 ax+ px 6 (a+ p)M

Then x and y are bounded.

1.2. Existence and uniqueness of solution. The system (1) can be represented in the follow-

ing form

u̇ = f (u(t),u(t− τ1),u(t− τ2))

with u = (x,y) and f = ( f1, f2)
T such that

f1 = x
( ax

x+b − c−dx
)
−g1xy−E1x(t− τ1)

f2 =−my+g2xy−g3x(t− τ2)y(t− τ2)−E2y

The function f is continuous and the partial derivatives of fi are continuous and bounded, then

f is a Lipschitzian function. Consequently, the conditions of Cauchy Lipschitz are satisfied.

According to the fundamental theorem of functional differential equations cited in [6], system

(1) admits a unique solution.
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2. STABILITY ANALYSIS

2.1. Equilibrium points. To find the positive equilibrium points, we solve the following sys-

tem  ax
x+b − c−dx−g1y−E1 = 0

−m+g2x−g3x−E2 = 0

Then the system (1) admits a unique strictly positive equilibrium point P∗(x∗,y∗), where

x∗ = E2+m
g2−g3

y∗ = 1
g1

[
ax∗

x∗+b −dx∗− c−E1

]
2.2. Characteristic equation. To study the stability of the system (1), we must first calculate

its characteristic equation which will be expressed as follows

(2) P(λ ) = λ
2 +Aλ +B+(Cλ +D)e−λτ1 +(Eλ +F)e−λτ2 +Ge−λ (τ1+τ2) = 0

The coefficients of equation (2) are represented in the following table

Coefficient Expression

A c+2dx+g1y− a(x2+2bx)
(x+b)2 +m+E2−g2x

B
(

c+2dx+g1y− a(x2+2bx)
(x+b)2

)
(m+E2−g2x)+g1g2xy

C E1

D (m+E2−g2x)E1

E g3x

F g3x
(

c+2dx− a(x2+2bx)
(x+b)2

)
G g3xE1

TABLE 2. Expressions for the coefficients in 2

2.3. Study of local stability.

Case 1: Without delays. For τ1 = τ2 = 0, the characteristic equation becomes as follows

λ
2 +(A+C+E)λ +B+D+F +G = 0
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According to the Routh Hurwitz criterion, if A+C+E > 0 and B+D+F +G > 0, then the

system without delays is locally asymptotically stable around the equilibrium point P∗.

Case 2: One delay. For τ1 = 0 and τ2 > 0

(3) λ
2 +(A+C)λ +B+D+(Eλ +F +G)e−λτ2 = 0

We assume that iw (w > 0) is a root of (3) and we get the following couple of equations

(4)

 (F +G)cosωτ2 +Eω sinωτ2 = ω2− (B+D)

Eω cosωτ2− (F +G)sinωτ2 =−(A+C)ω

To arrive at the next system, we must square the previous equations and sum them

(5) ω
4 +
(
(A+C)2−E2−2(B+D)

)
ω

2 +(B+D)2− (F +G)2 = 0

We note the following conditions

• (H1) A+C+E > 0 and B+D+F +G > 0

• (H2) (A+C)2−E2−2(B+D)> 0, (B+D)2− (F +G)2 > 0

• (H3) (B+D)2− (F +G)2 < 0

• (H4) E2− (A+C)2 +2(B+D)> 0, (B+D)2− (F +G)2 > 0

and
[
E2− (A+C)2 +2(B+D)

]2
> 4

[
(B+D)2− (F +G)2

]
If (H1) and (H2) hold, then Eq (5) has no positive roots. Hence, all roots of Eq (3) have

negative real parts when τ2 ∈ [0,∞).

If (H1) and(H3) hold, then (5) has a unique positive root ω2
0 . Substituting ω2

0 into (4), we

have

τ2n =
1

ω0
cos−1

[
(F +G)

(
ω2

0 −B−D
)
− (A+C)Eω2

0

E2ω2
0 +(F +G)2

]
+

2nπ

ω0
, n = 0,1,2, . . .

If (H1) and (H4) hold, then (5) has two positive roots ω2
+ and ω2

−. Substituting ω2
± into (4)

gives

τ
±
2k
=

1
ω±

cos−1

[
(F +G)

(
ω2
±−B−D

)
− (A+C)Eω2

±

E2ω2
±+(F +G)2

]
+

2kπ

ω±
, k = 0,1,2, . . .
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Let λ (τ2) be the root of (3) satisfying Reλ (τ2n) = 0 (rep. Reλ

(
τ
±
2k

)
= 0 ) and Imλ (τ2n) =

ω0 ( rep. Imλ

(
τ
±
2k

)
= ω±

)
. We can obtain that

[
d

dτ2
Re(λ )

]
τ2=τ20 ,ω=ω0

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ
+
2k
,ω=ω+

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ2k ,ω=ω−

< 0.

Theorem 1. For τ1 = 0, assume that (H1) is satisfied. Then the following conclusions hold:

• If (H2) holds, then equilibrium (x∗,y∗) is asymptotically stable for all τ2 > 0.

• If (H3) holds, then equilibrium (x∗,y∗) is asymptotically stable for τ2 < τ20 and unstable

for τ2 > τ20 . Furthermore, system (1.2) undergoes a Hopf bifurcation at (x∗,y∗) when

τ2 = τ20.

• If (H4) holds, then there is a positive integer m such that the equilibrium is stable when

τ2 ∈
[
0,τ+20

)
∪
(

τ
−
20
∪ τ

+
21

)
∪ ·· · ∪

(
τ
−
2m−1

,τ+2m

)
, and the system (1) undergoes a Hopf

bifurcation at (x∗,y∗) when τ2 = τ
±
2′ ,k = 0,1,2, . . .

Case 3: two delays. For two delays, it is assumed that conditions (H1) and (H3) are checked.

Moreover, the delay τ2 is in its stability interval. Allow iω(ω > 0) to stand as a solution of Eq

(2), yet we can acquire

(6) ω
4 + Ãω

2 +B2 +F2−D2−G2 +2B̃sinωτ2 +2C̃ cosωτ2 = 0,

where

Coefficient Expression

Ã A2 +E2−2B−C2

B̃ ωCG−ω3E−ωAF +ωBE

C̃ −DG−ω2F +BF +ω2AE

TABLE 3. Expressions for the coefficients in (6)

We define

F(ω) = ω
4 + Ãω

2 +B2 +F2−D2−G2 +2B̃sinωτ2 +2C̃ cosωτ2.
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If the condition (H5) (B+F)2−(D+G)2 < 0 is checked, it’s trusting to agree that F(0)<

0 and F(∞) = ∞. Then Eq (6) has finite positive roots ω1,ω2, . . . ,ωk. For every fixed ωi, i =

1,2, . . . ,k, there exists a sequence
{

τ
j

1i
| j = 1,2,3, . . .

}
, such that (6) holds.

(7) τ
j

1i
=

(
1
ωi

)
cos−1

[
L
M

]
+

2 jπ
ωi

, i = 1,2, . . . ,k; j = 1,2, . . .

where,

Coefficient Expression

L NS+PT +(QS+RT )cosωiτ2 +(RS−QT )sinωiτ2

M S2 +T 2

N −ω2
i +B

P Aωi

Q F

R Eωi

S −(Gcosωiτ2 +D)

T Gsinωiτ2−Cωi

TABLE 4. Expressions for the coefficients in (7)

Let τ10 = min
{

τ
j

1i
| i = 1,2, . . . ,k; j = 1,2,3, . . .

}
. When τ1 = τ10 , Eq. (2) has a pair of

purely imaginary roots ±iω0 for τ2 ∈ [0,τ20 ).

Finally, we accept that (H6)
[

d
dτ1

(Reλ )
]

λ=iω0
6= 0. Consequently, we retain the given result

on the stability and bifurcation of our system.

Theorem 2. For system (6), suppose parameters satisfy conditions of Theorem 1; H3, H5 and

τ2 ∈ [0,τ20). Then the equilibrium E∗ (x∗,y∗) is asymptotically stable when τ1 ∈ (0,τ10), unsta-

ble when τ1 > τ10 and a Hopf bifurcation occurs when τ1 = τ10 .

3. STABILITY AND DIRECTION OF HOPF BIFURCATION

The objective of this section is to determine the direction of Hopf bifurcation and analyze

the stability of periodic solutions. To achieve this objective, we will apply the theory of normal

form and the center manifold theorem to our system.
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First, we start by linearizing the system (1) by changing variables u = x− x∗, v = y− y∗ and

we get the following system

(8)


u̇ = l1u+m1v+nu(t− τ1)+F1

v̇ = l2u+m2v+ pu(t− τ2)+qv(t− τ2)+F2

where

Coefficient Expression

F1 a1u2 +b1uv+ c1u3 + ...

F2 a2uv+b2u(t− τ2)v(t− τ2)

l1
a(x2+2bx)
(x+b)2 − c−2dx−g1y

m1 −g1x

n −E1

a1
ab2

(x+b)3 −2d

b1 −g1)

c1 − ab2

(x+b)4

l2 g2y

m2 −m2 +g2x−E2

p −g3y

q −g3x

a2 g2

b2 −g3

TABLE 5. Expressions for the coefficients in (8)

Under the loss of generalities, we assume that: τ∗2 < τ0
1 .

We pose τ2 = τ0
2 +η and ϕt(θ) = ϕ(t +θ) ∈C.

We express the system (8) as the following functional differential system in C([−τ∗1 ,0],R2)

(9) ϕ̇(t) = Lη(ϕt)+ f (η ,ϕt),
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where

Lη : C→ R2

χ → A0χ(0)+A1χ(−τ∗1 )+A2χ(−τ0
2 )

With

A0 =

 l1 m1

l2 m2

 A1 =

 n 0

0 0

 A2 =

 0 0

p q


and f : R×C→ R2 is expressed as follows

f (η ,χ) =

 a1χ2
1 (0)+b1χ1(0)χ2(0)+ c1χ3

1 (0)+ ...

a2χ1(0)χ2(0)+b2χ1(−τ∗1 )χ2(−τ0
2 )

 .

Riesz’s representation ensure the existence of a second-order matrix g(θ ,η) of bounded varia-

tion for θ ∈ [−τ∗1 ,0], such as

Lη χ =

0∫
−τ∗1

dg(θ ,η)χ(θ), ∀χ ∈C.

and

g(θ ,η) = A0δ (θ)+A1δ (θ + τ
∗
1 )+A2δ (θ + τ

0
2 )

where

δ (θ) =


0, θ 6= 0

1, θ = 0
.

We can also express our system as follows

ϕ̇t = M(η)ϕt +R(η)ϕt .

where

M(η)χ =


dχ(θ)

dθ
, θ ∈ [−τ∗1 ,0)∫ 0

−τ∗1
dg(ξ ,η)χ(ξ ),θ = 0

R(η)χ =

 0, θ ∈ [−τ∗1 ,0)

f (η ,χ), θ = 0
.

The adjoint operator of M is written as follows

M∗χ =

 −
dχ(s)

ds ,s ∈ (0,τ∗1 ]∫ 0
−τ∗1

dgT (t,θ)χ(−t),s = 0
.
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We use the following bilinear form in C1([−τ∗1 ,0],R2)×C1([0,1],(R2)∗)

< ψ,χ >= ψ̄
T (0)χ(0)−

∫ 0

−τ∗1

∫ 0

ξ=0
ψ̄

T (ξ −θ)dg(θ)χ(ξ )dξ

±iω0 are eigenvalues of M(0) and M∗, we easily check that ρ(θ) = ρ(0)eiω0θ is an eigenvector

of M(0) associated with iω0. Then M(0) is written as M(0) = iω0ρ(θ).

For θ = 0, we have [
iω0I−

∫ 0

−τ∗1

dg(θ)eiω0

]
ρ(0) = 0,

we get ρ(0) = (1,α), where

α =
iω0− l1−ne−iω0τ1

m1

Similarly, the eigenvector of M∗ associated with −iω0 is written as ρ∗(s) = D(1,α∗)eiω0s, with

α
∗ =
−iω0− l1−neiω0τ1

l2 + peiω0τ2

Using the fact that < ρ∗(s),ρ(s)>=1, we have

D =
1

1+αα∗+nτ1e−iω0τ1 + pα∗τ2e−iω0τ2 +qαα∗τ2e−iω0τ2
,

The following table gives the expression of Ki j that is important to determine the direction of

Hopf bifurcation and the stability of periodic solutions. This result is obtained by Hassard’s

algorithm and the calculation steps used in [5].

Parameter Expression

K11 a1 +b1α

K21 a2α +b2e−2iω0τ2α

K12 2a1 +b1 (α + ᾱ)

K22 (a2 +b2)(α + ᾱ)

K13 a1 +b1ᾱ

K23 a2ᾱ +b2ᾱe2iω0τ2

K14 a1

(
2w(1)

11 (0)+w(1)
20 (0)

)
+b1

(
w(2)

11 (0)+
w(2)

20 (0)
2 +ᾱ

w(1)
20 (0)

2 +αw(1)
11 (0)

)
+3c1

K24 a2

(
w(2)

11 (0)+
w(2)

20 (0)
2 + ᾱ

w(1)
20 (0)

2 + p1w(1)
11 (0)

)
+b2

(
e−iω0τ2ω

(2)
11 (−τ2)+ eiω0τ2 ω

(2)
20 (−τ2)

2 + ᾱω
(1)
20 (−τ2)eiω0τ2 +αe−iω0τ2ω

(1)
11 (−τ2)

)

TABLE 6. Expressions for the parameters in (10)
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The coefficients gi j are given by the following formulas

(10)

g20 = 2D̄(K11 + ᾱ∗K21)

g11 = D̄(K12 + ᾱ∗K22)

g02 = 2D̄(K13 + ᾱ∗K23)

g21 = 2D̄(K14 + ᾱ∗K24)

However

W20(θ) =
ig20

ω0
ρ(θ)eiω0θ +

ig20
3ω0

ρ̄(θ)e−iω0θ +Λ1e2iω0θ ,

W11(θ) = − ig11

ω0
ρ̄(θ)eiω0θ +

ig11
ω0

ρ̄(θ)e−iω0θ +Λ2,

Where

Λ1= 2

 2iω0− l1−ne−iω0τ1 −m1

−l2− pe−iω0τ2 2iω0−m2−qe−iω0τ2

−1 K11

K21


and

Λ2=

 l1 +n m1

l2 + p m2 +q

−1 K12

K22


Finally, we can compute the following results

C1(0) = i
2ω0

(g11g20−2|g11|2− |g02|2
3 )+ g21

2 ,

η2 =− Re(C1(0))
Re(λ ′(τ0

2
))
,

β2 = 2Re(C1(0)),

T2 =−
Im(C1(0))+µ2Im(λ ′(τ0

2 ))
ω0

Theorem 3. For system(8), under loss of generalities, we assume that τ∗2 < τ0
1 and we get the

following results:

• The direction of Hopf bifurcation is determined by the sign of η2; if η2 > 0 (η2 < 0),

then the Hopf bifurcation is supercritical (subcritical) and the periodic solutions exist

for τ2 > τ0
2 (τ2 < τ0

2 ).

• The stability of the periodic solution is determined by the sign of β2: the bifurcations

periodic solutions are orbitally asymptotically stable (unstable) if τ2 > τ0
2 (τ2 < τ0

2 ).

The period of the periodic solutions is determined by the sign of T2 : if T2 > 0 (T2 < 0),

the periodic solutions increase (decrease).
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4. GLOBAL STABILITY

We choose the following Lyapunov function

V (t) = α1

(
x− x∗− ln

( x
x∗

))
+α2

(
y− y∗− ln

(
y
y∗

))
where α1 and α2 are positive constants. The derivation of this function will be expressed as

follows

V̇ (t) =α1
x− x∗

x
ẋ+α2

y− y∗

y
ẏ

=α1 (x− x∗)
[

ax
x+b

− c−dx−g1y−E1
x(t− τ1)

x

]
+α2 (y− y∗)

[
−m+g2x−g3

x(t− τ2)y(t− τ2)

y
−E2

]
6α1 (x− x∗)

[
ax

x+b
− ax∗

x∗+b
−d (x− x∗)−g1 (y− y∗)

]
+α2 (y− y∗) [g2 (x− x∗)−g3 (x− x∗)]

6α1ab(x− x∗)2 1
(x+b)(x∗+b)

−α1d (x− x∗)2−α1g1 (x− x∗)(y− y∗)

+α2 (g2−g3)(x− x∗)(y− y∗)

6α1

(
ab

(x+b)(x∗+b)
−d
)
(x− x∗)2 +(α2 (g2−g3)−α1g1)(x− x∗)(y− y∗)

we have g2−g3 > 0, then we can choose α1 and α2 such as α2 (g2−g3) =α1g1. If the condition

ab < d(x+ b)(x∗+b) is verified, then V̇ (t) 6 0. Therefore, system (1) is globally asymptoti-

cally stable at the interior equilibrium point P∗.

5. DISCUSSION

In this section, numerical simulations will be performed to illustrate the theoretical results

obtained in the previous sections. The simulations are performed by DDE-Biftool; a Matlab

package designed for the numerical continuation and bifurcation analysis of the system. Its

recent version DDE-Biftool V3.1.1 is conducted by J. Sieber in [2]. This numerical tool

provides the course of the study with steady-state continuation, and periodic orbit solutions but

also a bifurcation continuation in two parameters in which we are interested.
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We start by giving the values of bioeconomic parameters; a = 2.8, b = 0.01, c = 0.3, d

= 0.02, g1 = 0.6, g2 = 0.04, m = 0.1, g3 = 0.01, E1 = 0.3 and E2 = 0.18. The system admits a

single point of equilibrium strictly positive P*=(9.3333, 3.3505). In the following, we vary the

two delays τ1 and τ2 between 0 and 15 to notice the impact of this variation on the equilibrium

as well as its stability.

Then the 2 figures below show the variation of the equilibrium branch x according to the delay

parameters τ1 and τ2, the two colors used to represent the nature of stability such that red shows

the unstable part of the branch, green presents the stable part of the branch and asterisks are

used to determine the points of Hopf bifurcation.

Fig 1. (Left) The equilibrium branch x with stability information for τ1. (Right) The

equilibrium branch x with stability information for τ2

The following two figures represent the bifurcation diagrams which are obtained by the max-

imum and minimum amplitude of x, in which we notice that our system undergoes the Hopf

bifurcation for τ1=1.309 and τ2 =3.284, moreover the nature of this bifurcation which is super-

critical for both parameters.

Fig 2. The Hopf bifurcation diagrams for τ1 and τ2
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In the following, we will choose some values for the delay parameters and plot the variation

of the system solution (1) in time around the equilibrium P*. The following figure contains

six graphs. In the three graphs on the left, we have taken values of τ1 and τ2 located in the

stability intervals of these two parameters and we notice that the solution converges toward the

equilibrium point P∗, which is not the case in the three graphs on the right where chosen values

of τ1 and τ2 are outside the stability interval.

τ1=1 and τ2=0 τ1=1.5 and τ2=0

τ1=0 and τ2=1.2 τ1=0 and τ2=4.2

τ1=0.4 and τ2=0.5 τ1=1.4 and τ2=3.5

Fig 3. The temporal solution for different values of τ1 and τ2
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Finally, we summarize our numerical study by the following figure in which we draw the line

of Hopf in τ1τ2-plane. This line separates the stable region which is the area limited by τ1-axis,

τ2-axis and the Hopf line. The other surface represents the unstable region.

Fig 4. Stability region of P* and Hopf bifurcation curves in τ1τ2-plane

CONCLUSION

Our study focuses on the stability analysis of a prey-predator model consisting of sea urchins

and crabs, taking into account the Allee effect in the sea urchin population, a mortality rate

in crabs due to the sea urchins toxicity, and the fishing effect in both species. In addition, the

fishery is considered selective for sea urchins, to conserve the juvenile population and preserve

marine biodiversity. The stability analysis is established by the search for points of bifurcation

and intervals of stability linked to delays. In the next work, we aim to add the diffusion effect

for a more concretization of our research.
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