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Abstract. This paper studies a bioeconomic model of three species of small pelagic marine species in Moroccan

coastal areas: Sardine, Sardinella and shark. The model combines competition and predation. Two areas are

proposed, one is polluted and the other is not. The model combines a biological part describing the evolution of

the biomass of stocks subjected to fishing mortality and an economic part explaining the mortality rate. We study

the existence and stability of equilibrium states through eigenvalue analysis and the Routh-Hirwitz criterion, then

introduce economic approaches to determine the effort needed to maximize the fishermen’s income. Numerical

simulations are performed. The objective of this paper is to study the impact of pollution on the existence, evolution

of biomass and predation, fishing effort, catches, and profits.
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1. INTRODUCTION

Marine pollution is defined as the direct or indirect introduction of wastes, substances, or

energy, including underwater sound sources of human origin, which results or is likely to result

in adverse effects on living resources and marine ecosystems [1]. The consequences of marine
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pollution include a loss of biodiversity [2], risks to human health [3], impediments to marine

activities such as fishing, tourism, and recreation [4], and reductions in the amenity value of the

marine environment.

This pollution can stem from human activities in the catchment area, including industrial,

agricultural, urban, or port origins, that reach the marine environment directly through dis-

charges into the sea or indirectly through rivers [5]. However, the true impact of marine pollu-

tion on the environment is difficult to determine as the precise quantities of pollutants that reach

the sea are not fully understood [6]. Further research is needed to deepen our knowledge on the

transfer of pollutants within watersheds and their fate in transition zones.

Our study focuses on the Moroccan coasts, which, due to its geographical location between

Europe and Africa, and between the Mediterranean and the Atlantic, offers a diverse range

of ecosystems and marine species. The Mediterranean Sea is a highly productive area for

fish, with numerous commercially important species caught in the region [7]. Fishing in the

Mediterranean Sea is largely based on the exploitation of pelagic fish species, such as Sardine

and Sardinella, and 450 species of fish in total are related to oceanic species found on the coasts

of Portugal or Morocco.

We examine two different areas in the Mediterranean Sea: a polluted area (Area A) and a non-

polluted area (Area B). Our focus is on the predator shark, and its relationship with small pelagic

species such as Sardine and Sardinella, considering the negative impact of pollution on their

existence, evolution, and exploitation. Within the framework of a differential equation-based

prey-predator and competition model, our results demonstrate the importance of continuous

monitoring of the marine environment to assess its health.

In this context, we can cite these works to demonstrate the importance of incorporating the

effects of pollution in bioeconomic models in order to understand the impacts of human ac-

tivities on marine ecosystems. In this work [8], the authors developed a bioeconomic model

to examine the impacts of marine pollution on a fishery system. The model incorporated both

biological and economic components, and the authors found that pollution can have significant

impacts on the long-term sustainability of the fishery.
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In [9], The authors developed a bioeconomic model to assess the impact of pollution on

marine biodiversity conservation. The model incorporated economic and ecological variables,

including the effects of fishing effort, pollution, and the interplay between predator and prey

species.

In this work [10], the athors used a bioeconomic model to evaluate the impacts of marine

pollution on fishing activities. The model considers the effects of pollution on fishing costs, rev-

enue, and effort, and assesses the implications for fishing communities. We can cite also [11],

where the authors study the predation interaction between phytoplankton and zooplankton un-

der their exploitation in multi-fishing zones using a bioeconomic spatiotemporal discrete model.

The entire domain is represented by a grid of colored cells, with two harvesting control strate-

gies used to guarantee the survival of the organisms.

This work will study a bioeconomic model of three fish populations, Sardine, Sardinella, and

shark, combining competition and predation. Our model is based on hypotheses that the three

fish populations grow according to a logistic equation and that predators compete with each

other for space and food. The bioeconomic model considers the negative effect of pollution

on fishing effort, catches, fishermen’s profits, and biomasses. In the first part of the work, we

will determine the equilibrium points of the biological system and study their stabilities. In a

subsequent part, we will introduce economic approaches to determine the effort necessary to

maximize each fisherman’s net economic income and perform numerical simulations to see the

impact of pollution on fishing effort, catches, and profits.

2. BIOLOGICAL MODEL DESCRIPTION, FORMULATION, AND ANALYSIS

2.1. The mathematical model and the hypotheses. In this study we are interested in the

study of three marine populations which are of the prey-predator type. The preys are distributed

in two different zones: the first zone is a unpolluted zone A and the second a polluted zone B.

These prey are the preferred prey of predators.

In the unpolluted zone A, the evolution of the biomass of prey in this zone is defined by

xA.They grow according to a logistic equation with growth rate r1 and carrying capacity K1.This

population is preyed with the response rate α1.
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In the second area; the polluted area B, the evolution of the biomass of prey in this zone is

defined by xB. They grow according to a logistic equation with growth rate r2 and carrying ca-

pacity K2. This population is preyed with the response rate α2. These preys die by the pollution

of this zone by the rate δ . So it is clear that r2 > δ .

The evolution of the biomass of predators is defined by y.These predators feed on prey from

both polluted and unpolluted areas where β1,β2 represent the rate of conversion to predators

of prey in non polluted zone and polluted zone respectively. The coefficient d represents the

natural mortality coefficient of the predator population. The parameters γ denote the coefficients

of toxicity mortality by feeding on prey from the polluted area. So it is clear that α2β2 > γ,d <

α1β1k1 and δ < α2β2.

Based on these given assumptions, we find the system that describes the evolution of the

biomass of these three marine populations

(1)


ẋA (t) = r1xA (t)

(
1− xA(t)

K1

)
−α1xA (t)y(t)

ẋB (t) = r2xB (t)
(

1− xB(t)
K2

)
−α2xB (t)y(t)−δxB (t)

ẏ(t) =−dy(t)+α1β1xA (t)y(t)+α2β2xB (t)y(t)− γy(t)xB(t)

Subject to initial conditions: xA (0)> 0,xB (0)> 0,y(0)> 0.

All the parametres used in this model are assumed to be positive and all variables are not

negative. Then the model proposed of the three populations can be rewritten as

(2)


ẋA (t) = xA (t) fA(xA(t),xB(t),y(t))

ẋB (t) = xB (t) fB(xA(t),xB(t),y(t))

ẏ(t) = y(t) f (xA(t),xB(t),y(t))

Note that

(3)


fA = r1

(
1− xA(t)

K1

)
−α1y(t)

fB = r2

(
1− xB(t)

K2

)
−α2y(t)−δ

f =−d +α1β1xA (t)+α2β2xB (t)− γxB(t)

The system (1) is defined in the field

Ω = {(xA,xB,y ∈ R/xA (0)> 0,xB (0)> 0,y(0)> 0)}
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2.2. Positivity and boundedness of the solutions.

Theorem 1. All the solutions of the system (2.1) with the initial conditions are positive and

bounded.

Proof. According to the system of equations (2.1) and the initial conditions we have

(4)


xA (t) = xA (0)exp

∫ t
0 fA(xA(τ),xB(τ),y(τ))> 0

xB (t) = xB (0)exp
∫ t

0 fB(xA(τ),xB(τ),y(τ))> 0

y(t) = y(0)exp
∫ t

0 f (xA(τ),xB(τ),y(τ))> 0

So, All the solutions are positive.

2) We consider

ϕ = β1β2xA +α2β2xB +α1β1y

its derivative with respect to time is given by

dϕ

dt = β2β1i1x1

(
1− x1

c1

)
+β13β32i2x2

(
1− x2

c2

)
+β13β23i3x3

(
1− x3

c3

)
− (β23β31α12 +β32α21)x1x2−β23β31(m1+p1)x1−β13β32(m2 + p2)x2

− β13β23(m3 + p3)x3

6 β23β31i1x1

(
1− x1

c1

)
+β13β32i2x2

(
1− x2

c2

)
+β13β23i3x3

(
1− x3

c3

)
For all η > 0, we have

dϕ

dt
+ηϕ(t)6 c1β23β31

(i1 +η)2

4i1
+ c2β13β32

(i2 +η)2

4i2
+ c3β13β23

(i3 +η)2

4i3

Then, there exists ε > 0, with
dϕ

dt
+ηϕ(t)< ε . By applying the theory of differential inequality,

we obtain

0 < ϕ(t)≤ ε

η
+

[
ϕ(x1(0),x2(0),x3(0)−

ε

η

]
e−ηt

so,

0 < lim
t→∞

ϕ(t)6
ε

η

Hence, all the solutions of the system with initial value in R3
+ are included in the following

domain {
(x1,x2,x3) ∈ R3

+/ ϕ <
ε

η
+ζ ,∀ζ > 0

}
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3. THE STEADY STATES OF THE SYSTEM

We propose to study the existence of equilibrium states and the stability of the interior equi-

librium point of our model [12].

3.1. Existence of different equilibrium points. The equilibrium states of the system are so-

lutions of the following system

(5)


r1xA (t)

(
1− xA(t)

K1

)
−α1xA (t)y(t) = 0

r2xB (t)
(

1− xB(t)
K2

)
−α2xB (t)y(t)−δxB (t) = 0

−dy(t)+α1β1xA (t)y(t)+α2β2xB (t)y(t)− γy(t)xB(t) = 0

This system of equations has eight solutions

i: The trivial equilibrium point P1(0,0,0) and the axial equilibrium points
P2 (K1,0,0) ,

P3

(
0,− 1

r2
(δK2−K2r2) ,0

)
P4

(
K1,− 1

r2
(δK2−K2r2) ,0

)
ii: The equilibrium points in the plane (xA,y) is P5

(
x(5)A ,0,y(5)

)
, where

 x(5)A = d
α1β1

y(5) = 1
α1

r1− d
α2

1 β1K1
r1

iii: The equilibrium points in the plane (xB,y) is P6

(
0,x(6)B ,y(6)

)
, where

 x(6)B =− d
γ−α2β2

y(6) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2

iv: The equilibrium points P7

(
x(7)A ,x(7)B ,y(7)

)
, where


x(7)A = K1

x(7)B =− d
γ−α2β2

y(7) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2
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v: The internal equilibrium point is P8

(
x(∗)A ,x(∗)B ,y(∗)

)
, where

x(∗)A = ∆1
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

x(∗)B = ∆2
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

y(∗) =− ∆3
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

with

∆1 = dα1K1r2− γδα1K1K2 + γα1K1K2r2− γα2K1K2r1 +α2
2 β2K1K2r1

+ δα1α2β2K1K2−α1α2β2K1K2r2

∆2 = dα2K2r1−δα2
1 β1K1K2 +α2

1 β1K1K2r2−α1α2β1K1K2r1

∆3 dr1r2 + γK2r1r2− γδK2r1 +δα2β2K2r1−α1β1K1r1r2−α2β2K2r1r2

The system of (3.1) has several solutions, but only one of them can give the coexistence of the

biomass of the three species; this solution is the point P8

(
x(∗)A ,x(∗)B ,y(∗)

)
4. THE STABILITY OF THE STEADY STATES

The variational matrix of system (2.1) is as follow

J =


J11 0 −α1xA

0 J22 −α2xB

α1β1y α2β2y−δy J33


where 

J11 = r1

(
1− xA

K1

)
−α1y

J22 = r2

(
1− xB

K2

)
−α2y(t)−δ

J33 =−d +α1β1xA +α2β2xB− γxB

Proposition 1. The steady state P1(0,0,0) is unstable.

The variational matrix of system at the steady state P1(0,0,0) is

J1 =


r1 0 0

0 r2−δ 0

0 0 −d


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The eigenvalues of P1 are 
λ1 = r1 > 0

λ2 = r2−δ > 0

λ3 =−d < 0

Proposition 2. The steady state P2 (K1,0,0) is unstable as shown in Figure 1.

The variational matrix of system at the steady state P2 (K1,0,0) is

J2 =


−r1 0 0

0 r2−δ 0

0 0 −d +α1β1k1


The eigenvalues of P2 are 

λ1 =−r1 < 0

λ2 = r2−δ > 0

λ3 =−d +α1β1k1 > 0

FIGURE 1. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 14, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.12 and d = 0.2
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Proposition 3. The steady state P3

(
0,− 1

r2
(δK2−K2r2) ,0

)
is unstable, see Figure 2.

The variational matrix of system at the steady state P3

(
0,− 1

r2
(δK2−K2r2) ,0

)
is

J3 =


r1 0 0

0 r2 +2(δ − r2)−δ
α2
r2
(δK2−K2r2)

0 0 −d− 1
r2
(δK2−K2r2)(α2β2− γ)


The eigenvalues of P3 are

λ1 = r1 > 0

λ2 =−r2 +2δ > 0

λ3 =−d− 1
r2
(δK2−K2r2)(α2β2− γ)> 0

FIGURE 2. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 14, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.12 and d = 0.2

Proposition 4. The steady state P4

(
K1,− 1

r2
(δK2−K2r2) ,0

)
is stable, as shown in Figure 3.
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The variational matrix of system at the steady state P4

(
K1,− 1

r2
(δK2−K2r2) ,0

)
is

J4 =


−r1 0 −α1k1

0 r2 +2(δ − r2)−δ
α2
r2
(δK2−K2r2)

0 0 −d +α1β1k1− 1
r2
(δK2−K2r2)(α2β2− γ)


The eigenvalues of P4 are

λ1 =−r1 < 0

λ2 =−r2 +δ < 0

λ3 =−d +α1β1k1− 1
r2
(δK2−K2r2)(α2β2− γ)< 0

FIGURE 3. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 14, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.03 and d = 0.2

Proposition 5. The steady state P5

(
x(5)A ,0,y(5)

)
, where x(5)A = d

α1β1

y(5) = 1
α1

r1− d
α2

1 β1K1
r1
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is unstable, see Figure 4.

The variational matrix of system at the steady state P5

(
x(5)A ,0,y(5)

)
, where x(5)A = d

α1β1

y(5) = 1
α1

r1− d
α2

1 β1K1
r1

is

J5 =


−r1(

3d
α1β1k1

) 0 −α1
d

α1β1

0 r2−α2(
1

α1
r1− d

α2
1 β1K1

r1)−δ 0

r1(β1− d
α1K1

) 1
α1

r1− d
α2

1 β1K1
r1(α2β2− γ) −2d


The eigenvalues of P5 are

λ1 =−r1(
3d

α1β1k1
)< 0

λ2 = r2−α2(
1

α1
r1− d

α2
1 β1K1

r1)−δ > 0

λ3 =−2d < 0

FIGURE 4. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 10, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.12 and d = 0.2
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Proposition 6. The steady state P6

(
0,x(6)B ,y(6)

)
, where x(6)B =− d

γ−α2β2

y(6) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2

nothing can be concluded, see Figure 5.

The variational matrix of system at the steady state P6

(
0,x(6)B ,y(6)

)
, where x(6)B =− d

γ−α2β2

y(6) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2

is:

J6 =


r1−α1y(6) 0 0

0 r2(1+ 2d
k2γ−α2β2K2

)−α2y(6)−δ α2
d

γ−α2β2

α1β1y(6) y(6)(α2β2− γ) 0


The eigenvalues of P6 are

λ1 = r1−α1y(6) < 0

λ2 = r2(1+ 2d
k2γ−α2β2K2

r1)−α2y(6)−δ > 0

λ3 = 0

where y(6) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2
.
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FIGURE 5. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 14, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.03 and d = 0.2

Proposition 7. The steady state P7

(
x(7)A ,x(7)B ,y(7)

)
, where


x(7)A = K1 > 0

x(7)B =− d
γ−α2β2

> 0

y(7) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2
< 0

is unstable, see Figure 6.

The variational matrix of system at the steady state P7

(
x(7)A ,x(7)B ,y(7)

)
, where


x(7)A = K1

x(7)B =− d
γ−α2β2

y(7) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2
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is:

J7 =


−r1−α1y(7) 0 −α1k1

0 r2(1+ 2d
k2γ−α2β2K2

)−α2y(7)−δ α2
d

γα2β2

α1β1y(7) y(7)(α2β2− γ) α1β1K1



The eigenvalues of P7 are


λ1 =−r1−α1y(7) < 0

λ2 = r2(1+ 2d
k2γ−α2β2K2

)−α2y(7)−δ > 0

λ3 = α1β1K1 > 0

where y(7) =−dr2−γδK2+γK2r2+δα2β2K2−α2β2K2r2
α2

2 β2K2−γα2K2
.

FIGURE 6. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 14, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.03 and d = 0.2
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Proposition 8. The steady state P8

(
x(∗)A ,x(∗)B ,y(∗)

)
, where


x(∗)A = ∆1

α2
1 β1K1r2+α2

2 β2K2r1−γα2K2r1

x(∗)B = ∆2
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

y(∗) =− ∆3
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

with

∆1 = dα1K1r2− γδα1K1K2 + γα1K1K2r2− γα2K1K2r1 +α2
2 β2K1K2r1

+ δα1α2β2K1K2−α1α2β2K1K2r2

∆2 = dα2K2r1−δα2
1 β1K1K2 +α2

1 β1K1K2r2−α1α2β1K1K2r1

∆3 = dr1r2 + γK2r1r2− γδK2r1 +δα2β2K2r1−α1β1K1r1r2−α2β2K2r1r2

is unstable.

The variational matrix of system at the steady state P8

(
x(∗)A ,x(∗)B ,y(∗)

)
, is

J8 =


r1(1−2 x(∗)A

k1
)−α1y(∗) 0 −α1x(∗)A

0 r1(1−2 x(∗)B
k2
)−α1y(∗)−δ −α2x(∗)B

α1β1y(∗) y(∗)(α2β2− γ) (α2β2− γ)x(∗)B


where 

x(∗)A = ∆1
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

x(∗)B = ∆2
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

y(∗) =− ∆3
α2

1 β1K1r2+α2
2 β2K2r1−γα2K2r1

with

∆1 = K1 (α1r2 (d + γK2)+α2β2K2 (δα1 +α2r1))−K1K2 (γ (δα1 +α2r1)+α1α2β2r2)

∆2 = α2K2r1 (d−α1β1K1)−α2
1 β1K1K2 (δ − r2)

∆3 = (dr1r2 + γK2r1r2− γδK2r1 +δα2β2K2r1−α1β1K1r1r2−α2β2K2r1r2)
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In this cace, the characteristic polynomial is given by: P(λ ) = a0λ 3 +a1λ 2 +a2λ +a3 where

a0 = 1

a1 =
1
k1

r1x∗A +
1
k2

r2x∗B− 1
y∗ > 0

a2 = α2
1 β1x∗Ay∗−α2x∗By∗ (δ −α2β2)− 1

y∗

(
1
k1

r1x∗A +
1
k2

r2x∗B
)
+ 1

k1k2
r1r2x∗Ax∗B > 0

a3 =
r2α2

k2
(x∗B)

2y∗ (δ −α2β2)+
(

r1
k1

x∗A +
r2
k2

x∗B
)(

y∗
(
α2

1 β1x∗A−α2x∗B (α2β2−δ )
))

−α2
1

β1
k1

r1(x∗A)
2y∗− 1

k1k2
r1r2x∗A

x∗B
y∗ > 0

By using the conditions of stability of Routh-Hurwitz, one can proof that a0,a1,a2,a3 and a0a−

a0a3 are positive.

Then the interior equilibrium point P8

(
x(∗)A ,x(∗)B ,y(∗)

)
is locally asymptotically stable, as shown

in the Figure 7.

FIGURE 7. Dynamical behaviour and Phase portraits of the three populations for

r1 = 0.8, r2 = 0.85, K1 = 10, K2 = 12, δ = 0.05, α1 = 0.2, α2 = 0.3, β1 = 0.18,

β2 = 0.2, γ = 0.12 and d = 0.2
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5. PROFIT MAXIMISIZATION

The main objective of this part is to maximize the profits of the fishing fleets which exploit

these marine species from their fishing effort (see [13]). For it, the three species proposed in

this model are assumed to be caught by three fishing fleets. So the model becomes as follows
ẋA (t) = r1xA (t)

(
1− xA(t)

K1

)
−α1xA (t)y(t)−q1E1xA

ẋB (t) = r2xB (t)
(

1− xB(t)
K2

)
−α2xB (t)y(t)−δxB (t)−q2E2xB

ẏ(t) =−dy(t)+α1β1xA (t)y(t)+α2β2xB (t)y(t)− γxBy(t)−q3E3y

(2)

where qi represents the catchability coefficient and
(
Ei j
)

1≤i, j≤3represents the fishing effort de-

ployed by fishing fleets to capture the species, it is defined as the product of fishing activity and

fishing power.

The solution of the system (2) at bioeconomic equilibrium is given by


xA = b11E1 +b12E2 +b13E3 + x∗A

xB = b21E1 +b22E2 +b23E3 + x∗B

y = b31E1 +b32E2 +b33E3 + y∗

where 

b11 =− α2K1K2(γ−α2β2)q1
α2

1 β1K1r2−α2K2r1(γ−α2β2)

b12 =
α1K1K2(γ−α2β2)q2

α2
1 β1K1r2−α2K2r1(γ−α2β2)

b13 =− α1K1q3r2
α2

1 β1K1r2−α2K2r1(γ−α2β2)

x∗A = dα1K1r2+(δ−r2)(α1K1K2(α2β2−γ))−α2K1K2r1(γ−α2β2)

α2
1 β1K1r2−α2K2r1(γ−α2β2)

b21 =− α1α2β1K1K2q1
α2

1 β1K1r2−α2K2r1(γ−α2β2)

b22 =
α2

1 β1K1K2q2

α2
1 β1K1r2−α2K2r1(γ−α2β2)

b23 =− α2K2q3r1
α2

1 β1K1r2−α2K2r1(γ−α2β2)

x∗B =
K2(α2r1(d−α1β1K1)−α2

1 β1K1(δ−r2))
α2

1 β1K1r2−α2K2r1(γ−α2β2)

b31 =
α1β1K1q1r2

α2
1 β1K1r2−α2K2r1(γ−α2β2)

b32 =− K2q2r1(γ−α2β2)

α2
1 β1K1r2−α2K2r1(γ−α2β2)

b33 =
q3r1r2

α2
1 β1K1r2−α2K2r1(γ−α2β2)

y∗ = r1((r2−δ )(K2(α2β2−γ))−dr2+α1β1K1r2)

α2
1 β1K1r2−α2K2r1(γ−α2β2)
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If we set E = (E1,E2,E3)
T ,Y ∗ = (x∗A,x

∗
B,y
∗)T and B =

(
−bi j

)
1≤i, j≤3 with bii < 0 for i = 1,2,3.

Then we can write the solution of the system(2) in the following matrix form

X =−BE +X∗

We want to maximize the profits of the fishing fleets that exploit these marine species. Accord-

ing to Gordon, the profit formula is defined by

Πi (E) = (T R)i− (TC)i

where (T R)i = pi×Hi j is the Total Revenue with pi represents the price, Hi j = q jEi jX j is the

catches of species j by fisherman i (X1 = xA,X2 = xB,X3 = y) ,Ei j is the effort of the fisherman

i to exploit the species j and (TC)i =
〈
ci,E i〉 is Total Cost with ci a constant cost per unit of

harvesting effort of the fisherman i. We note that H j =
3
∑
j=1

Hi j the total catches of species j by

all fishermen.

Therefore the final formula of Total Revenue

(T R)i = p1Hi1 + p2Hi2 + p3Hi3 =
〈
E i,−pqBE i + pqY ∗− pqBE j〉

We thus obtain the final formula of the profit of fisherman i is given by

Πi (E) =
〈
E i,−pqBE i + pqY ∗− ci− pqBE j〉

In order to maximize the profits of the fishermen, we must first of all take into consideration

the maintenance of the biodiversity of the three marine species, so we will assume that all the

biomasses remain positive Y = −BY +Y ∗ ≥ 0 i.e. for the fisherman i we must have BE i ≤

BE j−Y ∗.

Each of the three fleets tries to maximize their profits and achieve a fishing effort that is an

optimal response to the effort of the other fishing fleets. And so, we have a Nash equilibrium

situation where the strategy of each fishing fleet is optimal, taking into account the strategy of

the other fishing fleets (see [14] and [15]). This problem can be translated mathematically into

the following three problems:
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The first fishing fleet must solve this problem (P)1

(P)1 =



maxΠ
(
E1)= 〈E1,−pqBE1 + pqY ∗− c1− pqBE2− pqBE3〉

subject to BE1 ≤−BE2−BE3 +Y ∗

E1 ≥ 0

E2,E3 given

The seconde fishing fleet must solve this problem (P)2

(P)2 =



maxΠ
(
E2)= 〈E2,−pqBE2 + pqY ∗− c2− pqBE1− pqBE3〉

subject to BE2 ≤−BE1−BE3 +Y ∗

E2 ≥ 0

E1,E3 given

The third fishing fleet must solve this problem (P)3

(P)3 =



maxΠ
(
E3)= 〈E3,−pqBE3 + pqY ∗− c3− pqBE1− pqBE2〉

subject to BE3 ≤−BE1−BE2 +Y ∗

E3 ≥ 0

E1,E2 given

The point
(
E1,E2,E3) is called the Nash equilibrium point if and only if E1 is a solution of the

problem (P)1 for given E3,E2 and E2 is a solution of the problem (P)2 for given E1,E3and E3

is a solution of the problem (P)3 for given E1,E2.

In order to find our Nash equilibrium point we will use the essential conditions of Karush-

Kuhn-Tucker (KKT). By applying these conditions to the first problem (P)1 this will give us

the existence of constants u1 ∈ R3
+, v1 ∈ R3

+ and µ1 ∈ R3
+ such that

(KKT )1


2pqBE1− pqY ∗+ c1 + pqBE2 + pqBE3−u1−BT µ1 = 0

BE1 + v1 =−BE2−BE3 +Y ∗〈
u1,E1〉= 〈µ1,v1〉= 0

By applying the conditions of (KKT) to the second problem (P)2, this will give us the existence

of constants u2 ∈ R3
+, v2 ∈ R3

+ and µ2 ∈ R3
+ such that
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(KKT )2


2pqBE2− pqY ∗+ c2 + pqBE1 + pqBE3−u2−BT µ2 = 0

BE2 + v2 =−BE1−BE3 +Y ∗〈
u2,E2〉= 〈µ2,v2〉= 0

In the same way, by applying the essential conditions of (KKT) to (P)3, this will give us the

existence of constants u3 ∈ R3
+, v3 ∈ R3

+ and µ3 ∈ R3
+ such that

(KKT )3


2pqBE3− pqY ∗+ c3 + pqBE1 + pqBE2−u3−BT µ3 = 0

BE2 + v3 ≤−BE1−BE2 +Y ∗〈
u3,E3〉= 〈µ3,v3〉= 0

From the previous problems we get the following expressions

u1 = 2pqBE1− pqY ∗+ c1 + pqBE2 + pqBE3−BT µ1

u2 = 2pqBE2− pqY ∗+ c2 + pqBE1 + pqBE3−BT µ2

u3 = 2pqBE3− pqY ∗+ c3 + pqBE1 + pqBE2−BT µ3

v1 = v2 = v3 =−BE1−BE2−BE3 +Y ∗〈
ui,E i〉= 〈µ i,vi〉= 0 ∀i = 1,2,3

ui,µ i,vi and E i ≥ 0 ∀i = 1,2,3

We have the scalar product of µ i and vi is zero and to maintain the biodiversity of the three

marine species, it is natural to assume that all biomasses remain strictly positive, i.e. Y ∗ > 0

then vi > 0 and µ i = 0,∀i = 1,2,3. We note v := v1 = v2 = v3 therefore the previous system

become 

u1 = 2pqBE1 + pqBE2 + pqBE3 + c1− pqY ∗

u2 = pqBE1 +2pqBE2 + pqBE3 + c2− pqY ∗

u3 = pqBE1 + pqBE2 +2pqBE3 + c3− pqY ∗

v =−BE1−BE2−BE3 +Y ∗〈
ui,E i〉= 〈µ i,v

〉
= 0 ∀i = 1,2,3

ui,µ i,vi and E i ≥ 0 ∀i = 1,2,3

We can also write it in the following matrix form w = NL+q where
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w =


u1

u2

u3

v

 ,N =


2pqB pqB pqB BT

pqB 2pqB pqB I

pqB pqB 2pqB I

−B −B −B I

 ,L =


E1

E2

E3

0

 and q =


c1− pqY ∗

c2− pqY ∗

c3− pqY ∗

Y ∗

 .

The generalized Nash equilibrium problem is equivalent to the following Linear Complemen-

tarity Problem LCP(N,q) : find vectors w,L ∈ R16such that
w = NL+q≥ 0

L,w≥ 0

LT w = 0

The LCP(N,q) has a unique solution for every q if and only if N is a P−matrix.

∆1 =−2p1q1b11 > 0

∆2 = 4p2q2b11b22−b12b21 > 0

∆3 = b12b31b23 +b21b13b32 +8p3q3b11b22b33−2pqb11 > 0

∆4 = 12p4q4b2
11b22b33 + 2pqb11b12b31b23 + 2pqb11b21b13b32 − 3p2q2b2

11b23b32 − 4p2

q2b11b12b21b33−4p2q2b11b13b22b31 > 0

∆5 = 18p5q5b2
11b2

22b33+4p2q2b11b12b22b31b23+4p2q2b11b21b13b22b32−6p3q3b11b13b2
22b31−

6p3q3b2
11b22b23b32−8p3q3b11b12b21b22b33 > 0

∆6 = 27p6q6b2
11b2

22b2
33 + 8p3q3b11b21b13b22b32b33 + 8p3q3b11b12b22b31b23b33 −

12p4q4b11b12b21b22b2
33−12p4q4b11b13b2

22b31b33−12p4q4b2
11b22b23b32b33 > 0

∆7 = 36p7q7b3
11b2

22b2
33 − 18p5q5b2

11b12b21b22b2
33 − 18p5q5b2

11b13b2
22b31b33 − 16p5q5b3

11

b22b23b32b33 +12p4q4b2
11b12b22b31b23b33 +12p4q4b2

11b21b13b22b32b33 > 0

∆8 = 48p8q8b3
11b3

22b2
33 − 24p6q6b2

11b13b3
22b31b33 − 24p6q6b3

11b2
22b23b32b33 − 27p6q6b2

11

b12b21b2
22b2

33 +18p5q5b2
11b12b2

22b31b23b33 +18p5q5b2
11b21b13b2

22b32b33 > 0

∆9 = 64p9q9b3
11b3

22b3
33 − 36p7q7b2

11b12b21b2
22b3

33 − 36p7q7b2
11b13b3

22b31b2
33 − 36p7q7b3

11

b2
22b23b32b2

33 +27p6q6b2
11b12b2

22b31b23b2
33 +27p6q6b2

11b21b13b2
22b32b2

33 > 0

∆10 = 32p8q8b3
11b3

22b3
33 + 16p8q8b4

11b3
22b3

33 + 64p9q9b3
11b3

22b3
33 − 12p7q7b3

11b2
12b2

22b3
33 −

12p7q7b3
11b2

13b3
22b2

33 + 16p8q8b3
11b2

12b2
22b3

33 + 16p8q8b3
11b2

13b3
22b2

33− 60p7q7b2
11b12b21b2

22b3
33−

12p7q7b3
11b12b21b2

22b3
33 − 18p6q6b3

11b2
22b23b32b2

33 − 60p7q7b2
11b13b3

22b31b2
33 −

9p6q6b4
11b2

22b23b32b2
33 − 12p7q7b3

11b13b3
22b31b2

33 − 36p7q7b3
11b2

22b23b32b2
33 +
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45p6q6b2
11b12b2

22b31b23b2
33 + 45p6q6b2

11b21b13b2
22b32b2

33 + 9p6q6b3
11b12b13b2

22b23b2
33 +

9p6q6b3
11b12b13b2

22b32b2
33 + 9p6q6b3

11b12b2
22b31b23b2

33 + 9p6q6b3
11b21b13b2

22b32b2
33 −

12p7q7b3
11b12b13b2

22b23b2
33−12p7q7b3

11b12b13b2
22b32b2

33 > 0

∆11 > 0

∆12 > 0

Since the matrix N of our problem is P−matrix, we can deduce that the linear complementarity

problem LCP(N,q) admits one and only one solution. The solution is given by
E1 = 1

4B−1
(

Y ∗− c1

pq

)
E2 = 1

4B−1
(

Y ∗− c2

pq

)
E3 = 1

4B−1
(

Y ∗− c3

pq

)
where

B−1 =


− 1

K1q1
r1 0 −α1

q1

0 − 1
K2q2

r2 −α2
q2

α1
β1
q3

− 1
q3
(γ−α2β2) 0


Finally, we obtain the fishing effort that maximizes the profit of the first fisherman for caching

the prey population in non-polluted zone as follow

E11 =
1
4

(
r1

K1q1

(
c1

p1q1
− x∗A

)
+

α1

q1

(
c1

p3q3
− y∗

))
the fishing effort that maximizes the profit of the first fisherman for caching the prey population

in polluted zone as follow

E12 =
1
4

(
r2

K2q2

(
c1

p2q2
− x∗B

)
+

α2

q2

(
c1

p3q3
− y∗

))
the fishing effort that maximizes the profit of the first fisherman for caching the predator popu-

lation as follow

E13 =
1
4

(
α1

β1

q3

(
c1

p1q1
− x∗A

)
+

γ−α2β2

q3

(
c1

p2q2
− x∗B

))
the fishing effort that maximizes the profit of the second fisherman for caching the prey popu-

lation in non-polluted zone as follow

E21 =
1
4

(
r1

K1q1

(
c2

p1q1
− x∗A

)
+

α1

q1

(
c2

p3q3
− y∗

))
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the fishing effort that maximizes the profit of the second fisherman for caching the prey popu-

lation in polluted zone as follow

E22 =
1
4

(
r2

K2q2

(
c2

p2q2
− x∗B

)
+

α2

q2

(
c2

p3q3
− y∗

))
the fishing effort that maximizes the profit of the second fisherman for caching the predator

population as follow

E23 =
1
4

(
α1

β1

q3

(
x∗A−

c2

p1q1

)
+

γ−α2β2

q3

(
c2

p2q2
− x∗B

))
the fishing effort that maximizes the profit of the third fisherman for caching the prey population

in non-polluted zone as follow

E31 =
1
4

(
r1

K1q1

(
c3

p1q1
− x∗A

)
+

α1

q1

(
c3

p3q3
− y∗

))
the fishing effort that maximizes the profit of the third fisherman for caching the prey population

in polluted zone as follow

E32 =
1
4

(
r2

K2q2

(
c3

p2q2
− x∗B

)
+

α2

q2

(
c3

p3q3
− y∗

))
the fishing effort that maximizes the profit of the third fisherman for caching the predator pop-

ulation as follow

E33 =
1
4

(
α1

β1

q3

(
x∗A−

c3

p1q1

)
+

γ−α2β2

q3

(
c3

p2q2
− x∗B

))
6. NUMERICAL SIMULATION

In this part, we will see the impact of pollution on the profits of fishermen, their fishing effort

as well as on the catches made by these fishermen.

According to Figure 8 which represents the evolution of catches according to the rate of pollu-

tion, where the bars in blue represent the catches made of the first species, the bars in orange

represent the catches made by the fishing fleets of the second species and the bars in gray are

the catches of the third species, while the yellow bars are the total catches of the three species

made by the fishing fleets.

For the catches of the first species is higher followed by the catches of the second species then

the catches of the third species. For the catches of the first species, we note that the catches
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are almost stable with a small variation which is almost negligible even if the pollution rate

increases.

FIGURE 8. Evolution of catches in relation to pollution rate

For the catches of the second species, we notice that from the value 0.1 to the value 0.4 of the

pollution rate, the catches are almost stable with a very small decrease and from the pollution

rate equal to 0.5 up to the value 1 we notice a large reduction in catches.

For the captures of the third species, we note that from the value 0.1 to the value 0.4 of the

pollution rate, the captures are almost stable and from the pollution rate equal to 0.5 to the value

1 we notice a large decrease in the level of catches of this species. Thus, the total catches of

these three marine species are also decreasing.

FIGURE 9. Evolution of profits according to the variation of the pollution rate

For the profits, we obtained the results mentioned in Figure 9, where the orange lines rep-

resent the profits made by the exploitation of the first species, the yellow line represents the
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profits made by the exploitation of the second species while the green line the profits made by

the exploitation of the third species and the last blue line represents the total profit from the

exploitation of the three marine species. For the profits made by the exploitation of the first

species and which is in an unpolluted area, we note that the profits are almost the same and are

stable. For the profits made by the exploitation of the second species and which is in a polluted

area, we notice that from the pollution rate equal to 0.1 to 0.4, a decrease then from the value

0.5 to the value 1 we notice a very large decrease in profits. The same applies to the profits

made by the exploitation of the third species; which is the predator of the two previous marine

species, we notice at first that the profits are almost stable from the value 0.1 up to the value

0.4 with a very small decrease and after this value 0.4, the profits start to decrease very quickly

each time the level of pollution increases.

FIGURE 10. Evolution of the fishing effort according to the variation of the

pollution rate.

We now move on to the fishing effort deployed by fishermen to capture these three marine

species where the orange bars represent the fishing effort deployed to capture the first species,

the yellow bars represent the fishing effort deployed to capture the second species and the green

bars represent the fishing effort deployed to catch the first species while the blue curve repre-

sents the total fishing effort as shown in Figure 10. We note that the fishing effort deployed to

catch the first species is almost the same for all values of the pollution rate. For the fishing effort

deployed to catch the second species, we notice that from the pollution rate equal to 0.1 up to

the value 0.4 the effort was almost stable then from the value 0.5 up to the value 1 we notice
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a large decrease in fishing effort. Similarly for the fishing effort deployed to capture the third

species, we note that the effort was stable from the value 0.1 up to the value 0.4 and after this

value we notice a large decrease in the level of the fishing effort. The explanation that can be

given for the results obtained in Figures 8, 9 and 10 is that for the first species which is found in

an unpolluted environment, the fishing effort, the catches and the profits have not changed since

this area is not polluted and this species has no direct interaction with other species found in a

polluted area. For the second species which is in a polluted area and which is the prey of the

third species, where the latter feeds on the two species the first which is found in an unpolluted

area and the second in a polluted area, the second species after a certain higher value this species

begins to be reduced by this pollution and even to die which directly affects the predator which

is gradually reduced and its biomass too. This reduction in the level of the second and third

species thus implies a reduction in the level of fishing effort because pollution makes marine

species more vulnerable to capture. This reduction in the level of fishing effort thus implies a

reduction in the level of captures and therefore a reduction in the level of captures since this-

Pollution has a negative effect on the seabed and the entire ecosystem because it can kill these

species or cause diseases that can be transmitted to humans.

7. CONCLUSION

In this work, we conclude that the effect of pollution on fishery resources is significant, partic-

ularly for both polluted and unpolluted marine areas. Our bioeconomic model, which considers

the interplay between competition and predation among three fish populations (Sardine, Sar-

dinella, and Shark) and the impact of pollution on fishing effort, catches, fishermen’s profits,

and biomasses, is proposed as a tool to study this issue. Our results showed the importance of

controlling the exploitation of this marine population in ensuring their sustainability, and high-

lighted the critical role that pollution plays in affecting the mortality rates of fishery resources

in both polluted and unpolluted marine areas also has a significant impact on fishing effort,

catches, and profits in the fishery industry.
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