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Abstract. A theoretical knowledge of the global stability of an eco-epidemiological model is not only important in

itself but is also important in understanding the results of numerical simulations. In this paper the global stability

of a fractional-order eco-epidemiological model with infected predator and harvesting is investigated using the

Lyapunov function.
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1. INTRODUCTION

Mathematical models of the relationship between predator and prey in the presence of infec-

tious diseases, which play an important role in the dynamics, are called eco-epidemiological
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models. There have been various studies of such models with disease being present in the

constituent populations. These studies include [1]-[9].

Harvesting can influence the dynamics of eco-epidemiological models. In recent years the

demand for greater resources has resulted in over-exploitation. Therefore there is a need for a

sustainable strategy to protect ecosystems [10].

Mathematical models incorporating fractional differential equations have attracted much at-

tention in recent years. Such models are believed to be more suitable for models that depend

on past history [11, 12]. Further, such models are more realistic and less prone to errors [13].

Studies on fractional-order eco-epidemiological models include [14]-[21]. Ghosh et al. [1]

studied a fractional-order eco-epidemiological model incorporating fear, treatment, and hunting

cooperation effects to explore the memory effect in an ecological system through Caputo-type

fractional-order derivative. In the work by Mukherjee [21], the author investigated a fractional-

order predator–prey system with fear effect. Moustafa et al. [14] described the dynamical

behavior of fractional-order Rosenzweig-MacArthur model allowing for a prey refuge. The

influence of an infectious disease on a prey-predator model equipped with a fractional-order

derivative is studied in [3]. The effect of fractional-order derivative on a prey–predator model

with infection and harvesting is discussed by Moustafa et al. [16]. However, these papers did

not deal with fractional-order eco-epidemiological model with infected predator and harvesting

as such.

This paper is a theoretical study of the global stability of a fractional-order eco-

epidemiological model with infected predator and harvesting. There has, so far as we are aware,

been no theoretical studies of such a model.

2. MODEL DESCRIPTION

This paper investigates the global dynamic properties of a generalisation of the integer-order

eco-epidemiological model introduced in [22]. The Caputo fractional derivative of order q

(cDq) is introduced and harvesting (H) is included. This generalised(fractional) model can be

written as:

cDqx(t) = rx
(

1− x
k

)
− c1xy

a+ x
− c2xz

a+ x
, x(0) = x0,
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cDqy(t) =
m1xy
a+ x

− λyz
b+ y

−d1y, y(0) = y0,

cDqz(t) =
m2xz
a+ x

+
λyz
b+ y

−d2z−Hz, z(0) = z0,

(1)

where q∈ (0,1). The population is divided into: prey population density (x), susceptible preda-

tor population density (y) and infected predator population density (z).

3. EQUILIBRIUM POINTS AND GLOBAL STABILITY

So as to evaluate the equilibrium points of model (1), let

cDqx(t) = 0, cDqy(t) = 0 and cDqz(t) = 0.

Thus, the equilibrium points of model (1) are as follows:

(1) E0 = (0,0,0), which always exists.

(2) E1 = (k,0,0) , which always exists.

(3) E2 =
(

ad1
m1−d1

, rd1(k+a)
c1k(m1−d1)

(ℜ01−1)(a+ x2),0
)
, which exists if ℜ01 > 1 and m1 > d1,

where, x2 =
ad1

m1−d1
.

(4) E3 =
(

aζ

m2−ζ
,0, rζ (k+a)

c2k(m2−ζ )
(ℜ02−1)(a+ x3)

)
, which exists if ℜ02 > 1 and m2 > ζ ,

where, x3 =
aζ

m2−ζ
.

(5) E4 = (x4,y4,z4) where

y4 =
b(ζ (a+ x4)−m2x4)

m2x4 +(λ −ζ )(a+ x4)
, z4 =

b(m1x4−d1(a+ x4))

m2x4 +(λ −ζ )(a+ x4)
,

and that x4 needs to be a positive root of the following cubic polynomial:

(2) x4
3 + v1x4

2 + v2x4 + v3 = 0,

where

v1 = a− k+
a(λ −ζ )

λ −ζ +m2
,

v2 =
a(a−2k)rλ +ζ (bkc1−a(a−2k)r)−bkc2(d1−m1)− k(ar+bc1)m2

r(λ −ζ +m2)
,

v3 =
ak(ar(ζ −λ )+b(c1ζ − c2d1))

r(λ −ζ +m2)
.

In accordance with Theorem 3.4 in [23], the analytical conditions about the existence of

the equilibrium point E4 can be illustrated in Table 1, Table 2 and Table 3.
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TABLE 1. Θ > 0.

Conditions Equilibria of model (1)

v1 < 0, v2 ∈ R, v3 > 0 Two distinct positive equilibria

v1 ≥ 0, v2 < 0, v3 > 0 Two distinct positive equilibria

v1 ≥ 0, v2 ∈ R, v3 < 0 One positive equilibrium

v1 < 0, v2 > 0, v3 < 0 Three distinct positive equilibria

v1 < 0, v2 ≤ 0, v3 < 0 One positive equilibrium

TABLE 2. Θ = 0.

Conditions Equilibria of model (1)

v1 < 0, v2 ∈ R, v3 > 0 Two same positive equilibria

v1 ≥ 0, v2 < 0, v3 > 0 Two same positive equilibria

v1 ≥ 0, v2 ∈ R, v3 < 0 One positive equilibrium

v1 < 0, v2 > 0, v3 < 0 Two same positive equilibria

v1 < 0, v2 ≤ 0, v3 < 0 One positive equilibrium

TABLE 3. Θ < 0.

Conditions Equilibria of model (1)

For any value ofv1, v2 ∈ R, v3 ≥ 0 No positive equilibrium exists

For any value ofv1, v2 ∈ R, v3 < 0 One positive equilibrium.

with

Θ = 18v1v2v3−4v3
1v3 + v2

1v2
2−4v3

2−27v2
2.

The following theorems investigate the global stability of the equilibrium points E1, E2, E3

and E4.

Theorem 1. The equilibrium point E1 of model (1) is globally asymptotically stable if d1 >

min
{

m1k
a+k ,

c1k
a

}
and ζ > min

{
c2k
a , m2k

a+k +λ

}
.
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Proof. The following positive definite Lyapunov function can be considered:

V = x− k− k ln
(x

k

)
+ 1

2 y2 + 1
2 z2 + y+ z.

Calculating the q-order derivative of V along the solution of model (1) and using Lemma 3.1

in [24],

cDqV ≤
(

x− k
x

)
cDqx+ y cDqy+ z cDqz+ cDqy+ cDqz

=(x− k)
(

r
(

1− x
k

)
− c1y

a+ x
− c2z

a+ x

)
+

(
m1x
a+ x

− λ z
b+ y

−d1

)
y2 +

(
m2x
a+ x

+
λy

b+ y
−ζ

)
z2

+
m1xy
a+ x

+
m2xz
a+ x

−d1y−ζ z

=− r
k
(x− k)2− c1xy

a+ x
− c2xz

a+ x
+

c1ky
a+ x

+
c2kz
a+ x

+

(
m1x
a+ x

− λ z
b+ y

−d1

)
y2 +

(
m2x
a+ x

+
λy

b+ y
−ζ

)
z2

+
m1xy
a+ x

+
m2xz
a+ x

−d1y−ζ z

≤− r
k
(x− k)2 +

(
m1k
a+ k

−d1

)
y2 +

(
m2k
a+ k

+λ −ζ

)
z2

+

(
c1k
a
−d1

)
y+
(

c2k
a
−ζ

)
z.

Thus, cDqV ≤ 0 if d1 > min
{

m1k
a+k ,

c1k
a

}
and ζ > min

{
c2k
a , m2k

a+k +λ

}
. By Lemma 4.6 in [25], it

is proof that the equilibrium point E1 is globally asymptotically stable. �

Theorem 2. The equilibrium point E2 of model (1) is globally asymptotically stable if y2 <

r(a+x2)a
c1k and λy2

b + m2k
a+k +

Lc2x2
a < ζ .

Proof. The following positive definite Lyapunov function is considered.

V = L
(

x− x2− x2 ln
(

x
x2

))
+ y− y2− y2 ln

(
y
y2

)
+ z.

By calculating the q-order derivative of V along the solution of model (1) and using Lemma

3.1 in [24],
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cDqV ≤L(x− x2)

(
r− rx

k
− c1y

a+ x
− c2z

a+ x

)
+(y− y2)

(
m1x
a+ x

− λ z
b+ y

−d1

)
+

m2xz
a+ x

+
λyz
b+ y

−ζ z

≤L(x− x2)

(
rx2

k
+

c1y2

a+ x2
− rx

k
− c1y

a+ x
− c2z

a+ x

)
+(y− y2)

(
m1x
a+ x

− λ z
b+ y

− m1x2

a+ x2

)
+

m2xz
a+ x

+
λyz
b+ y

−ζ z

≤L
(

c1y2

(a+ x)(a+ x2)
− r

k

)
(x− x2)

2 +
(x− x2)(y− y2)

(a+ x)(a+ x2)
(am1−aLc1−Lc1x2)

+
λy2z
b+ y

+
m2xz
a+ x

− Lc2zx
a+ x

+
Lc2x2z
a+ x

−ζ z

≤L
(

c1y2

a(a+ x2)
− r

k

)
(x− x2)

2 +
(x− x2)(y− y2)

(a+ x)(a+ x2)
(am1−aLc1−Lc1x2)

+ z
(

λy2

b
+

m2k
a+ k

+
Lc2x2

a
−ζ

)
.

Suppose L = am1
c1(a+x2)

. Thus, cDq ≤ 0 when y2 <
r(a+x2)a

c1k and λy2
b + m2k

a+k +
Lc2x2

a < ζ . Hence the

theorem is proved. �

Theorem 3. The equilibrium point E3 of model (1) is globally asymptotically stable if z3 <

r(a+x3)a
c2k and m1k

a+k +
Mc1x3

a − λ z3
b < d1.

Proof. It can be used the following positive definite Lyapunov function.

V = M
(

x− x3− x3 ln
(

x
x3

))
+ y+ z− z3− z3 ln

(
z
z3

)
.

Computing the time derivative of V along the solution of model (1) and utilizing Lemma 3.1 in

[24],

cDqV ≤M(x− x3)

(
r− rx

k
− c1y

a+ x
− c2z

a+ x

)
+

m1xy
a+ x

− λyz
b+ y

−d1y+(z− z3)

(
m2x
a+ x

+
λy

b+ y
−ζ

)
≤M(x− x3)

(
rx3

k
− rx

k
+

c2z3

a+ x3
− c1y

a+ x
− c2z

a+ x

)
+

m1xy
a+ x

− λyz
b+ y

−d1y+(z− z3)

(
m2x
a+ x

− m2x3

a+ x3
+

λy
b+ y

)
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≤M
(

c2z3

(a+ x)(a+ x3)
− r

k

)
(x− x3)

2 +
(x− x3)(z− z3)

(a+ x)(a+ x3)
(am2−aMc2−Mc2x3)

− λyz3

b+ y
+

m1xy
a+ x

−Mc1xy
a+ x

+
Mc1x3y

a+ x
−d1y

≤M
(

c2z3

a(a+ x3)
− r

k

)
(x− x3)

2 +
(x− x3)(z− z3)

(a+ x)(a+ x3)
(am2−aMc2−Mc2x3)

+ y
(

m1k
a+ k

+
Mc1x3

a
− λ z3

b
−d1

)
.

Suppose M = am2
c2(a+x3)

. Thus, cDq ≤ 0 when z3 <
r(a+x3)a

c2k and m1k
a+k +

Mc1x3
a − λ z3

b < d1. Hence

the theorem is proved. �

Theorem 4. The equilibrium point E4 of model (1) is globally asymptotically stable if ξ ν2 +

λν2z4 +ξ y4z4 +λy2
4z4−ξ ρz4−λρy4z4−ξ y4ρ−λρy4z4 < 0 and r > k(c1y4 + c2z4).

Proof. The following positive definite Lyapunov function can be used.

V = N1

(
x− x4− x4 ln

(
x
x4

))
+ y− y4− y4 ln

(
y
y4

)
+N2

(
z− z4− z4 ln

(
z
z4

))
.

Computing the time derivative of V along the solution of model (1) and utilizing using Lemma

3.1 in [24],

cDqV ≤N1(x− x4)

(
r− rx

k
− c1y

a+ x
− c2z

a+ x

)
+(y− y4)

(
m1x
a+ x

− λ z
b+ y

−d1

)
+N2(z− z4)

(
m2x
a+ x

+
λy

b+ y
−ζ

)
≤N1(x− x4)

(
rx4

k
− rx

k
+

c1y4

a+ x4
− c1y

a+ x
+

c2z4

a+ x4
− c2z

a+ x

)
+(y− y4)

(
m1x
a+ x

− m1x4

a+ x4
+

λ z4

b+ y4
− λ z

b+ y

)
+N2(z− z4)

(
m2x
a+ x

− m2x4

a+ x4
+

λy
b+ y

− λy4

b+ y4

)
≤N1

(
c1y4 + c2z4

(a+ x)(a+ x4)
− r

k

)
(x− x4)

2 +(am1−N1c1a−N1c1x4)
(x− x4)(y− y4)

(a+ x)(a+ x4)

+(N2m2a−N1c2a−N1c2x4)
(x− x4)(z− z4)

(a+ x)(a+ x4)
− bλ (y− y4)(z− z4)

(b+ y)(b+ y4)

+
λ z4(y− y4)

2

(b+ y)(b+ y4)
− λy4(y− y4)(z− z4)

(b+ y)(b+ y4)
+

N2λb(y− y4)(z− z4)

(b+ y)(b+ y4)
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≤N1

(
c1y4 + c2z4−

r
k

)
(x− x4)

2 +(am1−N1c1a−N1c1x4)
(x− x4)(y− y4)

(a+ x)(a+ x4)

+(N2m2a−N1c2a−N1c2x4)
(x− x4)(z− z4)

(a+ x)(a+ x4)

+(N2λb−λb−λy4)
(y− y4)(z− z4)

(b+ y)(b+ y4)
+

λ z4(y− y4)
2

(b+ y)(b+ y4)

≤N1

(
c1y4 + c2z4−

r
k

)
(x− x4)

2 +(am1−N1c1a−N1c1x4)
(x− x4)(y− y4)

(a+ x)(a+ x4)

+(N2m2a−N1c2a−N1c2x4)
(x− x4)(z− z4)

(a+ x)(a+ x4)

+
ξ yz+λy2z4 +ξ y4z4 +λy2

4z4−ξ yz4−λyy4z4−ξ y4z−λyy4z4

(b+ y)(b+ y4)

≤N1

(
c1y4 + c2z4−

r
k

)
(x− x4)

2 +(am1−N1c1a−N1c1x4)
(x− x4)(y− y4)

(a+ x)(a+ x4)

+(N2m2a−N1c2a−N1c2x4)
(x− x4)(z− z4)

(a+ x)(a+ x4)

+
ξ ν2 +λν2z4 +ξ y4z4 +λy2

4z4−ξ ρz4−λρy4z4−ξ y4ρ−λρy4z4

(b+ y)(b+ y4)
,

where ξ = N2λb− λb− λy4. Suppose N1 = am1
c1(a+x4)

, N2 = m1c2
m2c1

, and ν < z, y < ρ . Thus,
cDqV (x,y,z) ≤ 0, when ξ ν2 +λν2z4 + ξ y4z4 +λy2

4z4− ξ ρz4−λρy4z4− ξ y4ρ −λρy4z4 < 0

and r > k(c1y4 + c2z4). By Lemma 4.6 in [25], it is proof that E4 is globally asymptotically

stable.

�

Now, the proof of the existence of transcritical bifurcation around the equilibrium point

E1(k,0,0) is given by using Sotomayor’s theorem.

Theorem 5 (Transcritical bifurcation around E1). The fractional-order model (1) undergoes a

transcritical bifurcation with respect to the bifurcation parameter H around E1 (k,0,0) when

H = Htr1 =
m2k
a+k −d2 and keeping ℜ01 < 1, while no saddle-node bifurcation can occur.

Proof. The Jacobian matrix for the model (1) around E1 when H = Htr1 is as follows:

(3) J(E1) =


−r − c1k

a+k − c2k
a+k

0 d1 (ℜ01−1) 0

0 0 0

 .
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A straightforward computation indicates that the Jacobian matrix (3) has zero eigenvalue

µ3. Here, µ1 = −r < 0 and µ2 = d1 (ℜ01−1) < when ℜ01 < 1. Let V = (ν1, ν2, ν3)
T =

(−c2kν3
r(a+k) , 0, ν3)

T and W = (τ1, τ2, τ3)
T = (0, 0, τ3)

T be the two eigenvectors corresponding to

the zero eigenvalue of the matrices J(E1) and (J(E1))
T , respectively. Where ν3 and τ3 are any

non zero real numbers. Therefore,

W T (FH(E1,Htr1)) = 0,

W T (DFH(E1,Htr1)V ) =−ν3τ3 6= 0,

W T (D2F(E1,Htr1)(V,V )) =

(
2b2λν2ν3

b3 +
2am2ν1ν3

(a+ k)2

)
τ3 6= 0.

By Sotomayor’s Theorem for local bifurcation [26], the fractional-order model (1) has a tran-

scritical bifurcation around E1 when H = Htr1 =
m2k
a+k −d2 as H passes through the value Htr1,

while no saddle-node bifurcation can occur. �

4. CONCLUSION

In this paper, a fractional-order eco-epidemiological model with infected predator and har-

vesting has been formulated and analyzed. The equilibrium points were identified and their

global properties were investigated. The existence of transcritical bifurcation was shown using

Sotomayor’s theorem. The threshold parameters (ℜ01 and ℜ02 ) were used to determine the

existence conditions of the equilibrium points.
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