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1. INTRODUCTION 

Most of the physical models in science and engineering are emanated from Differential Equations 

(DEs). Some of these DEs are difficult to solve or cannot be solved analytically. An alternative 

approach is to use numerical integration methods for approximating the solution of DEs using 

prescribed initial or boundary conditions [1]. There are many methods developed for the numerical 

solutions of the Initial Value Problems (IVPs) of the form 

𝑦′(𝑡) = 𝑓 (𝑡, 𝑦(𝑡), 𝑦 (𝑡 − 𝜏(𝑡, 𝑦(𝑡)))) ,        𝑡 > 𝑡0          

𝑦(𝑡) = Φ(𝑡),        𝑡 ≤ 𝑡0                                 (1) 

where Φ(𝑡) is the initial function. In [2], the authors developed a new one-step rational method 

of order four for solving stiff and non-stiff Delay Differential Equations (DDEs) via interpolating 

function which consists of rational functions. Niekerk [3] proposed first, second and third order 

explicit nonlinear methods for singular and stiff IVPs. The algorithms are based on the 

representation of the solution by finite continued fractions. Fadugba [4] developed an improved 

numerical integration method via the transcendental function of exponential form for the solution 

of IVPs in Ordinary Differential Equations (ODEs). Islam [5] compared the numerical solutions 

of IVPs for ODEs with Euler’s method and Runge-Kutta method. Stefanov [6] studied the cases 

of inverse interpolation of monotone and non-monotone functions. Some applications of inverse 

interpolation, including approximate solutions of nonlinear equations (root-finding) and analysis 

of census data, are also considered. Numerical models of nitrogen compound measurements in a 

stream with a removal mechanism using Saulyev technique with cubic spline interpolation were 

considered by [7]. Several authors have also studied the solutions of IVPs in ODEs via developed 

and existing methods, see [8] – [26]. Over the last two decades, there has been extensive research 

on the area of HIV-1 infection invading the human immune system. Bonhoeffer et al. [27] 

introduced a population model representing long-term dynamics of HIV infection in response to 

available drug therapies. According to the Joint United Nations Programme on HIV/AIDS 

(UNAIDS), 37 million people worldwide are infected with HIV-1 today of whom 24 million are 

in developing countries, see [28]. Infection with HIV-1, degrading the human immune system and 
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recent advances in drug therapy to arrest HIV-1 infection has generated considerable research 

interest in the area. Long-term dynamics in a mathematical model of HIV-1 infection with delay 

in different variants of the basic drug therapy model were considered, see [28]. In this paper, we 

propose a new numerical method “Trigonometric – Exponential Single-Step Method (TESSM)” 

to analyse a mathematical model of HIV-1 infection. The rest of the paper is organized as follows. 

Section 2 presents the derivation of TESSM. In Section 3, the properties of TESSM in terms of 

order of accuracy, consistency, stability and convergence are analyzed and investigated. Section 4 

presents the numerical solution of the HIV-1 infection model via TESSM. Section 5 concludes the 

paper.  

 

2. DERIVATION OF TESSM  

Consider the interpolating function of the form 

𝐹(𝑥) = 𝑎𝑥2 + 𝑏𝑒2𝑥 + 𝑐𝑠𝑖𝑛𝑥                         (2) 

Evaluating (1) at the points (𝑥 = 𝑥𝑛) and (𝑥 = 𝑥𝑛+1) yields, respectively 

𝐹(𝑥𝑛) = 𝑎𝑥𝑛
2 + 𝑏𝑒2𝑥𝑛 + 𝑐𝑠𝑖𝑛𝑥𝑛                   (3) 

and 

𝐹(𝑥𝑛+1) = 𝑎𝑥𝑛+1
2 + 𝑏𝑒2𝑥𝑛+1 + 𝑐𝑠𝑖𝑛𝑥𝑛+1                      (4) 

Subtracting (4) from (3), yields 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝑎(𝑥𝑛+1
2 − 𝑥𝑛

2) + 𝑏(𝑒2𝑥𝑛+1 − 𝑒2𝑥𝑛) + 𝑐(𝑠𝑖𝑛𝑥𝑛+1 − 𝑠𝑖𝑛𝑥𝑛)    (5) 

Using the fact that 

𝑥𝑛 = 𝑛ℎ and 𝑥𝑛+1 = (𝑛 + 1)ℎ = 𝑛ℎ + ℎ 

Therefore, 

𝑥𝑛+1
2 − 𝑥𝑛

2 = (2𝑛 + 1)ℎ2                                (6) 

𝑒2𝑥𝑛+1 − 𝑒2𝑥𝑛 = 𝑒2𝑛ℎ(𝑒2ℎ − 1)                             (7) 

𝑠𝑖𝑛𝑥𝑛+1 − 𝑠𝑖𝑛𝑥𝑛 = 2sin (
ℎ

2
(2𝑛 + 1)) 𝑐𝑜𝑠 (

ℎ

2
)                     (8) 

Substituting (6), (7) and (8) into (5) and the fact that 

𝑦𝑛+1 − 𝑦𝑛 ≡ 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛)                              (9) 



4 

S.E. FADUGBA, V.J. SHAALINI, M.O. OLUWAYEMI, M.C. KEKANA 

yields 

𝑦𝑛+1 − 𝑦𝑛 = 𝑎(2𝑛 + 1)ℎ2 + 𝑏𝑒2𝑛ℎ(𝑒2ℎ − 1) + 𝑐(𝑠𝑖𝑛𝑥𝑛+1 − 𝑠𝑖𝑛𝑥𝑛)          (10) 

To get the values of a, b and c, differentiating (3) thrice and setting 

𝐹′(𝑥𝑛) = 𝑓𝑛, 𝐹′′(𝑥𝑛) = 𝑓𝑛
(1)

 and 𝐹′′′(𝑥𝑛) = 𝑓𝑛
(2)

 , one gets 

[

2𝑛ℎ 2𝑒2𝑛ℎ cos (𝑛ℎ)

2 4𝑒2𝑛ℎ −sin (𝑛ℎ)

0 8𝑒2𝑛ℎ −cos (𝑛ℎ)

] [
𝑎
𝑏
𝑐
] = [

𝑓𝑛

𝑓𝑛
(1)

𝑓𝑛
(2)

]                     (11) 

Solving (11) , one obtains 

𝑎 =
1

2
{
4 sin(𝑛ℎ)𝑓𝑛−sin(𝑛ℎ)𝑓𝑛

(1)−2cos(𝑛ℎ)𝑓𝑛+5cos(𝑛ℎ)𝑓𝑛
(1)−2cos (𝑛ℎ)𝑓𝑛

(2)

4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos (𝑛ℎ)
}           (12) 

𝑏 =
1

2
{
𝑛ℎ sin(𝑛ℎ)𝑓𝑛

(2)−𝑛ℎ cos(𝑛ℎ)𝑓𝑛
(1)+cos(𝑛ℎ)𝑓𝑛+cos (𝑛ℎ)𝑓𝑛

(2)

(4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ))𝑒2𝑛ℎ
}               (13) 

𝑐 =
−4𝑛ℎ𝑓𝑛

(1)−2𝑛ℎ𝑓𝑛
(2)+4𝑓𝑛−𝑓𝑛

(2)

4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ)
                         (14) 

Substituting (12), (13) and (14) into (10), yields 

 𝑦𝑛+1 − 𝑦𝑛 =
(2𝑛+1)

2
{
4sin(𝑛ℎ)𝑓𝑛−sin(𝑛ℎ)𝑓𝑛

(1)−2cos(𝑛ℎ)𝑓𝑛+5cos(𝑛ℎ)𝑓𝑛
(1)−2cos(𝑛ℎ)𝑓𝑛

(2)

4sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ)
} 

       +
(𝑒2ℎ−1)

2
{
𝑛ℎ sin(𝑛ℎ)𝑓𝑛

(2)−𝑛ℎ cos(𝑛ℎ)𝑓𝑛
(1)+cos(𝑛ℎ)𝑓𝑛+cos(𝑛ℎ)𝑓𝑛

(2)

(4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ))𝑒2𝑛ℎ
} 

       +(sin(𝑛ℎ + ℎ) − sin (𝑛ℎ)) {
−4𝑛ℎ𝑓𝑛

(1)−2𝑛ℎ𝑓𝑛
(2)+4𝑓𝑛−𝑓𝑛

(2)

4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ)
}       (15) 

Equation (15) is the new explicit one-step method “TESSM”. 

 

3. ANALYSIS OF THE PROPERTIES OF TESSM 

The properties of the new method are analyzed as follows. 

3.1 Convergence of TESSM 

Using these facts in (15),  

𝑒2ℎ − 1 = 1 + 2ℎ +
(2ℎ)2

2!
+ ⋯− 1 

             = 2ℎ +
(2ℎ)2

2!
+⋯ = 2ℎ + 2ℎ2 +⋯ = ℎ(2 + 2ℎ +⋯)                 (16) 

sin(𝑛ℎ + ℎ) − 𝑠𝑖𝑛𝑛ℎ = sin(𝑥𝑛 + ℎ) − 𝑠𝑖𝑛𝑥𝑛 

= 𝑠𝑖𝑛𝑥𝑛𝑐𝑜𝑠ℎ + cos𝑥𝑛𝑠𝑖𝑛ℎ − 𝑠𝑖𝑛𝑥𝑛 
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       = 𝑠𝑖𝑛𝑥𝑛(𝑐𝑜𝑠ℎ − 1) + 𝑐𝑜𝑠𝑥𝑛𝑠𝑖𝑛ℎ                  (17) 

But      

𝑐𝑜𝑠ℎ = 1 −
ℎ2

2!
+
ℎ4

4!
−⋯, 𝑠𝑖𝑛ℎ = ℎ −

ℎ3

3!
+⋯                             (18) 

Therefore, 

sin(𝑛ℎ + ℎ) − 𝑠𝑖𝑛𝑛ℎ = (−
ℎ2

2!
+
ℎ4

4!
− ⋯)𝑠𝑖𝑛𝑥𝑛 + (ℎ −

ℎ3

3!
+ ⋯)𝑐𝑜𝑠𝑥𝑛 

= ℎ(𝐴𝑠𝑖𝑛𝑥𝑛 + 𝐵𝑐𝑜𝑠𝑥𝑛)                      (19) 

where 

𝐴 = (−
ℎ2

2!
+
ℎ4

4!
−⋯) and 𝐵 = (1 −

ℎ2

3!
+⋯)                     (20) 

Using (16) – (20), (15) becomes 

𝑦𝑛+1 − 𝑦𝑛 = ℎ{𝐷 + 𝐸(𝐴𝑠𝑖𝑛𝑥𝑛 + 𝐵𝑐𝑜𝑠𝑥𝑛)𝑐}                          (21) 

with 

𝐷 =
(2𝑛+1)ℎ

2
{
4 sin(𝑛ℎ)𝑓𝑛−sin(𝑛ℎ)𝑓𝑛

(1)−2cos(𝑛ℎ)𝑓𝑛+5cos(𝑛ℎ)𝑓𝑛
(1)−2cos(𝑛ℎ)𝑓𝑛

(2)

4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ)
}             (22) 

𝐸 =
(2+2ℎ…)

2
{
𝑛ℎ sin(𝑛ℎ)𝑓𝑛

(2)−𝑛ℎ cos(𝑛ℎ)𝑓𝑛
(1)+cos(𝑛ℎ)𝑓𝑛+cos(𝑛ℎ)𝑓𝑛

(2)

(4 sin(𝑛ℎ)𝑛ℎ−2cos(𝑛ℎ)𝑛ℎ+5cos(𝑛ℎ))𝑒2𝑛ℎ
}                  (23) 

From the general one-step method 

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝜙(𝑥𝑛, 𝑦𝑛: ℎ)                                (24) 

Comparing (21) and (24), one obtains 

𝜙(𝑥𝑛, 𝑦𝑛; ℎ) = 𝐷 + 𝐸 + (𝐴𝑠𝑖𝑛𝑥𝑛 + 𝐵𝑐𝑜𝑠𝑥𝑛)𝑐                      (25) 

Using the first term of sin(𝑛ℎ) , cos(𝑛ℎ) , 𝑒2ℎ, sin(𝑛ℎ + ℎ) and cos (𝑛ℎ + ℎ) , therefore (15) 

becomes 

  𝑦𝑛+1 − 𝑦𝑛 = (𝑛 +
1

2
) ℎ2 [

−2𝑓𝑛+5𝑓𝑛
(1)−2𝑓𝑛

(2)

−2𝑛ℎ+5
] + ℎ [

𝑓𝑛−𝑛ℎ𝑓𝑛
(1)+𝑓𝑛

(2)

−2𝑛ℎ+5
] 

                                             

+ℎ [
4𝑓𝑛−4𝑛ℎ𝑓𝑛

(1)+2𝑛ℎ𝑓𝑛
(2)−𝑓𝑛

(2)

−2𝑛ℎ+5
] 

Therefore 
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𝑦𝑛+1 − 𝑦𝑛 =
[𝑓𝑛(ℎ + 4ℎ − ℎ

2 − 2𝑛ℎ2) + 𝑓𝑛
(1) (

5
2 ℎ

2) + 𝑓𝑛
(2)(−ℎ2)]

(−2𝑛ℎ + 5)
 

But (−2𝑛ℎ + 5)−1 = (5 − 2𝑛ℎ)−1 = (
1

5
) (1 −

2

5
𝑛ℎ)

−1

= (
1

5
) (1 +

2

5
𝑛ℎ) 

𝑦𝑛+1 − 𝑦𝑛 = 𝑓𝑛 (ℎ −
ℎ2

5
−
ℎ3(2𝑛(2𝑛+1))

25
) + 𝑓𝑛

(1) (ℎ2 −
ℎ2

2
−
ℎ3𝑛

5
) + 𝑓𝑛

(2) (−
ℎ2

5
−
ℎ3(2𝑛)

25
)    (26) 

After simplifying the above equation, one obtains 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛 + ℎ
2 [
𝑓𝑛
(1)

2
−
𝑓𝑛
5
−
𝑓𝑛
(2)

5
+
𝑛ℎ𝑓𝑛

(1)

5
−
2𝑛(2𝑛 + 1)ℎ𝑓𝑛

25
−
2𝑛ℎ𝑓𝑛

(2)

25
] 

Thus, 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛 + ℎ
2𝐵 

where 𝐵 = [
𝑓𝑛
(1)

2
−
𝑓𝑛

5
−
𝑓𝑛
(2)

5
+
𝑛ℎ𝑓𝑛

(1)

5
−
2𝑛(2𝑛+1)ℎ𝑓𝑛

25
−
2𝑛ℎ𝑓𝑛

(2)

25
] 

Φ(𝑥𝑛, 𝑦𝑛, 𝑧𝑛: ℎ) = 𝑓𝑛 + 𝐶 = 𝑓(𝑥𝑛, 𝑦𝑛, 𝑦(𝑡𝑛 − 𝜏)) + 𝐶 = 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) + 𝐶 

Here 𝐶 = ℎ𝐵 and 𝑧𝑛 = 𝑦(𝑡𝑛 − 𝜏) 

Similarly,  

Φ(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗: ℎ) = 𝑓(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗) + 𝐶      

Therefore, 

Φ(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗: ℎ) − Φ(𝑥𝑛, 𝑦𝑛, 𝑧𝑛: ℎ) = 𝑓(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗) + 𝐶 − 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) − 𝐶 

= 𝑓(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗) − 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) 

Let �̃� and �̃�∗ be defined as a point in the interior of the interval whose end points 𝑦𝑛 and 𝑦𝑛
∗ 

and 𝑧𝑛 and 𝑧𝑛
∗ in the domain D, respectively. Applying the Mean Value Theorem, yields 

𝑓(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗) − 𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

= 𝑀𝑎𝑥 {
𝜕𝑓(𝑥𝑛, �̃�)

𝜕𝑦𝑛
,
𝜕𝑓(𝑥𝑛, �̃�

∗)

𝜕𝑧𝑛
} [(𝑦𝑛

∗ − 𝑦𝑛) + (𝑧𝑛
∗ − 𝑧𝑛)] 

Define 

𝑀 = 𝑀𝑎𝑥 {
𝜕𝑓(𝑥𝑛, �̃�)

𝜕𝑦𝑛
,
𝜕𝑓(𝑥𝑛, �̃�

∗)

𝜕𝑧𝑛
} 

Thus, 



7 

APPLICABILITY AND ANALYSIS OF TESSM FOR HIV-1 MODEL 

Φ(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗: ℎ) − Φ(𝑥𝑛, 𝑦𝑛,𝑧𝑛: ℎ)

= {
𝜕𝑓(𝑥𝑛, �̃�)

𝜕𝑦𝑛
,
𝜕𝑓(𝑥𝑛, �̃�

∗)

𝜕𝑧𝑛
} [(𝑦𝑛

∗ − 𝑦𝑛) + (𝑧𝑛
∗ − 𝑧𝑛)] 

Φ(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗: ℎ) − Φ(𝑥𝑛, 𝑦𝑛,𝑧𝑛: ℎ) = 𝑀[(𝑦𝑛
∗ − 𝑦𝑛) + (𝑧𝑛

∗ − 𝑧𝑛)] 

Taking the absolute value of both sides of the last equation, we have 

|Φ(𝑥𝑛, 𝑦𝑛
∗, 𝑧𝑛

∗: ℎ) − Φ(𝑥𝑛, 𝑦𝑛,𝑧𝑛: ℎ)| = |𝑀[(𝑦𝑛
∗ − 𝑦𝑛) + (𝑧𝑛

∗ − 𝑧𝑛)]| 

≤ |𝑀||(𝑦𝑛
∗ − 𝑦𝑛) + (𝑧𝑛

∗ − 𝑧𝑛)| 

Therefore we can say that our derived method is convergent and hence Φ is Lipschitzian. 

3.2 Order of Accuracy of TESSM 

To determine the order of the new scheme, consider the Taylor’s series expansion of the form 

𝑦(𝑥𝑛 + ℎ) = 𝑦(𝑥𝑛) + ℎ𝑓(𝑥𝑛, 𝑦(𝑥𝑛)) +
ℎ2

2!
𝑓(1)(𝑥𝑛, 𝑦(𝑥𝑛)) +

ℎ3

3!
𝑓(2)(𝑥𝑛, 𝑦(𝑥𝑛)) + 𝑂(ℎ

4)  (27) 

The local truncation error is defined as 

𝑇𝑛+1 = 𝑦(𝑥𝑛 + ℎ) − 𝑦𝑛+1                           (28) 

Substituting (27) and (28) into (26), one obtains 

𝑇𝑛+1 = 𝑦(𝑥𝑛) + ℎ𝑓(𝑥𝑛, 𝑦(𝑥𝑛)) +
ℎ2

2!
𝑓(1)(𝑥𝑛, 𝑦(𝑥𝑛)) +

ℎ3

3!
𝑓(2)(𝑥𝑛, 𝑦(𝑥𝑛)) + 𝑂(ℎ

4) 

    −[𝑦𝑛 + 𝑓𝑛 (ℎ −
ℎ2

5
−
ℎ3(2𝑛(2𝑛+1))

25
) + 𝑓𝑛

(1) (ℎ2 −
ℎ2

2
−
ℎ3𝑛

5
) + 𝑓𝑛

(2) (−
ℎ2

5
−
ℎ3(2𝑛)

25
)]     (29) 

By means of the localizing assumptions 𝑓𝑛 = 𝑓(𝑥𝑛, 𝑦(𝑥𝑛), 𝑦(𝑡𝑛 − 𝜏)), then (29) becomes 

  𝑇𝑛+1 = 𝑓(2)(𝑥𝑛, 𝑦(𝑥𝑛)) (
ℎ3

6
+
ℎ2

5
+
ℎ3(2𝑛)

25
) − 𝑓(𝑥𝑛, 𝑦(𝑥𝑛)) (−

ℎ2

5
−
ℎ3(2𝑛(2𝑛+1))

25
) 

                   −𝑓(1)(𝑥𝑛, 𝑦(𝑥𝑛)) (
ℎ2

2
−
ℎ3𝑛

5
) + 𝑂(ℎ4) 

Hence, the local truncation error (LTE) is 

𝑇𝑛+1 = 𝑓(2)(𝑥𝑛, 𝑦(𝑥𝑛)) (
ℎ3

6
+
ℎ2

5
(1 +

2𝑛ℎ

5
)) + 𝑓(𝑥𝑛, 𝑦(𝑥𝑛)) (

ℎ2

5
(1 +

2𝑛ℎ(1+2𝑛)

25
))                                                     

+𝑓(1)(𝑥𝑛, 𝑦(𝑥𝑛)) (ℎ
2 (

1

2
−
𝑛ℎ

5
)) + 𝑂(ℎ4)                                     (30) 

The order of accuracy of the new scheme is 2. 
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3.3 Consistency Property of TESSM 

A general one-step method is said to be consistent if and only if 

𝜙(𝑥𝑛, 𝑦𝑛, 𝑧𝑛; 0) = 𝑓𝑛 

From (25), Setting h = 0, yields 

𝐷 = 0                      (31) 

𝐸 =
𝑓𝑛+𝑓𝑛

(2)

5
                                   (32) 

(𝐴𝑠𝑖𝑛𝑥𝑛 + 𝐵𝑐𝑜𝑠𝑥𝑛)𝑐 =
4𝑓𝑛−𝑓𝑛

(2)

5
                         (33) 

Using (31) – (33), (25) becomes 

𝜙(𝑥𝑛, 𝑦𝑛, 𝑧𝑛; 0) =
5𝑓𝑛+𝑓𝑛

(2)−𝑓𝑛
(2)

5
= 𝑓𝑛      

Hence, 𝜙(𝑥𝑛, 𝑦𝑛, 𝑧𝑛; 0) = 𝑓𝑛                                 (34) 

Equation (34) shows that TESSM is consistent. 

3.4 Stability of the TESSM 

Theorem 1 

Let 𝑦𝑛 = 𝑦(𝑥𝑛)  and 𝑢𝑛 = 𝑢(𝑥𝑛)  denote two different numerical solutions of DDE with the 

initial conditions specified as 𝑦(𝑥0) = 𝛼 and 𝑢(𝑥0) = 𝛼
∗ respectively such that |𝛼-𝛼∗| < 𝜀,  

𝜀 >0. If the numerical estimates are generated by the interpolation scheme (1), we have  

𝑦𝑛+1 = 𝑦𝑛 + ℎ Ф(𝑥𝑛, 𝑦𝑛, 𝑧𝑛; ℎ)                                  (35)

    

𝑢𝑛+1 = 𝑢𝑛 + ℎ Ф(𝑥𝑛, 𝑢𝑛, 𝑣𝑛; ℎ)                            (36)

            

The condition that 

|𝑦𝑛+1 − 𝑢𝑛+1| < 𝑘|𝛽 − 𝛽∗|                               (37)

       

is the necessary and sufficient condition that TESSM (15) be stable and convergent.  

Proof: Let  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) + 𝐶                          (38)

      

𝑢𝑛+1 = 𝑢𝑛 + ℎ𝑓(𝑥𝑛, 𝑢𝑛, 𝑣𝑛) + 𝐶                            (39)

      

Thus, 

𝑦𝑛+1 − 𝑢𝑛+1 = 𝑦𝑛 + ℎ 𝑓(𝑥𝑛, 𝑦𝑛)-𝑙𝑛 − ℎ𝑓(𝑥𝑛, 𝑣𝑛)                   (40)
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𝑦𝑛+1 − 𝑢𝑛+1 = 𝑦𝑛 − 𝑢𝑛 + ℎ[𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛, 𝑣𝑛)]                 (41)

    

Applying the Mean Value Theorem with the assumption that �̃�  and �̃�∗  are the points in the 

interior of the interval whose end points are 𝑦𝑛 and 𝑢𝑛 and 𝑧𝑛 and 𝑣𝑛 respectively, we have  

𝑦𝑛+1 − 𝑢𝑛+1 = 𝑦𝑛 − 𝑢𝑛 + ℎ {
𝜕𝑓(𝑥𝑛,�̃�)

𝜕𝑦𝑛
,
𝜕𝑓(𝑥𝑛,�̃�

∗)

𝜕𝑧𝑛
} [(𝑦𝑛 − 𝑢𝑛) + (𝑧𝑛 − 𝑣𝑛)]  

 𝑦𝑛+1 − 𝑢𝑛+1 = 𝑦𝑛 − 𝑙𝑛 + ℎ{ 𝐿(𝑦𝑛 − 𝑢𝑛) + (𝑧𝑛 − 𝑣𝑛)} 

𝑦𝑛+1 − 𝑢𝑛+1 = 𝑦𝑛 − 𝑙𝑛 + ℎ𝐿(𝑦𝑛 − 𝑢𝑛) + (𝑧𝑛 − 𝑣𝑛)                  (42) 

Taking the absolute value of the both side 

|𝑦𝑛+1 − 𝑢𝑛+1| = |𝑦𝑛 − 𝑢𝑛 + ℎ𝐿(𝑦𝑛 − 𝑢𝑛) + (𝑧𝑛 − 𝑣𝑛)| 

                ≤ |1 + ℎ𝐿||(𝑦𝑛 − 𝑢𝑛) + (𝑧𝑛 − 𝑣𝑛)|                      (43) 

Given,  

𝑘 = |1 + ℎ(𝐿)|,    𝑦𝑛(𝑥0) = 𝛽 𝑎𝑛𝑑 𝑢𝑛(𝑥0) = 𝛽∗               (44) 

Then we have, 

|𝑦𝑛+1 − 𝑢𝑛+1| ≤ 𝑘|𝛽 − 𝛽∗|                           (45) 

We therefore conclude that TESSM is stable and hence convergent. This completes the proof. 

 

4. NUMERICAL EXAMPLES 

In this section, we analyse a mathematical model of HIV-1 infection to CD4+ T cells including the 

inhibitor drug via TESSM. 

Consider a mathematical model of HIV-1 infection to CD4+ T cells including the inhibitor drug 

discussed in the paper [28]. Let x(t) be the number of infected cells and y(t) be the number of virus 

producing cells and z(t) be the density of the Cytotoxic T-Lymphocyte (CTL) responses against 

virus-infected cells. 

Model 1 

In this basic delay HIV-1 infection model, we assume that the virus producing cells are killed by 

CTL instantaneously. When the delay 𝜏 is small, this model can be represented by the following 

set of equations 
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{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝑑𝑥 − 𝛽𝑥(𝑡 − 𝜏)𝑦(𝑡 − 𝜏)

𝑑𝑦

𝑑𝑡
= 𝛽𝑥(𝑡 − 𝜏)𝑦(𝑡 − 𝜏) − 𝑎𝑦 − 𝑝𝑦𝑧

 
𝑑𝑧

𝑑𝑡
= 𝑘𝑦 − 𝑏𝑧

                            (46) 

Subject to initial condition (IC) 

x(θ) = 280.0, y(θ) = 18.5189 and z(θ) = 185.1893, θ∈(-τ,0]. 

Model 2 

In reality, there is a latency period during the process of killing of virus-producing cells by CTL. 

(i.e. not instantaneous as in Model 1). Hence we include a delay in the terms representing killing 

of virus-producing cells by CTL and in the stimulation of CTL. The model equations are given by 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝑑𝑥 − 𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑦 − 𝑎𝑦 − 𝑝𝑦(𝑡 − 𝜏)𝑧

 
𝑑𝑧

𝑑𝑡
= 𝑘𝑦(𝑡 − 𝜏) − 𝑏𝑧

                              (47) 

Subject to the IC 

x(θ) = 280.0, y(θ) = 18.5189 and z(θ) = 185.1893, θ∈(-τ,0]. 

Model 3 

In this model, we include that the delays exist in the process of infection of healthy T cells and 

also in the terms representing killing of virus-producing cells by CTL and in the stimulation of 

CTL together. The model can be represented by the following set of equations 

{
 
 

 
  

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝑑𝑥 − 𝛽𝑥(𝑡 − 𝜏1)𝑦(𝑡 − 𝜏1)

 
𝑑𝑦

𝑑𝑡
= 𝛽𝑥(𝑡 − 𝜏1)𝑦(𝑡 − 𝜏1) − 𝑎𝑦 − 𝑝𝑦(𝑡 − 𝜏2)𝑧

   
𝑑𝑧

𝑑𝑡
= 𝑘𝑦(𝑡 − 𝜏2) − 𝑏𝑧

                       (48) 

Subject to the IC 

x(θ) = 230.0, y(θ) = 18.5189 and z(θ) = 185.1893, θ∈(-τ,0]. 

 The variables and parameters used in these three models are given in Table 1. The numerical 

simulations of these models by TESSM using Table 1 are shown in Figs. 1 - 3.  

Table 1: Variables and Parameters used in the Models 
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Parameters Definition 
Default values 

assigned 

𝜆 production rate of CD4+ T cells 10.0mm−3 day−1 

𝑑 Death rate of susceptible CD4+ T cells 0.01day−1 

𝛽 Rate of contact between x and y 0.002mm−3 day−1 

𝑎 Death rate of virus-producing cells 0.24day−1 

𝑘 Rate of stimulation of CTL 0.2day−1 

𝑏 Death rate of CTL 0.02day−1 

𝑝 Killing rate of virus-producing cells by CTL 0.001mm−3 day−1 

 

 

 

Fig. 1:  The numerical simulations of model 1 via TESSM 
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Fig 2: The numerical simulations of model 2 via TESSM 

 

Fig 3:  The numerical simulations of model 3 via TESSM 
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5. CONCLUSION 

In this paper, we developed the trigonometric-exponential single-step method via an interpolating 

function of transcendental type for the numerical solution of the HIV-1 infection model. We also 

investigated and discussed the analysis of the properties of the derived method. The solution graphs 

of the results generated via TESSM for HIV-1 infection models 1-3 are well comparable with the 

numerical simulations given in [28]. Hence, it is noteworthy to conclude that TESSM is suitable 

for solving physical phenomena that led to DDEs in various fields of science and engineering. 
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