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Abstract. Infectious diseases are growing at a fast rate. The early prediction and monitoring of the progress of such

diseases, such as the recent outbreak of COVID-19, are fundamental to and infection control and rapid recovery.

This paper presents (i) a new computational program based on a make blobs generator designed to predict the

number of daily COVID-19 cases over a period of 30 days and (ii) a deterministic compartmental SEIQHRV model

based on a system of ordinary differential equations. The objective of both the computational and mathematical

models is to describe the dynamics of COVID-19 over time to understand the influence of specific parameters on

its spread, while also predicting the approximate epidemic evolution of the disease. Furthermore, we evaluate and

validate the new computational model by comparing our simulation results with the mathematical model, treating

the latter as a reference model. Numerical simulations of the proposed models are applied to a randomly selected

group of individuals. The results show that the curves obtained by the SEIQHRV mathematical model and those

obtained by each scenario of the proposed computational model are approximately similar.
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1. INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19) has led to one of the greatest global

challenges in contemporary history, with more than 642 million infections and more than 6 mil-

lion deaths worldwide [1]. While such health statistics are staggering, it would, however, be a

serious mistake to describe this challenge only as a health crisis. It is a large-scale humanitarian

crisis that has caused untold misery and human suffering, driving the socio-economic well-

being of people to the brink of collapse. The COVID-19 pandemic has also had a significant

negative influence on the global health system, leading many governments to adopt stringent

measures to prevent the further spread of the epidemic and to ensure the proper functioning of

their health systems [2]. Although the enforcement of such regulations and vaccines mitigated

the effects of the pandemic initially, several vaccinated countries have recently seen a recur-

rence of the disease with new variations. Thus, the virus’s extremely contagiousness and the

emergence of harmful mutations are still impacting public health.

Understanding the nature of transmission and correctly forecasting the course of the epidemic

are therefore two of the most crucial components in combating COVID-19, especially in coun-

tries with large populations. Furthermore, precise forecasting can provide feedback on whether

an implemented policy is successful in reducing the strain on a particular nation’s healthcare

system. Governments can also use forecasts to evaluate mitigation strategies and regulate poli-

cies. For instance, by using mathematical models like the SIR and SEIR models, researchers

have been able to accurately anticipate the COVID-19 reproduction parameter for the early

prevention of the pandemic, thus highlighting the necessity for trustworthy forecasting models

[3].

In this sense, mathematical models can be used to track the evolution of the epidemic by

studying the behaviour of the virus. Using this approach, numerous researchers have examined

COVID-19 from various perspectives [4, 5, 6, 7, 8]. Particulary, the study in [9] produced the

traditional SEIR model, also known as fractional models for the examination of the global epi-

demic of COVID-19. The establishment of new quarantine regulations and the hospitalisation

of infected patients (SEIQR model), which are regarded as epidemic parameters for COVID-19,

are the foundations of this development [10]. Xu et al. [11] used the generalised fractional order
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SEIR model to forecast the epidemic trend of COVID-19 in the USA. Two improved models,

SEIQRP and SEIQRPD, then successfully captured the development process of COVID-19,

providing an important reference for comprehending the trend of the outbreak. Meanwhile, the

authors of [12] propose an optimal control problem based on a SEUIRD model adapted to the

COVID-19 pandemic, which takes into consideration the epidemiological situation in Morocco.

Furthermore, Ould Beinane et al. [13] studied the dynamics of the COVID-19 model SEIQHR

with a standard incidence rate, considering fractional Caputo derivatives in order to gain a better

insight into the disease.

Based on the aforementioned findings and previous literature, with the lack of effective treat-

ment for COVID-19, vaccination is still one of the possible solutions for managing this infec-

tious disease. In order to assess the impact of a vaccine programme on COVID-19 transmis-

sion, we propose an an extension of the classical models by using them to review the impact

that vaccination has on infection rate hospitalised individuals (H), quarantined individuals (Q),

and recovered individuals (R). The SEIQHRV goal of the epidemic model is to describe the

dynamic behaviour of the disease and predict its propensity to spread.

The literature on this topic has until now indicated that mathematical modelling can play a

crucial role in forecasting, detecting, and preventing COVID-19, while certain artificial intelli-

gence approaches [14, 15, 16] can be used to estimate future COVID-19 viral transmission. See,

for example, machine learning models (a hybrid approach based on a regression tree [17], long

short-term memory (LSTM) networks [18], polynomial neural network (PNN) [19], FPASSA-

ANFIS [20], SVR [21], etc.), and other types of models [22]. Another study [23] used deep

learning to anticipate the pandemic trend for Brazil, India, and Russia – three nations that rank

among the top ten in terms of global impact according to a thorough analysis by healthcare

professionals. To forecast the number of cases and the spread of COVID-19 in these countries,

three distinct deep learning models were used. In [24], the authors proposed a multi-source

deep transfer learning-based novel approach to robustly forecast the COVID-19 transmission in

a province within a country.

Additionally, significant progress has been made in detecting, preventing, and predicting

COVID-19’s harmful effects via computational, dynamic, and AI models, as well as in the use
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of numerous technologies. Although epidemiological models help to assess the dynamics of

progression, they make various assumptions and rely on the knowledge of various specific fac-

tors. To the best of our knowledge, no attempts to overcome these restrictions have yet been

made, with no work being published that uses the characteristics of mathematical models to

create a computational model (programmed in Python) to predict the growth of the COVID-19

population and to approximate epidemic evolution. Therefore, it is necessary to construct pre-

diction techniques for frequent diseases, as well as to further expand prediction methodologies.

The objective of the present study is to address this need.

The intended contributions of this work are as follows:

• We aim to create a new computational model similar to the traditional mathematical

model based on a make blobs generator, which generates a feature matrix and corre-

sponding discrete targets, and is used to demonstrate clustering.

• The proposed computational and mathematical models have the same objective: to study

the transmission dynamics of COVID-19 and to simulate its propagation within a popu-

lation of individuals. We will investigate several rates that make up our model to better

understand how they affect the virus’s pace of spread. This modelling will be imple-

mented with the Plotly library [25].

• The computational model will then be compared to the SEIQHRV mathematical model,

which belongs to the family of compartmental models in epidemiology.

The applicability of the proposed model will be assessed by simulating a population of 100,000

individuals. The information they provide and the situations in which the models are used show

that the predictions produced by the two models are similar.

An overview of the paper’s structure is provided below:

The first two sections cover the description of the two models. We begin by analysing the quali-

tative properties of the SEIQHRV mathematical model, including the bornitude of solutions and

the disease-free and endemic equilibrium points. We then establish the conditions for the local

asymptotic stability of the disease-free and endemic equilibrium points, before explaining the

computational model. After that, we discuss the experimental findings in the results and discus-

sion section, demonstrating how both approaches (mathematical and computational) affected
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the behaviour of the different compartments. Finally, we describe a sensitivity analysis of the

infection parameters, which we conducted in order to determine the impact of each parameter.

2. METHODS

Using previous knowledge of the COVID-19 pandemic, we propose a SEIQHRV model and

a computational model to estimate the virus’s epidemic spread. The computational model we

propose differs from the traditional SEIQHRV model but produces relatively similar results to

the mathematical model. In this section, we will provide a brief description of the two proposed

models.

2.1. SEIQHRV model.

We employ a mathematical formulation built on differential equations to examine the transmis-

sion dynamics of COVID-19. The model separates the entire population into seven classes:

susceptible individuals (S), exposed individuals (E), infected individuals who were not hospi-

talised (I), hospitalised individuals (H), quarantined individuals (Q), and recovered individuals

(R). In addition, the model includes a compartment for vaccinated individuals (V ). Individuals

in the exposed class (E) are considered to be incubating; that is, even if they have no symptoms

and have not tested positive for the disease, they are still contagious. The typical recommen-

dation is for class (I) infected patients who tested positive but only have mild to moderate

symptoms to self-quarantine at home rather than being admitted to hospital. People in class

(H) who tested positive and are in hospital are more vulnerable (e.g. the elderly and those with

underlying health problems). The parameters are described in Table 1 and the interactions be-

tween the compartments are illustrated in Figure 1. Our proposed model (2.1) can be presented

in the following form:
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(2.1)



dS
dt

= Λ−β1SI−β2SE−asS−dS,

dE
dt

= β1SI +β2SE−αE−dE,

dI
dt

= αE−δ I−ηI−µI−dI,

dQ
dt

= δ I− εQ−dQ,

dH
dt

= εQ+ηI− rH−dH,

dR
dt

= rH +µI−arR−dR,

dV
dt

= asS+arR−dV.

with initial conditions:

(2.2) S(0)≥ 0,E(0)≥ 0, I(0)≥ 0,Q(0)≥ 0,H(0)≥ 0,R(0)≥ 0 and V (0)≥ 0.
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The following schema illustrates a detailed description of our model (2.1):
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FIGURE 1. Schematic diagram of model (2.1)
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The signification of these parameters and variables is shown in Table 1:

Parameters and variables signification

S Susceptible individuals

E Exposed individuals

I Infected individuals

Q Quarantined individuals

H Hospitalised individuals

R Recovered individuals

V Vaccinated individuals

Λ Inflow number of susceptible individuals

β1, β2 Infection rates of the infected individuals and the exposed individuals, respectively

α Incubation rate

δ Rate at which symptomatic infections are diagnosed and quarantined

d death rate caused by the disease

ds death rate caused by the vaccine

µ Rate at which symptomatic infections are diagnosed and recovered

η Rate at which symptomatic infections are diagnosed and hospitalised

ε Transition rate of quarantined individuals to the hospitalised infected class

r Transition rate of hospitalised individuals to the recovered class

as Transition rate of susceptible individuals to the vaccinated class

ar Transition rate of recovered individuals to the vaccinated class

β1SI, β2SE Describe the transmission of diseases

TABLE 1. Explanations of the parameters and variables

2.2. Boundedness and positivity of solutions.

In this section, we will proof the boundedness of the solutions of our model (2.1).

Lemma 2.1. The solutions of the system (2.1), which belongs in R7
+, are non-negative and

uniformly bounded.

Proof. We pose N (t) = S(t)+E(t)+ I(t)+Q(t)+H(t)+R(t)+V (t), then

dN

dt
+dN = Λ,
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Using the theory of differential equation [26, 27], we obtain

N (t) = N (0)e−dt +
Λ

d

(
1− e−dt

)
,

if t→ ∞, we have 0 < N (t)≤N (0)+ Λ

d , demonstrating this Lemma. �

2.3. Disease-free equilibrium.

2.3.1. Disease-free equilibrium.

In order to find the equilibrium points, the equations of our system (2.1) must equal zero.

It is clear that system (2.1) always has an infection-free equilibrium, as denoted by P0 =

(S0,E0, I0,Q0,H0,R0,V 0), and which is given by P0(
Λ

d+as
,0,0,0,0,0, asΛ

d(d+as)
).

2.3.2. Basic reproduction number.

The reproduction number R0 for the dynamics of disease is calculated using the next-generation

method. Let x = (E, I,Q,H)t , then we have dx
dt = F−V , where

F =


β2S0 β1S0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 and V =


α +d 0 0 0

−α δ +η +µ +d 0 0

0 −δ k+d + ε 0

0 −η −ε r+d

 .

After calculation, the spectral radius of the next generation matrix p(FV−1) is shown by

(2.3) R0 =
Λ(β1α +β2(δ +µ +η +d))

(d +as)(δ +µ +η +d)(α +d)
.

2.4. Endemic equilibrium and local Stability.

First, we find the coordinates of the endemic equilibrium point, after which we will analyse the

local stability of the two equilibrium points.

Theorem 2.1. If R0 > 1, then model (2.1) has endemic equilibrium point

P∗(S∗,E∗, I∗,Q∗,H∗,R∗,V ∗), where (S∗,E∗, I∗,Q∗,H∗,R∗,V ∗) are defined after in (2.4).

Proof. For the equilibrium points of model (2.1), we have

dS
dt

=
dE
dt

=
dI
dt

=
dQ
dt

=
dH
dt

=
dR
dt

=
dV
dt

= 0.
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Then we get:

(2.4)

S∗ = Λ(δ+µ+d+η)
β1αE∗+(β2E∗+d+as)(δ+µ+d+η) ,

I∗ = αE∗
δ+µ+d+η

,

Q∗ = δαE∗
(k+d+ε)(δ+µ+d+η) ,

H∗ = [η(ε+k+d)+εδ ]αE∗

(k+d+ε)(r+d)(δ+µ+d+η) ,

R∗ = (r[η(ε+k+d)+εδ ]+µ(r+d)(k+d+ε))αE∗

(k+d+ε)(r+d)(δ+µ+d+η)(d+ar)
,

E∗ = (δ+µ+d+η)(d+as)
β1α+β2(δ+µ+d+η)(R0−1),

V ∗ = asS∗+arR∗
d .

Then, if R0 > 1, then model (2.1) has endemic equilibrium point P∗(S∗,E∗, I∗,Q∗,H∗,R∗),

where (S∗,E∗, I∗,Q∗,H∗,R∗) are defined before in (2.4). �

Now we analyse the local stability of two equilibrium points P0 and P∗.

The Jacobian matrix associated with the model (2.1) is defined by

(2.5)

J =



−(β1I +β2E +d +as) −β2S −β1S 0 0 0 0

β1I +β2E β2S−α−d β1S 0 0 0 0

0 α −(δ +η +µ +d) 0 0 0 0

0 0 δ −(k+d + ε) 0 0 0

0 0 η ε −(r+d) 0 0

0 0 µ 0 r −(d +ar) 0

as 0 0 0 0 ar −d


,

Theorem 2.2. The equilibrium point P0 is locally asymptotically stable if δ +µ +η +2d+α >

β2Λ

d and R0 < 1.

Proof. We calculate the eigenvalues of the Jacobian matrix at the equilibrium point P0 in order

to analyse its local stability. Then, the characteristic equation of P0(
Λ

d ,0,0,0,0,0,
asΛ

d(d+as)
) is:

(λ +d)(λ +d +as)(λ +d +ar)(λ + r+d)(λ + k+d + ε)(λ 2 + sλ + p) = 0,

where
s = δ +µ +η +2d +α− β2Λ

d+as
,

p = (δ +µ +η +d)(d +α− β2Λ

d+as
)− αβ1Λ

d+as
,

= (d +α)(δ +µ +η +d)(1−R0).
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The discriminant of equation λ 2 + sλ + p = 0 is
(

δ +µ +η−α + β2Λ

d

)2
+ 4Λαβ1

d > 0. Then,

the eigenvalues of matrix (2.5) to the equilibrium point P0 are reel roots, so :

λ1 =−(k+d + ε)< 0, λ2 =−(r+d)< 0, λ3 = λ4 =−d < 0, λ5 +λ6 =−s and λ5λ6 = p.

If s > 0 and R0 < 1, then λ5 + λ6 < 0 and λ5λ6 > 0. So λ5 < 0 and λ6 < 0. The proof is

completed. �

Theorem 2.3. The endemic equilibrium point P∗ is locally asymptotically stable if R0 > 1

a1,a2 > 0 and a1a2 > a0 is realised.

Proof. The eigenvalues of the Jacobian matrix associated with the equilibrium point P∗ are

calculated in order to study its local stability.

From the Jacobian matrix J∗ (2.5), the characteristic equation at P∗ is as follows:

(λ +d)(λ +d +ar)(λ + r+d)(λ + k+d + ε)(λ 3 +a2λ
2 +a1λ +a0) = 0,

where

a0 = (δ +µ +η +d)((β1I∗+β2E∗+d)(α +d)−dβ2S∗)−αdβ1S∗,

a1 = (δ +µ +η +d)(α +2d +β1I∗+β2E∗−β2S∗)+(β1I∗+β2E∗+d)(α +d)

−(β1α +dβ2)S∗,

a2 = β1I∗+β2E∗+3d +α−β2S∗+δ +µ +η .

Using (2.4), we get:

a0 = dS∗(αβ1 +β2(η +µ +d +δ ))(R0−1)> 0, because R0 > 1.

a1 = (δ +µ +η +α +2d)dR0− β2Λ

R0
,

a2 = δ +µ +η +α +2d +dR0− β2Λ

dR0
.

λ1 =−(k+d + ε)< 0, λ2 =−(r+d)< 0, λ3 =−d < 0.

Then, P∗ is locally asymptotically stable if R0 > 1, a1,a2 > 0, and a1a2 > a0 are realised. �

2.5. Description of computational model.

In this section, we present a computational model (created in Python), designed specifically to

predict the evolution of COVID-19-infected individuals over time based on a sample of random

individuals. During the simulation, several parameters are taken into account. A population
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of 100.000 individuals is chosen to provide a reasonable execution time. We assume that the

entire population is likely to be contaminated. The distribution of these individuals is given by

the parameter population variance, which varies between 0 and 2 approximately. The larger this

parameter is, the wider the distribution of the population.

Then, the parameter radius contamination corresponds to the area in which an infected indi-

vidual can spread the virus to an uninfected individual, with a probability named infectiousness

(β1; rate of individuals who become exposed without confirmation of infection and β2; rate of

individuals who become exposed with confirmation of infection). After being infected, there

are three possibilities: an infected person can be hospitalised with a probability η , confined

with a probability δ , or recover immediately with a probability µ . An individual can also be

hospitalised in case of severity with a rate of ε and the passage of a hospitalised person recov-

ered with a rate of r. These categories reflect the range of possible states of the population in the

majority of real cases. We have considered the occurrence of vaccinations during the simula-

tion, which relates to susceptible and recovered individuals with rates of as and ar, respectively.

A mortality rate d is imposed on all the categories of the individuals in our model.

The computational model is based on the make blobs generator, which produces a feature

matrix, and the corresponding discrete targets. This generator creates multi-class datasets by

assigning to each class one or more groups of normally distributed points. Make blobs allows

better control of the centres and standard deviations of each group and is used to demonstrate

clustering [28]. The simulations in this section are compiled using the Plotly library [25]. See

the steps description diagram 2, which describes the core logic of the proposed model.
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FIGURE 2. Steps of computational model.

Algorithm 2.1. (1) Step 1

Parameters initialisation

(2) Step 2

(a) Generated isotropic Gaussian blobs for clustering, created using make blobs.

(b) list S: A two-dimensional data structure, i.e. data is aligned in a tabular fashion in

rows and columns. list S represents the coordination of each individual.

(c) A dictionary that holds the data of the curve and the coordination of each individual

in certain compartments.

(d) Random selection of the first exposed individual from the susceptible individual

group.

(e) Define distance between two points of the Cartesian plane.

(f) Thus chosing a random coordinate (individual) from the list ’list S’ to be the first

infected person.
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(g) Lists filling.

(h) Update of the compartment S.

(3) Step 3

(a) Clustering of compartments of individuals (data frame), each with its own proba-

bility. To provide a deeper insight, we present the clustering process of the first two

compartments (see Figure 3)

FIGURE 3. The clustering process for two compartments.

(b) The same process applies to the remaining individuals.

(4) Step 4

(a) In our case, we used the Plotly library only to manage multiple plots but used

matplotlib to draw the curves (using scatter function).

3. RESULTS AND DISCUSSION

In this section, we illustrate the numerical simulations and explore the two approaches that

we adopted (mathematical and computational) to make predictions and obtain graphical repre-

sentations. Here, using the parameter values in Tables 2 and 3, which were mostly borrowed
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from the literature [13], we perform some simulations to numerically illustrate our theoretical

results. Then, we evaluate the impact of two parameters (transmission rate; infection rate of

infected and exposed individuals) on the transmission dynamics of the disease.

3.1. Simulation with different R0.

We will perform numerical simulations for both cases: disease-free (R0 < 1) and endemic

equilibria (R0 > 1).

We vary the basic reproduction rate R0 of our mathematical model (2.1), whose expression

is as follows:

R0 =
Λ(β1α+β2(δ+µ+η+d))
(d+as)(δ+µ+η+d)(α+d) . We consider the following two cases:

Case 1: R0 = 0.9504 < 1

Table 2 below shows the various parameters’ values for a R0 = 0.9504 < 1.

Parameters Values

Λ 80

β1 0.001

β2 0.002

α 0.26

δ 0.33

d 0.001

µ 0.33

η 0.13

ε 0.12

r 0.014

as 0.75

ar 0.5
TABLE 2. Values of parameters for R0 < 1
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FIGURE 4. Curves of computational model for R0 < 1
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FIGURE 5. Curves of mathematical model for R0 < 1

The curves for the seven compartments of daily COVID-19 cases are reported for both models

(see Figures 4 and 5 ). In this case, the fact that R0 < 1 indicates that the risk of infection

is relatively low over the 30-day period, due to the containment of individuals that greatly

limits inter-human and inter-environmental contact and effectively weakens all routes of virus

transmission, leading to fewer infected individuals, which in turn weakens the spread of the

virus. Thus, the peak number of people affected is relatively low. We can therefore say that the

epidemic is under control on a global scale.
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Case 2: R0 = 1.118 > 1

With the values of the parameters indicated in the table below (Table 3), we obtain the

following: R0 = 1.118.

Parameters Values

Λ 100

β1 0.001

β2 0.002

α 0.26

δ 0.33

d 0.001

µ 0.33

η 0.13

ε 0.12

r 0.014

as 0.75

ar 0.5
TABLE 3. Values of Parameters for R0 = 1.118 > 1

FIGURE 6. Curves of computational model for R0 > 1
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FIGURE 7. Curves of mathematical model for R0 > 1

Figures 6 and 7 illustrate the mathematical and computational models that represent the

curves of each observed daily compartment. As a result of increased human activity and a

rise in the number of Λ individuals (relative to case 1), the transmission of the virus has in-

creased in this scenario, meaning there will be more incidences of infection. As R0 increases,

the virus spreads faster and with high significance.

Model validation:

Let us first observe the results (the graphs) for the mathematical model SEIQHRV and the

computational model created using Python by taking two values of R0, one lower and the other

higher than 1. For the two cases of simulations carried out, the values of the common parameters

are identical for the two models (mathematical and computational). We can see that the curves

of the individuals S, E, I, Q, H, and V are relatively similar in these two simulations for both

values of R0. However, the curve of recovered individuals R is a little more ‘volatile’ in our

computational model. We will validate the COVID-19 model by using the mathematical model

as a reference model. Among the seven curves found in the results of the two models, we will

take the daily infected cases for the two cases (R0¡1) and (R0¿1). The graphs and the residuals
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of the fit are presented in Figures 8 and 9, where it can be seen that the residuals are small and

random. Thus, we can conclude that the fit is reasonably good [29].
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3.2. Simulation with different infection rates.

We will study the impact of certain parameters (β1, β2) on the different states. To do this, we

vary the infection rate β1 between 0.001, 0.0030, and 0.005. The figure 10 shows the impact

of the infection rate β1 on all compartments. Over the first two days, the increase in the β1 rate

leads to an increase in exposed cases E, after which it rapidly decreases. Infected I, confined

Q, and recovered R increase over the first four, six, and eight days, respectively. Thereafter,
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they decrease rapidly. Hospitalised cases increase in line with the increase of the β1 rate. In

this figure 10, we can see that the β1 rate has a weak impact on susceptible S and vaccinated V

cases.
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FIGURE 10. Solution curves corresponding to the set values parameters en-

demic equilibrium P with different values of β1
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Figure 11 shows the impact of the infection rate β2 on the seven compartments. From this

we can see that β2 has almost the same impact as β1. Indeed, over the first three days, the

β2 rate rapidly increases in line with the number of exposed cases E, before quickly falling.

Infected I, quarantined Q, and recovered R increase over the first four, seven, and nine days,

respectively, and then decrease rapidly. The curves of hospitalised cases, meanwhile, are almost

linear for a long period, before converging to the steady state. The difference lies in the speed

of convergence at which the threshold is reached; that is, the higher the infection rate of the

exposed cases β2, the faster the threshold (the steady state) is reached. Thus, we can conclude

that the β2 rate has a negligible impact on the susceptible S and vaccinated V cases. This

confirms the theoretical solutions because it shows that they will converge to the equilibrium

point (see equation (2.4)).

We conclude that the higher the infectivity (β1 and β2), the higher the maximum number (the

peak) of infected cases. After that peak is reached, though, the number of infected cases falls

rapidly.

3.3. Comparing the two measures: β1 and β2.

The sensitivity analysis demonstrates the effect of each parameter on the spread of the dis-

ease. It enables us to understand which variables significantly influence the threshold of R0. In

particular, sensitivity indices measure the proportional variation of a variable when a parameter

changes. If this variable is differentiable with respect to the parameter a, the sensitivity index is

defined as follows: [30]:

SR0
a =

∂R0

∂a
a

R0

where a is the contribution with respect to R0. For the parameters β1 et β2, we have:

SR0
β1

= β1α

β1α+β2(δ+µ+η+d) and SR0
β1

= β2(δ+µ+η+d)
β1α+β2(δ+µ+η+d) .

For example, using the values from Table 2, we obtain SR0
β1

= 0.1412 et SR0
β2

= 0.8588. In this

case, the infection rate β2 has a pronounced impact on the propagation of the virus.

In this study, we presented a computational model designed to improve our understanding of

how a virus (COVID-19) behaves in a population, how specific parameters influence its spread,

and how the evolution of the disease outbreak can be estimated. Furthermore, we presented a

simulation of the model applied to a set of random individuals, before evaluating and validating
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our model by comparing these results with those of the proposed mathematical model (2.1).

In addition, we analysed the dynamic evolution of the disease over time by varying some pa-

rameters. Finally, we compared the curves of the results of each case with the curves obtained

using the SEIQHRV mathematical model. This research aimed to validate predictions regarding

the effect of specific parameters on the behaviour of COVID-19 and in so doing improve our

understanding of the virus.

In our analysis, we observed that the model we created is easy to manipulate when tested

and that the curves it produced are relatively similar for the two models in the different cases

studied. Hence, the reliability of the model was confirmed, meaning that these results can be

used to aid in the decision-making process of specialists in the field of epidemiology.

Indeed, the results of the compartmental models have already been exploited in some studies

by medical doctors [31] and epidemiologists. It is reasonable to suppose, then, that the compu-

tational model can be easily manipulated in various studies that are focused only on the results

(numerical simulation) without any need for the complicated mathematical calculations of the

mathematical models, especially in the fields that rely on this type of results (the estimation of

the evolution of individuals in each compartment in the course of time) to be exploited. The use

of this kind of method will facilitate the work of specialists and allow health officials to more

effectively determine precautionary and suitable measures of action to combat the epidemic.

This approach can be applied in future research to model several infectious diseases that are

currently modeled using compartmental mathematical models.

To the best of our knowledge, this report is the first to use a Python model that can be easily

applied to study the dynamic evolution of COVID-19 in a way similar to that achieved by

compartmental model results in epidemiology. Although the proposed computational model is

not yet suitable for practical use, we have published instructions for implementing the model

as part of the open initiative in order to encourage widespread use and improvement within the

research community.

4. CONCLUSION

In order to help researchers build new, easy-to-use, and efficient prediction techniques for

common diseases, as well as to extend prediction methodologies and overcome the technical
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limitations of mathematical models, we created a computational model (programmed in Python)

that can be easily used to predict the growth of the COVID-19 population and to estimate the

evolution of the epidemic.

It should be noted, however, that this epidemiological study remains highly theoretical in

a deeply realistic field. In other words, even if the results and observations obtained by the

Python model appear to be relatively close to reality (mathematical model), it should be borne

in mind that these models do not take into account certain key factors, such as the different

types of vaccination, the quarantine of individuals immediately after they are infected, or even

the movement of individuals in the population. Nevertheless, such a study does help us to

understand how a virus behaves in a population, measure the influence of certain factors on the

virus’s propagation, and to estimate the evolution of the epidemic.

Thus, these kinds of models are crucial because performance, speed, and simplicity are es-

sential metrics in improving forecasting methods without the need for sophisticated equipment

and resources. Mathematical modeling approaches are rapidly becoming better at facilitating

epidemiological studies in the current pandemic, which may represent a step toward a devel-

oped forecasting system, which could form rapid predictions, be beneficial in eliminating the

risk of such pandemics ever starting in the first place, and offer tremendous opportunities to

harmonize sustainable development goals.
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