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Abstract. Modelling longitudinal biomarkers and time-to-event processes jointly is becoming essential in medical

research and other follow-up studies in order to evaluate their association, obtain unbiased results, and make valid

statistical inferences. This study was motivated by follow-up data on chronic kidney disease (CKD), which is a

major global health problem. Numerous studies have been conducted in the literature to analyse and assess the kid-

ney function of CKD patients using cross-sectional data. However, joint models on CKD follow-up data have not

been extensively studied in the literature. In the construction of joint models on CKD data, most previous studies

proposed mixed-effects submodels with Gaussian distributions for longitudinal outcomes. However, longitudinal

outcomes may have asymmetric (skewed) distributions. Proposing a normal distribution for skewed longitudinal

data may yield biased results and invalid statistical inferences. In this paper, therefore, we propose a mixed-effects

joint model with a skew-t distribution for longitudinal and time-to-event data under the Bayesian approach. We

assessed the performance of the proposed joint model using simulation studies and applied the model to real CKD
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data. The proposed joint model with a skew-t distribution was compared with joint models with skew-normal

and normal distributions of model errors. The findings of the simulation and application studies showed that the

proposed joint model with skew-t distribution performed well.

Keywords: time-to-event data; longitudinal data with skewness; Bayesian joint modelling; skew-t distribution;

chronic kidney disease.
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1. INTRODUCTION

In follow-up studies, a group of subjects can be followed over time to determine the outcome

of exposures, processes, or effects of a characteristic. In such studies, longitudinal and event-

time data can be recorded simultaneously. In the literature, there are numerous approaches for

modelling and evaluating the time-to-event and longitudinal processes separately. When the

two processes are related, however, modelling them separately may give biased results. A joint

modelling technique is needed to obtain an unbiased result, make valid statistical inferences,

and assess the association between them [1].

Modelling the time-to-event and longitudinal data jointly is therefore becoming essential

in many follow-up studies. In medical research, joint models of longitudinal biomarkers and

time-to-event data have been a crucial statistical methodology and active research area [2, 3,

4, 5, 6, 7, 8]. In the formulation of joint models, the most common approaches postulated as

submodels are mixed-effects models [1, 9, 10, 11, 7] for longitudinal measurements and a Cox’s

proportional hazard submodel [12, 13, 14, 15, 16] for survival data.

This study was motivated by a follow-up data on chronic kidney disease (CKD), which is

a major global health problem that affects around half a billion people worldwide [17]. The

majority of the prevalence of CKD is in low- and middle-income countries, and according to

Shiferaw et al. [18], an estimated 35.52 percent of people with diabetes in Ethiopia had CKD

prevalence. Several biomarkers of the progress of a patient’s renal function can be measured

over time, and event times can also be recorded. For instance, serum creatinine, albuminuria,

and other biomarkers can be measured at each follow-up visit, and the glomerular filtration

rate (GFR) of the patient can be estimated. In addition, the time to an event, i.e., time to end-

stage renal disease (ESRD), death, or transplant, can be recorded if the patient experiences an
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event during the follow-up period. Here, the longitudinal outcome (eGFR, for example) and the

survival outcome (time-to-ESRD) are biologically related. That is, the chance of developing

ESRD can rise when a CKD patient’s eGFR declines. As a result, a joint modelling approach

can be more appropriate to model the two outcomes and evaluate their associations.

Numerous studies have been conducted in the literature to analyse and assess the kidney

function of CKD patients using cross-sectional data. However, joint models on CKD follow-up

data have not been extensively studied in the literature. Armero et al. [19] developed a joint

model for longitudinal measurements and competing event times to analyse CKD data in chil-

dren. They proposed Cox PH and linear mixed-effects submodels in the construction of their

joint model. A study conducted by Yang et al. [20] proposed a joint model with mixed-effects

and linear regression submodels for longitudinal and event-time CKD data, respectively. Teix-

eira et al. [21] also postulated a joint model for longitudinal and competing-events peritoneal

dialysis data. The majority of these earlier studies postulated mixed-effects models with normal

distributions for longitudinal outcomes.

However, longitudinal outcomes in some applications may have asymmetric (skewed) distri-

butions. For instance, in this paper’s application data, the longitudinal outcome eGFR exhibits a

skew distribution (Figure 1). Figure 1 also demonstrates the existence of between- and within-

patient variations and the asymmetric distribution of eGFR.
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FIGURE 1. (a) histogram with pdf of eGFR and (b) trajectories of eGFR for

some representative CKD patients.
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Proposing a normal distribution for such skewed longitudinal data may yield biased results

and invalid statistical inference [22]. As a result, recent studies suggest that more flexible

distributional assumptions of model errors may be needed in order to accurately describe and

model such complex longitudinal outcomes and make a valid statistical inference [23, 24]. In

this paper, therefore, we propose a mixed-effects joint model with a skew-t distribution for

longitudinal and time-to-event data under the Bayesian approach.

The reminder of this paper is organized as follows. Section 2 briefly describes the methods. In

this section, the construction of the joint model, parameter estimation and inference, and model

comparison are briefly described. In Section 3, the simulation studies are presented. Analysis

of the CKD data is presented in Section 4. Section 5 includes conclusion and suggestions for

future work.

2. METHODS

2.1. Notations and the Joint model. Let yi j denotes the longitudinal outcome for subject

i measured at the jth time ti j: i = 1, ...,m, j = 1, ...,mi. For convenience, the longitudinal

outcome and measurement time can be rewritten in vector form as yi = (yi1, ...,yi j, ...,yimi)
T

and ti = (ti1, ..., ti j, ..., timi)
T , respectively. Let Si, Ti and Ci denote the observed event-time, true

event-time, and censoring time, respectively, for the ith subject. Where Ti can be computed

as Ti = min(Si,Ci). Let ρ be an event indicator that can be 1, the event of interest, or 0, the

censoring event.

The construction of the joint model consists of the longitudinal submodel (1) and the event-

time submodel (2). A skewed mixed-effects submodel is proposed for the longitudinal outcome

yi and is defined by

yi = XT
i β +RT

i ξ i + ε i, i = 1, ...,m

ε i ∼ STmi,ϑε
(µε ,Σε ,δ ε) , ξ i ∼ Nl

(
0,Σξ

)(1)

Where Xi = (x1i, ...,xpi)
T and Ri = (r1i, ...,rli)

T represent fixed-effects and random-effects co-

variate design matrices, respectively. Where p and l are dimensions of the design matrices.

β and ξ i are associated parameter vectors of the fixed- and random-effects covariates. Due

to its computational simplicity, in most previous studies, the model errors were considered
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to follow the commonly used Gaussian distribution. However, as shown in the introduction

section (Figure 1), the real longitudinal outcome data of this study follow an asymmetric dis-

tribution. As a result, we propose a multivariate skew-t distribution [25] for model errors

ε i = (εi1, ...,εi j, ...,εimi)
T ∼ STmi,ϑε

(µε ,Σε ,δ ε). Where ϑε , µε = 0, Σε =σ2
ε Imi , and δ ε = δε1mi

represent the degree freedom , mean vector, covariance matrix, and skewness vector of ε i, re-

spectively. Σξ represents the covariance matrix of ξ i; and 1mi = (1, ...,1)T represents an identity

vector.

For the time-to-event process, we propose an extended proportional hazard model:

(2) λi(t;Zi,ξ i) = λ0(t)exp
{

γ
T Zi +η

T
ξ i
}

Where ξ i represents the effects of subject-specific longitudinal outcomes (random effects), Zi

is the baseline covariates vector with coefficient vector γ , λi(t; .) represents the risk rate of the

event of interest at time t, and λ0(t) is the baseline hazard function. Given ξ i, the longitudinal

outcome yi and the event-time Ti are assumed to be conditionally independent. η is a parameter

vector that denotes the level of association between the hazard rate of the event of interest and

the subject-specific longitudinal outcome.

The survival function, the likelihood that subject i won’t experience the event of interest after

time t, is given by:

(3) S(t) = exp
{
−
∫ t

0
λ0(v)exp

(
γ

T Zi +η
T

ξ i
)

dv
}

In this paper, the piecewise constant function is used to specify the baseline hazard func-

tion λ0(t) and model the event-time more flexibly [26]. By partitioning the event-time into

P intervals, 0 = l0 < l1 < .. . < lp−1 < lP < ∞, the baseline hazard can be specified as

λ0(t) = λp, f or t ∈ (lp−1, lp], p = 1, ...,P.

2.2. Estimation and Inference. The likelihood (ML) and Bayesian methods are the two ap-

proaches that are most commonly employed for parameter estimation in the literature. Since

we proposed a joint model with multivariate skew-t distribution, estimating the parameters from

the joint likelihood using the ML-method can be quite time-consuming. Hence, in this paper,

to estimate all the parameters simultaneously, we adopted the Bayesian technique, which can

reduce computational load and allow for the inclusion of prior knowledge for the parameters.
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For Markov chain Monte Carlo (MCMC) computation, it is necessary to specify the proposed

mixed-effects longitudinal submodel (1) with a skew-t distribution. As a result, to represent the

skew-t distribution based on the stochastic representation [25], we introduced a random vector

Wεi = (Wεi1, . . . ,Wεimi)
T and a random variable vε . Thus, the hierarchical reformulation of the

joint model can be given by:

yi|ξ i,Wεi,vεi;θ y ∼ Nmi

(
XT

i β +RT
i ξ i +δεWεi,v−1

εi σ
2
ε 1mi

)
,

Wεi|vεi ∼ Nmi(0,v
−1
εi Imi)I(Wεi > 0)

vεi|ϑε ∼ Γ(ϑε/2,ϑε/2)

ξ i|Σξ ∼ Nl
(
0,Σξ

)
,

Ti|ξ i;λ ,γ,η ∼
∫ Ti

f (t|ξ i;λ ,γ,η)dt

(4)

Where θ y = {β ,σ2
ε ,Σξ ,δε}, Nmi(.) is mi-variate normal distribution, and Γ(.) is a gamma

distribution.

Let DDD be the overall observed longitudinal and event-time data, and Ω =

{β ,σ2
ε ,Σξ ,δε ,ϑε ,λ ,γ,η} be the set of all parameters of the joint model. Then, the joint

likelihood function of DDD is given by

f (DDD |Ω) =
m

∏
i=1

∫
ξi

f (yi|ξ i,Xi,Wεi,vεi;θ y)

× f (ξ i|Σξ ) f (Wεi|vεi,Wεi > 0) f (vεi)

× f (Ti,ρi|ξ i,Zi;θ t)dξ i

(5)

The prior distribution for each parameter, hence, must be specified in order to approximate

the posterior distribution of the hierarchically constructed joint model. Independent normal

Np(β 0,Ωβ ), Np′ (γ0,Ωγ), Nq′ (η0,Ωη), and N(0,κδε
) prior distributions are assumed for β , γ , η ,

and δε , respectively. Inverse-Wishart IWl(Dξ ,νξ ) prior is assumed for Σξ and Inverse-Gamma

IG(ρε1,ρε2) prior is assumed for σ2
ε . Independent gamma G(φ1,φ2) priors are assumed for λ p.

For the degree freedom ϑε , a truncated exponential Exp(ϑε0)I(ϑε > 3) prior distribution is as-

sumed. The hyperparameter matrices Ωβ ,Dξ ,Ωγ and Ωη are assumed diagonal for convenient

implementation.
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Given the joint likelihood f (DDD |Ω) and joint prior distribution π(Ω), the joint posterior den-

sity can be derived as

π(Ω|DDD) ∝ f (DDD |Ω)×π(Ω)

∝

m

∏
i=1

∫
ξ

{(
σ

2
ε

)−mi/2
exp

(
−1

2

(
yi−µy

)T
(

σ2
ε Imi

vεi

)−1(
yi−µy

))

×|Σξ |−
1
2 exp

(
−1

2
ξ

T
i Σ
−1
ξ

ξ i

)
× exp

(
−1

2
vεiWT

εiWεi

)
{

1
Γ(ϑε/2)(ϑε/2)ϑε/2 v

ϑε
2 −1

εi

}
exp
(
− 2

ϑε

vεi

)
×λ0(t)ρi exp

(
(γT Zi +η

T
ξ i)ρi

)
× exp

(
−
∫ t

0
λ0(v)exp

(
γ

T Zi +η
T

ξ i
)

ds
)}

dξ i

× exp
(
−1

2
(β −β 0)

T
Ω
−1
β
(β −β 0)

)
× (σ2

ε )
−ρε1−1exp(−ρε2/σ

2
ε )

×|Σξ |−
(ν

ξ
+1)
2 exp

(
−1

2
tr
(

Ωξ Σ
−1
ξ

))
× exp

(
− 1

2κδε

δ
2
ε

)
× exp(−ϑε0ϑε}

× exp
(
−1

2
(γ− γ0)

T
Ω
−1
γ (γ− γ0)

)
× exp

(
−1

2
(η−η0)

T
Ω
−1
η (η−ηq0)

)
×λ

φp1−1
p exp

(
−φp2λp

)

(6)

where π(Ω) is the product of the prior distributions of the parameters, µy = Xiβ +Hiξ i +

δεWεi.

To draw a sample from the conditional posterior distribution and estimate the posterior mean

and standard deviation of each of the parameters, we utilised the Metropolis-Hastings algorithm

within Gibbs sampler and implemented the MCMC algorithm in WinBUGS software.

2.3. Model comparison. We compare joint models by considering different distributional

specifications of the model errors from the longitudinal submodel:

• JModel I: A joint model with multivariate skew-t (ST) distribution of model errors ε i.
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• Model II: A joint model with multivariate skew-normal (SN) distribution of ε i.

• Model III: A joint model with multivariate normal (N) distributions of ε i.

3. SIMULATION STUDIES

To assess and compare the performance of the joint models, simulation studies are carried

out. To conduct the simulation, 400 individuals with eleven measurement times (equally-

spaced), i.e., a total of 4,400 observations, are taken into account. The mixed-effects longi-

tudinal submodel (1) with two binary covariates was used to simulate the longitudinal outcome

data. In order to obtain skewed longitudinal data, each component of the model error vector

ε i is first generated from a gamma distribution G(2,1), and then deducted by two [17]. We set

β = (4.70,−0.25,−0.27,−0.24)T , γ = (−0.01,0.20,1.35,2.43) and η = (−3.40,−1.45).

The Cox proportional hazard model (2) with constant baseline hazard (λ0(t) = 0.2) and four

predictors (one continuous and three binary predictors) was used to simulate event-time data.

Censoring time Ci is generated from an exp(0.5) distribution. We generated the random effects

vector ξ i from a four-variate normal distribution with a mean of 0 and an identity diagonal

covariance matrix.

Weakly-informative prior distributions for the parameters were taken into consideration when

performing the Bayesian inference. That is, for each component of β , δe, γ , λ , and η , a

N(0,100) prior is assumed. For σ2
e , Σξ , and ϑε , an IG(0.01,0.01), an IW (diag(0.01,0.01),2),

and Exp(0.5) prior distributions, respectively, are assumed.

In order to run the MCMC procedure in the Bayesian framework, three chains, each with

135,000 iterations and a burn-in of 60,000, were utilised in R2WinBUGS in R. By keeping

every 50th MCMC sample from the next 75,000, we obtained 4,500 simulated samples of the

unknown parameters from each joint model. The Brooks-Gelman-Rubin (BGR) diagnostics

plot, an autocorrelation plot, and a trace plot were all used to evaluate convergence. To assess

the behaviour of the estimators in each joint model and to compare the models, we computed the

relative bias (RB), 95% coverage probability (CP), root-mean-square (RMS) error, and deviance

information criterion (DIC). A model with smaller values of DIC, RMS, and RB and a larger

value of CP can be considered a better-performing joint model.
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The simulation results, i.e., the posterior mean estimates with the corresponding RB, RMS,

CP and DIC for each parameters of the joint models, are shown in Table 1. Thus, we found that

the JModel I (a joint model with skew-t distribution) has performed better.

Para TPV Method Jmodel I Jmodel II Jmodel III

β1 4.70

RB -0.066 -0.367 0.013

RMS 1.031 1.726 0.083

CP 100.00 50.00 80.70

β2 -0.25

RB -0.017 -0.095 -0.080

RMS 0.070 0.066 0.074

CP 94.95 93.08 93.97

β3 -0.27

RB 0.002 -0.093 -0.082

RMS 0.054 0.053 0.059

CP 94.80 91.25 92.98

β4 -0.24

RB -0.027 -0.268 0.066

RMS 0.042 0.066 0.024

CP 7.00 72.30 84.97

σ2
ε 0.70

RB 1.444 -0.284 3.107

RMS 1.340 0.204 2.176

CP 89.45 61.55 50.00

σ2
ξ1

0.07

RB 0.023 -0.148 0.074

RMS 0.023 0.018 0.023

CP 94.82 90.67 94.43

σ2
ξ2

0.02

RB 0.188 0.166 0.194

RMS 0.006 0.005 0.006

CP 84.67 85.50 85.02

γ1 -0.01

RB 0.126 0.225 0.070

RMS 0.008 0.008 0.009

CP 94.82 93.57 94.90
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γ2 0.20

RB -0.790 -0.845 -0.871

RMS 0.271 0.289 0.293

CP 88.65 88.13 88.93

γ3 1.35

RB 0.050 0.017 0.045

RMS 0.282 0.261 0.288

CP 93.45 94.97 94.60

γ4 2.43

RB 0.149 0.136 0.147

RMS 0.564 0.549 0.523

CP 86.42 89.48 85.60

η1 -3.40

RB -0.580 0.881 0.267

RMS 6.497 3.938 4.272

CP 95.75 81.23 96.52

η2 -1.45

RB -0.173 0.415 1.536

RMS 2.513 1.998 2.938

CP 94.07 93.53 83.38

DIC 23640 27140 25360

Table 1: Simulation results: The true parameter value (TPV),

RB, CP, and RMS for each parameter of the joint models and

the DIC value.

4. APPLICATION: ANALYSIS OF THE CKD DATA

In this paper, eight years of follow-up data, between June 2014 and June 2022, on chronic

kidney disease (CKD) are used to apply the proposed joint model. The data was collected from

the University of Gondar Comprehensive Specialised Hospital in Ethiopia. Medical records and

patients’ profiles (or charts) were used as sources of the data. The data comprises 198 CKD pa-

tients’ baseline characteristics, comorbidities, repeatedly measured kidney function biomarkers,

and time to event (s). The estimated glomerular filtration rate (eGFR) is used as a longitudinal

response variable that measures the progressive loss of kidney function. In order to adequately
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capture a wide range of possible trajectories of a patient’s kidney function over time and model

it properly, patients with an eGFR value of less than ninety are included in the analysis. The

CKD patients were around 55 years old on average, and 56.6% of them were men. Among

the CKD patients, baseline prevalences of hypertension and diabetes were 34.4% and 23.81%,

respectively.

The event of interest in this study was an end-stage renal disease (ESRD) event, and 31.2%

of patients experienced it over the follow-up period. Figure 2 demonstrates the plots of the

survival probabilities of CKD patients. The figure clearly shows a fast decline in the likelihood

that CKD patients would be free of ESRD beyond a given time.
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FIGURE 2. Plots of the survival probability of CKD patients. Plot (a) is the sur-

vival provability curve and shows a decreasing probability that a patient survives

from ESRD beyond a specific follow-up time. Plot (b) demonstrates that CKD

patients without diabetes had a higher chance of surviving than those with dia-

betes.

To specify and apply the proposed models to the CKD data, log-transformed eGFR is used as

the longitudinal outcome, and diabetes, hypertension, and log-transformed measurement time

are taken into account as associated covariates for the longitudinal submodel (1). Both the

random intercept and random slope of time-effects are also considered. For the time-to-ESRD

joint model (2), the baseline covariates age, sex, diabetes, hypertension, and the subject-specific

eGFR process (the random effects) are taken into account to predict the hazard rate of ESRD for

each patient. The time that a CKD patient does not yet experience an ESRD event until the end
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of the data collection period or withdraws from the follow-up is considered as a right-censoring

time. We considered four intervals based on the quantiles of the observed event time to specify

the baseline hazard function using piecewise constant functions.

In order to fit and compare the three joint models using the real CKD data, we employed the

same specifications of the priors, MCMC computation techniques, and convergence assessment

tools as in the simulation section (Section 3). The summary results of the fitted joint models’

parameters with different distributions of model errors are presented in Table 2.

TABLE 2. The posterior mean estimates (PME), standard deviation (SD), 95%

credible interval (CI), and DIC for the parameters from the proposed joint mod-

els with different distributions.

Prs
JModel I JModel II JModel III

PME SD CI PME SD CI PME SD CI

β1 4.69 0.05 (4.58, 4.80) 4.70 0.05 (4.60, 4.80) 4.37 0.05 (4.27, 4.47)

β2 -0.24 0.07 (-0.37, -0.10) -0.26 0.07 (-0.39, -0.11) -0.22 0.07 (-0.36, -0.08)

β3 -0.29 0.02 (-0.33, -0.24) -0.28 0.03 (-0.34, -0.23) -0.33 0.03 (-0.38, -0.28)

β4 -0.23 0.02 (-0.26, -0.20) -0.23 0.02 (-0.26, -0.20) -0.24 0.02 (-0.27, -0.21)

σ2
ε 0.008 0.002 (0.004, 0.012) 0.024 0.004 (0.016, 0.032) 0.117 0.005 (0.108, 0.127)

σ2
ξ1

0.156 0.028 (0.108, 0.217) 0.162 0.026 (0.116, 0.219) 0.174 0.023 (0.112, 0.203)

σξ12 -0.004 0.008 (-0.02, 0.01) 0.000 0.008 (-0.02, 0.014) 0.006 0.007 (-0.01, 0.021)

σ2
ξ2

0.030 0.004 (0.023, 0.039) 0.030 0.004 (0.023, 0.039) 0.032 0.004 (0.024, 0.041)

δε -0.54 0.03 (-0.60, -0.48) -0.51 0.02 (-0.54, -0.47) − − −

ϑε 3.76 0.70 (3.02, 5.56) − − − − − −

γ1 -0.01 0.01 (-0.03, 0.01) -0.01 0.01 (-0.03, 0.01) -0.01 0.01 (-0.02, 0.01)

γ2 0.16 0.30 (-0.41, 0.76) 0.19 0.30 (-0.40, 0.77) 0.18 0.30 (-0.41, 0.76)

γ3 1.74 0.51 (0.77, 2.76) 1.73 0.49 (0.76, 2.70) 1.65 0.52 (0.64, 2.70)

γ4 2.33 0.52 (1.26, 3.31) 2.32 0.53 (1.26, 3.35) 2.30 0.53 (1.24, 3.34)

η1 -1.13 0.44 (-2.01, -0.26) -1.21 0.41 (-2.02, -0.42) -1.19 0.42 (-2.00, -0.35)

η2 -4.92 1.46 (-8.04, -2.32) -4.65 1.44 (-7.67, -2.04) -4.84 1.45 (-7.95, -2.17)

DIC 4842 6138 5579
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Since the 95% credible intervals of most of the parameters do not include zero, as we can

clearly see from Table 2, each joint model results in slightly different but statistically significant

estimates. In general, compared to the skew-t joint models (JModels-I), the Gaussian joint

model (JModels-III) yield larger parameter estimates. In particular, the last two joint models

yields relatively large estimates of the within- and between-subject variations of the longitudinal

outcome. For example, the estimated values of σ2
ε (within-patient variation of eGFR) and σ2

ξ1

(inter-patient variation of eGFR) are relatively large in JModel-III.

The estimate of the skewness parameter (Table 2) is statistically significantly different from

zero (δ̂ε = −0.54; 95%CI : −0.60,−0.48), confirming that the joint model with a skew-t dis-

tribution is more appropriate than the Gaussian joint model. In addition, we also used DIC

to select the best-fitting joint model. As we can see from Table 2, the proposed joint model

(JModel-I), in comparison to the other joint models, has a relatively lower DIC value. Thus, the

smaller variance estimates, lower DIC value, and existence of significant skewness lead us to

conclude that JModel-I is the best Bayesian joint model that fits the CKD data well, and we use

its findings to interpret the results and draw conclusions.

Convergence diagnostic checking was done before interpreting the fitted chosen joint model’s

results and drawing conclusions. Figure 3 presents the trace plots, and Figure 4 shows the plots

of the BGR, ACF, and density of the parameters from the proposed joint model with skew-t

distribution. All the figures clearly show convergence.



14 MELKAMU M. FEREDE, SAMUEL M. MWALILI, GETACHEW A. DAGNE

beta[2] chains 1:3

iteration

59999 80000 100000 120000

-0
.6

-0
.2

0
.2

beta[3] chains 1:3

iteration

59999 80000 100000 120000

-0
.4

-0
.3

-0
.2

-0
.1

sigma.e chains 1:3

iteration

59999 80000 100000 120000

0
.0

0
.0

1
0

.0
2

deta.e chains 1:3

iteration

59999 80000 100000 120000

-0
.7

-0
.6

-0
.5

-0
.4

gamma[3] chains 1:3

iteration

59999 80000 100000 120000

0
.0

2
.0

4
.0

6
.0

gamma[4] chains 1:3

iteration

59999 80000 100000 120000

0
.0

2
.0

4
.0

6
.0

eta[1] chains 1:3

iteration

59999 80000 100000 120000

-3
.0

-1
.0

1
.0

eta[2] chains 1:3

iteration

59999 80000 100000 120000

-1
5

.0
-5

.0
0

.0

FIGURE 3. Trace plots of some JModel-I parameters. The plots demonstrate

that the three chains of the MCMC, for each parameter, are well mixed, indicat-

ing convergence.
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FIGURE 4. (a) ACF plots, (b) BGR plots, and (c) posterior density plots of

some JModel-I parameters. For each parameter, the chains’ correlation with their

successive lags is low, and the ratio of the BGR plots approaches 1, indicating

convergence.

The association parameters of the subject-specific longitudinal outcome eGFR and the time-

to-ESRD processes resulting from JModel-I are statistically significant (η̂1 =−1.13; 95%CI :

−2.01,−0.26; and η̂2 = −4.92; 95%CI : −8.04,−2.32). This demonstrates that proposing a

joint modelling approach for the two processes is reasonable. η̂1 = −1.13[HR = 0.32], for

instance, can be interpreted as the risk of a CKD patient developing ESRD being decreased by

68% when the patient-specific mean log-eGFR increases by one unit.
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The findings of the JMode-I in Table 2 also show that the estimates of parameters for the

covariates hypertension and diabetes (β2 and β3) in the longitudinal outcome eGFR submodel

and (γ3 and γ4) in the event-time submodel are significantly different from zero. The baseline

patients’ age and gender, however, do not significantly predict the hazard rate of ESRD. This is

due to the fact that the 95% credible intervals of the estimates of their parameters (γ1 and γ2)

contain zero.

The negative coefficients of hypertension, diabetes and log-measurement time (β4) indicate

that the mean log of the longitudinal outcome eGFR has a negative association with them. For

instance, β̂2 = −0.24 (95% CI: [−0.37,−0.10]) indicates that, compared to a CKD patient

without diabetes, the mean log-eGFR value of a CKD patient with diabetes can be declined by

0.24 mL/min/1.73 m2, assuming the effect of other covariates as constant. The decline of the

mean log-eGFR value of a CKD patient with diabetes can be up to 0.37 mL/min/1.73 m2. The

estimates of β3 and β4 can be interpreted similarly as β2.

As stated above, diabetes and hypertension are also significantly and strongly associated with

the instantaneous rate of ESRD. For example, according to the estimate of the hypertension

coefficient, γ̂4 = 2.33 [HR = 10.28], a CKD patient who is hypertensive is 10.28 times more

likely than a non-hypertensive patient to develop ESRD.

5. CONCLUSION AND SUGGESTIONS

According to current literature suggestions, joint modelling of complex longitudinal and

event-time clinical data is an active medical research field. The main objective of this research

was to develop a joint model for skewed longitudinal and event-time data and make a valid sta-

tistical inference using the Bayesian approach. To flexibly model the skewed longitudinal eGFR

data, a mixed-effects submodel with multivariate skew-t distribution was proposed. To model

the event-time (time-to-ESRD) data and accommodate more hazard shapes, a Cox proportional

hazard submodel with a piecewise constant baseline hazard function was postulated.

We assessed the proposed joint model’s performance using simulation studies and applied

the model to real chronic kidney disease data. The proposed joint model with a skew-t distri-

bution was compared with joint models with skew-normal and normal distributions of model

errors. The relative bias, root mean square error, coverage probability, and DIC were used as
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performance evaluation tools. A joint model with skew-t distribution better fitted the data com-

pared to the other joint models. We then evaluated the association between or the impact of

the patient-specific eGFR process on the time to ESRD and other covariates and interpreted the

results.

The association parameters of the subject-specific longitudinal outcome eGFR and the time-

to-ESRD processes were statistically significant, indicating that proposing a joint modelling

approach for the two processes is reasonable. The findings of this study also suggest that the

specifications of the distributional assumptions of model errors require special attention. Ac-

cording to the application’s findings, diabetes, hypertension, and measurement time were sig-

nificant predictors of and had a negative association with kidney function. Hypertension and

diabetes are also significantly associated with high risks of experiencing end-stage renal disease.

We note that one can use our methodology by considering other additional biomarkers of

kidney function and assessing their associations with the time-to-events and making valid sta-

tistical inferences and predictions (which are out of the scope of this study). In addition to the

motivating CKD follow-up data, our methodology has broader applications whenever continu-

ous outcomes and associated biomarkers are repeatedly measured, the time-to-event is recorded,

and the basic submodels and joint model specifications are met. Our simulation and application

studies revealed that our work contributed to this interesting study area by making use of a more

flexible methodology to model skewed longitudinal and time-to-event data.

The methodology proposed in this paper has some extensions for future research. (i) In

this paper, we considered only the time-to-ESRD as an event of interest, assuming indepen-

dent censoring. That is, other failure events, such as a patient’s death, are taken into account

as independent censoring of the time-to-ESRD process. However, death can be regarded as a

competing risk for ESRD because its occurrence may prevent the occurrence of ESRD. Thus,

our methodology can be expanded by taking into account multiple failure types and proposing

competing risk failure time submodels for the time-to-event processes. (ii) For the longitudinal

outcome, eGFR, we proposed a fully parametric (linear) mixed-effects submodel. However, in

some applications, the exact form of the relationship between the longitudinal outcomes and
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the time effects may be non-linear (irregular). For instance some CKD patients in our appli-

cation data have non-linear trajectories of the outcome eGFR over time. As a result, a fully

parametric modelling approach may not be flexible enough to model such types of complex

longitudinal data. Thus, by considering non-parametric smoothing functions of time, our mod-

elling approach can be extended to a more flexible semi-parametric modelling approach and

ensure future work. We note that the investigation of these two issues has also been completed

and is currently available. (iii) The methodology of this work could also be extended to a mul-

tivariate setting to accommodate multiple longitudinal outcomes that are repeatedly measured

for each subject.

ABBREVIATIONS

ACF Autocorrelation Function

CKD Chronic Kidney Disease

CI Credible Interval

DIC Deviance Information Criterion

eGFR estimated Glomerular Filtration Rate

ESRD End Stage Renal Disease

GFR Glomerular Filtration Rate

HR Hazard Ratio

MCMC Markov chain Monte Carlo

MDRD Modification of Diet in Renal Disease

RMSE Root Mean Squared Error

SCr Serum Creatinine

SN Skew-Normal

ST Skew-T
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