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Abstract. We consider the interaction between mullets and osprey populations. The main objective of this work

is that the osprey must choose the predation intensity over time in a way that maximizes the present value of the

utility stream derived by consuming mullets. The model has features of both convex and concave optimal control

problems and therefore, phase plane analysis has to be combined with the problem of synthesis of bang-bang,

singular and chattering solution pieces.
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1. INTRODUCTION

Mathematical ecology is one of the primeval studies in both biology and applied mathemat-

ics. To define any type of biological phenomena, such as competition between two species,

predation, refugia, extinction of species, etc., it is necessary to have a good knowledge of math-

ematics. In these contexts, mathematical models can be used as an effective tool to realistically

describe and analyze such phenomena. Moreover, an appropriate mathematical model can be
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utilized to accurately predict the future behavior of an ecosystem. Chiefly in optimization, the

use of its methods in ecology has been widely advocated by K. E. F. Watt ( [1], Chapter 13).

One of the first and efficient optimization techniques to solve dynamic system is the Pontrya-

gin’s Maximum Principle. It is used in optimal control theory to find the best possible control

for taking a dynamical system from one state to another. It has been very useful in the study

of optimal rocket trajectories, [2]. A major reason for its success in this field is that Newton’s

Laws of Motion provide very accurate mathematical models of the dynamics of the rocket.

FIGURE 1. Optimal control of a prey-predator model. Source [6]

The main obstacle to the utilization of optimal control theory in ecology is the lack of accurate

mathematical models of the dynamics of ecosystems. One ecosystem that has been the topic

of a variety of mathematical modelings is the prey-predator system. Recently, T. Royama [3]

made a comparative study of many of the mathematical models that are proposed for the prey-

predator system. In this study, they used the Lotka-Volterra model. Utilizing such a simplified

model of insect populations will facilitate the integration of the use of optimal control theory

in ecology. There’s no difficulty in extending this analysis to other prey-predator models or a

model of the prey-predator system with age structures. Most works on the prey-predator system

were done on the uncontrolled models. A first and original study of a controlled prey-predator

system was introduced by G. Gause [4]. Later L. G. Slobodkin et al. [5] limited themselves to

regulate variables that are a- priori proportional to the prey and predator numbers. Additionally,

the category of control variables they employed is far more general. In an other work, B.

S. Goh et al. [6] proposed the use of optimal control theory to obtain optimal strategies for

the control of a prey-predator system. Here, two sorts of control variables were used: one

control variable is the rate of release of predators or prey which are bred in laboratories, the
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second adverse variable is the rate of application of an insecticide. An interesting result of

this contribution was the efficient regulation of a pest through an insecticide that destroys only

the predators but leaves the pests unharmed. This is due to the fact that the prey-predator

system may be a phase space. The extent of the control variable and therefore, the timing of

its application are often manipulated to supply desired responses from the dynamical system.

Another interesting result is that the system is often controlled by releasing pests that are bred

in laboratories. These findings could also be useful in formulating an integrated control scheme

for the management of a pest (see Figure 1). The optimal control has been widely studied

by researchers from a spread of backgrounds, recently upscaled and varied in the literature.

In [7], A. Gohary et al. discuss the problem of optimal control for the steady state of the Lotka-

Volterra model. The conditions of the asymptotic stability of the steady state of this model

aim to obtain the optimal control functions. In this study, the optimal Lyapunov function is

employed to help to estimate the domain of attraction which is acquired by solving a partial

differential equation that is not easily solvable for all the systems. In [8], D. Amalia. R. U

discussed a predator prey mathematical model with infection and harvesting of prey that only

occur in the prey population, additionally, it is assumed that the prey infection would not affect

the predator population. In their work, they analyzed the mathematical model of predator-prey

with infection and harvesting of prey. Optimal control is applied within the model to help

prevent the prey infection, where the control aims to increase the susceptible prey. In [9],

Simon, J. S. H. formulated an optimal control problem for a predator-prey model with the

disease within the prey population. This model is an adapted Lotka-Volterra model but with

an applied SI epidemic dynamics on the prey population. Two controls are then applied to the

system: first, a separating control, that is intended to separate the sound prey from the infected

prey population, while the other is a treatment control aims to decrease the speed of death

caused by the disease. They then formulated a finite-time horizon optimal control problem

by minimizing the infected prey population, and thus, the cost induced from the appliance

of the controls. In [10], S. AL-Nassir proposed a two-dimensional continuous prey-predator

model with first-order differential equations. All the possible equilibria and their local stability

are investigated. This autonomous system is then extended to an optimal control model by
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proposing an impact variable, which reduces the danger of extinction of the prey population. In

[11], I. Agmour et al. formulated a bioeconomic model of a prey and predator planktonic species

and studied the positivity and boundedness of the solution. They also analyzed the possible

equilibrium and their local stability. Additionally, the worldwide stability of the system around

the interior equilibrium was investigated as well as the the optimal harvesting policy to debate

the dynamical profit of the interacting planktonic species. To point out the impact of the toxicity

coefficient, they needed to make analytical estimates that were validated using simulations.

In [12], M. Lamlili E.N. et al. proposed an optimal control approach in their work where

they applied the Pontryagin minimum principle to characterize the optimal control, to attenuate

the population of susceptible individuals, and also to reduce the mortality rate of coronary

heart disease. A numerical simulation was administered to show the impact of the proposed

optimal control. In [13], M. Lamlili E.N. et al. showed that mathematical modeling remains

one of the best ways to analyze the spread of the coronavirus and control its prevalence. In

this context, they proposed a SIAR compartment model with control to reduce the reproduction

number R0 and slow down the epidemic outbreak. Another lively area of research in the context

of determining dynamics and interaction of predator-prey is the study of the utility function.

Ecologists often utilize utility functions to check several hypotheses. In recent works, N. Serra

[14] discussed a preliminary study on the possible connection between the Lotka-Volterra model

and predator-prey utility functions. Also, they defined a generalization of the utility functions to

the predator-prey population, seeing that the utility functions depend on parameters such as the

adopted strategies, physical efficiency of the predator versus the prey, environmental conditions

and prey prudence. In this context, N. Serra [15] proposed a mathematical model to elucidate

the interacting behavior of predator and prey. This model is based on the utility function of

the competing individuals. Such functions depend on various parameters that suitably describe

animal instincts, considering both physical and environmental conditions. In A. Idmbarek et

al. [16], we examined the connection between prey and predators by studying the interactive

behavior of this model and by using the change of prey. the goal is to maximize the profit

function of each predator by determining the strategy provided by each predator to maximize

its profit. To this end, we maximized this utility function being constrained by balance equations
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between biomass and trophic. The novelty of this work is to combine two different approaches:

the optimal control and the utility function, in order to model and to predict the prey-predator

behavior. The main objective of our study is to obtain decision rules for the predator. The

present investigation is organized as follows: In the next section 2, we define a biological model

description for osprey and mullets interaction and then we transformed this last problem into

the state variable optimal control problem. In Section 3, we apply standard control theory in

current value terms on the model described in the first section to find the optimal consumption

rules. In Section 4, we compute the possible equilibrium and we study their stability.

2. MODEL DESCRIPTION, FORMULATION, AND ANALYSIS

The osprey or more specifically the western osprey (Pandion Haliaetus) also called sea hawk

and river hawk is a diurnal, fish-eating bird of prey with a cosmopolitan range. It is an outsized

raptor, reaching quite 60 cm (24 in) long and 180 cm (71 in) across the wings (see Figure 2).

FIGURE 2. The length and width of osprey. Source: https://www.allaboutbirds.

org/guide/Osprey/photo-gallery/60320591

It is brown on the upper parts and predominantly greyish on the highest and underparts.

The osprey tolerates an honest sort of habitat, nesting in any location near water providing an

adequate food supply. It can be found on all continents except Antarctica, although in South

America it lives only as a non-breeding migrant. As its other common names suggest, the

osprey’s diet consists almost exclusively of fish. It possesses specialized physical characteristics

and exhibits unique behavior to assist in hunting and catching prey. As a result of those unique

characteristics, it has been given its taxonomic genus.

https://www.allaboutbirds.org/guide/Osprey/photo-gallery/60320591
https://www.allaboutbirds.org/guide/Osprey/photo-gallery/60320591
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FIGURE 3. Global distribution of osprey. Source: https://commons.wikimedia.

org/wiki/File:Pandion global range.svg

Over the last three generations (29 years), there has been a 108% increase in the species

population in North America [17]. Other estimates provide a way sharper increase between

1965 and 2007 (1,100% increase over 40 years, equating to an 84.2% increase per decade;

data from Breeding Bird Survey and/or Christmas Bird Count [18]). Note, however, that these

surveys cover only 50% of the species home in North America. the ECU population is estimated

to be increasing (BirdLife International in prep). In North Africa, the population decreased

sharply in recent decades with a reported 35.7% decline in Morocco between 1990 and 2013

[19], though the population is now believed to be stable (Garrido et al. in prep). The species also

appear to be undergoing a decline in India (State of India’s Birds 2021). But overall, the species

global population is estimated to be increasing (see Figure 3). Among the prey of osprey, there

are mullets or grey mullets (see Figure 4) which are a family (Mugilidae) of ray-finned fish

found worldwide in coastal temperate and tropical waters, and a few species in fresh water.

FIGURE 4. An osprey captures a mullet. Source: https://www.allaboutbirds.or

g/guide/Osprey/photo-gallery/60320571

https://commons.wikimedia.org/wiki/File:Pandion_global_range.svg
https://commons.wikimedia.org/wiki/File:Pandion_global_range.svg
https://www.allaboutbirds.org/guide/Osprey/photo-gallery/60320571
https://www.allaboutbirds.org/guide/Osprey/photo-gallery/60320571
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Mullets have served as a crucial source of food in Mediterranean Europe since Roman times.

The family includes about 78 species in 20 genders, also it is found within the North Sea, the

English Channel, the Atlantic to the coast of Morocco in the south, and along the Mediterranean

coasts. There are quite 80 species. The standard noticeable behavior in mullets is the tendency

to leap out of the water. There are two distinguishable sorts of leaps: a straight, clean slice

out of the water to flee predators and a slower, lower jump while turning to its side that leads

to a bigger and more distinguishable splash. It is believed that lower jump helps to release

the oxygen rich air for gas exchange during a small organ above the pharynx. Mullets species

are widespread in the coastal waters of the tropical and subtropical zones of all seas. In the

eastern Pacific, it can be found in California to Chile. In the western Atlantic, it is present in

the area from Nova Scotia to Brazil, from Cape Cod to the Gulf of Mexico, absent from the

Bahamas islands, and in large a part of the West Indies and therefore the Caribbean. In the

eastern Atlantic, it meets from the Bay of Biscay to South Africa. Present in the Mediterranean

and the Black Sea basins. (see Figure 5).

FIGURE 5. Global distribution of mullets. Source: http://www.ittiofauna.org/web

museum/pesciossei/perciformes/mugilidae/mugil/mugilcephalus/index.htm

In this work we study the interaction between these two species

(1)


Ṁ (t) = rM(t)

(
1−M(t)

K

)
−δM(t)O(t)

Ȯ(t) =−dO(t)+δM(t)O(t)

The mathematical model 1 describes the evolution of the biomass of osprey and mullets fish

populations. We assume that the mullets are the prey of the osprey population. The mullet’s

http://www.ittiofauna.org/webmuseum/pesciossei/perciformes/mugilidae/mugil/mugilcephalus/index.htm
http://www.ittiofauna.org/webmuseum/pesciossei/perciformes/mugilidae/mugil/mugilcephalus/index.htm


8 ASMAA IDMBAREK, NOSSAIBA BABA, YOUSSEF EL FOUTAYENI, NACEUR ACHTAICH

abundance is denoted by M(t). It grows according to a logistic equation where r is the natural

growth rate and K is the carrying capacity. The parameter δ represents the capture coefficients

of mullets fish populations by the osprey and the abundance of the latter is denoted by O(t). The

natural death is given by d and the parameter δ denotes the conservation coefficient of osprey

biomass in mullets populations (see Figure 6).

FIGURE 6. Interaction resulting between osprey and mullet populations.

The main objective of our study is to get decision rules for the osprey. The problem is

to choose the consumption rate per osprey v(t) over time in a way that maximizes the entire

benefit received over an infinite horizon

(2)
∫

∞

0
e−ntU [v(t)]dt,

where U denotes the osprey’s utility function and n is the constant discount rate.

The system therefore becomes
Ṁ(t) = rM(t)

(
1−M(t)

K

)
− v(t)O(t),

Ȯ(t) =−dO(t)+ v(t)O(t).
(3)

The control problem which maximizes 2 subject to 3, v ≥ 0 and O ≥ 0 can be transformed

to the following one state variable optimal control problem using the following transformation

technique frequently used in resource models: We define the mullets-osprey ratio as

(4) y(t) =
O(t)
M(t)

,

then we obtain the new state equation for y

(5) ẏ(t) =−
[

d + v(t)− r
(

1−M
K

)]
y(t)+ v(t)y2(t).
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If the utility function U(v(t)) in 2 is concave then the problem which maximize 2, subject to

5, y≥ 0 and v≥ 0 is similar to the classical growth models.

For v(t) = 0, we will have U(0) = 0 which gives U ′ > 0.

For v(t)> 0, if v(t) is larger than a certain ṽ(t), we obtain that U ′′ is negative (U ′′ < 0), and

if v(t) is less than a certain ṽ(t), we obtain that U ′′ is positive (U ′′ > 0) which assumes that U

is convex-concave. Note that U ′(0) can vanish.

Thus the average Osprey described is an insatiable one with increasing marginal utility for

small levels of consumption. For higher values of v, the marginal utility is diminishing. To

simplify the question under consideration, let us replace the state variable inequality constraint

y≥ 0 with the terminal constraint

lim
t→∞

y(t)≥ 0

which is according to equation 5, equivalent to y(t)≥ 0.

3. OPTIMAL CONSUMPTION RULES

Apply the standard control theory in current value terms to the model posed in the first section

of this paper, we obtain the following set of necessary conditions for v(t) to be optimal: there

exists a continuous adjoint function q(t) such that the Hamiltonian:

(6) H =U(v(t))+q(t)
[(
−d + v(t)− r

(
1−M

K

))
y(t)+ vy2(t)

]
is maximized by v = v(t) and the adjoint function satisfies

(7)

·
q(t) =nq(t)−Hy

=

[
n−d− v(t)+ r

(
1− k

M

)
+2v(t)y(t)

]
q(t).

The transversality conditions are expressed as follows

(8) lim
t→∞

e−ntq(t)≥ 0, lim
t→∞

e−ntq(t)y(t) = 0.

Note that the usual arrow-type sufficiency condition which assumes the concavity of the

maximized Hamiltonian is not satisfied here. However, using a state transformation, it can be

shown that conditions 6-8 are sufficient for the optimality of v.
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Let v so that v > ṽ be level of consumption for which the elasticity of the utility function is

given by

(9) U ′(v)v =U(v),

then the maximization of H with respect to v implies that

(10) v(t) =


0

0

v∗

or v(t) = v∗ if U ′(v) =


<

=

>

q(1+ y)

where v∗ = v∗(y,q)> v is the solution of

U ′(v∗) = q(1+ y),

Note that because of 9 a value of 0 < v < v cannot be optimal and that U ′(v) ≷ q(1+ y) is

equivalent to H(v = 0)> H(v = v). The policy above is illustrated in Figure 7

FIGURE 7. Convex-concave utility function and maximization of Hamiltonian

4. LOCAL STABILITY

The steady states of the system 1 are obtained by solving the system of equations 11
rM(t)

(
1−M(t)

K

)
−δM(t)O(t) = 0

−dO(t)+δM(t)O(t) = 0
(11)

we find that the system admits four biologically feasible steady states as follows
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

P1 = (0,0)

P2 =

(
d
δ
,0
)

P4 =
(

0,
r
δ

)
P3 =

(
d
δ
,−rd−δ rK

δ 2K

)
The Jacobian matrix for system 1 is given by

J =

 r
(

1−M
K

)
−Oδ − r

K
M −Mδ

δO δM−d

 .

• For the equilibrium point P1 = (0,0) the Jacobian matrix is given by

J (P1) =

 r 0

0 −d

 ,
then the eigenvalues are λ1 = −d < 0, and λ2 = r > 0. We deduce that this point is

unstable.

• For the equilibrium point P2 =

(
d
δ
,0
)

the Jacobian matrix is given by

J (P2) =

 r
δK

(δK−2d) −d

0 0

 ,
the eigenvalues are λ1 = − 1

K d r
δ
< 0 and λ2 = 0. In this case, nothing can be con-

cluded.

• For the equilibrium point P3 the Jacobian matrix is given by

J (P3) =

 0 0

r −d

 ,
the eigenvalues are λ1 =−d < 0,λ2 = 0. Therefore, nothing can be concluded.

• Similarly, for point P4 the Jacobian matrix J (P4) is given as follows
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J (P4) =

 −d
r
δ

1
K −d

− 1
δK (rd− rδK) 0

 ,
the eigenvalues are

λ1 =
1

2δK

(√
rd (−4δK (δK−d)+ rd)− rd

)
,

λ2 =−
1

2δK

(√
rd (−4δK (δK−d)+ rd)+ rd

)
.

We distinguish the following cases:

(1) If rd (−4δK (δK−d)+ rd) > 0, then δK < d with δK > 0 and√
rd (−4δK (δK−d)+ rd)− rd > 0. We obtain that λ1 > 0 and λ2 < 0. In

this case, the point P4 is unstable.

FIGURE 8. Dynamical behaviour and phase portraits of osprey and mullet pop-

ulations for r = 0.8, K = 8, δ = 0.3 and d = 3.

The Figure 8 illustrates the instability of the equilibrium point P4. By choosing as

initial value the point P4(0.01,0.01,), we find that this last one tend to the point
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(7.997,0.01). Note that to plot the trajectories of the three marine populations at

this equilibrium, we considered the following values for the parameters r = 0.8,

K = 8, δ = 0.3 and d = 3.

(2) If rd (−4δK (δK−d)+ rd) = 0 then rd = 0 or−4δK (δK−d)+ rd = 0. For rd 6=

0 we have δK = rd
4δK +d. In this case, λ1 < 0 and λ2 < 0, and hence, the point P4

is stable.

FIGURE 9. Dynamical behaviour and phase portraits of osprey and mullet pop-

ulations for r = 1, K = 7, δ = 0.1 and d = 0.52.

In Figure 9, we show the stability of the equilibrium point P4. The initial value in

this case is the point P4(0.01,0.01,). It is clear from the figure that this point tend

to (2.001,6.99). Note that to plot the trajectories of the three marine populations

in this case, we considered the following values for the parameters r = 1, K = 7,

δ = 0.1 and d = 0.52.

For rd = 0, we have−4δK (δK−d)+ rd 6= 0 then we obtain λ1 = λ2 = 0. In this

case, nothing can be concluded.
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FIGURE 10. Dynamical behaviour and phase portraits of osprey and mullet pop-

ulations for r = 0.8, K = 12, δ = 0.3 and d = 0.

(3) The last case, if rd (−4δK (δK−d)+ rd) < 0, we have δK > d with δK > 0 and

−4δK (δK−d)> rd. Then, the eigenvalues are given by:
λ1 =

−rd
2δK

+ i
rd (−4δK (δK−d)+ rd)

2δK
,

λ2 =−
rd

2δK
+ i

rd (−4δK (δK−d)+ rd)
2δK

.

We observe that

λ1 = λ2 =
−rd
2δK

+ i
rd (−4δK (δK−d)+ rd)

2δK

with Re (λ )< 0. Therefore, we conclude that the point P4 in this case is stable.



OPTIMAL MULLETS CONSUMPTION BY OSPREY POPULATION USING UTILITY FUNCTION 15

FIGURE 11. Dynamical behaviour and phase portraits of osprey and mullet pop-

ulations for r = 0.8, K = 12, δ = 0.3 and d = 0.2.

The Figure 11, illustrates the local stability of the equilibrium point P4 in the last case.

We note the trajectory of the populations remains in the vicinity of (0.872,6.53) with

initial value P4(0.01,0.01,).

We conclude that the point P4 can be stable under certain conditions in the second

case and the third case.

5. CONCLUSION

In this work, we have transformed the dynamic system describing the interaction between os-

prey and mullets into an optimal control problem. Solving this problem with a general convex-

concave utility function, we combined two different approaches to the analysis of phase dia-

grams (of concave models) and the synthesis of bang-bang, singular solution parts (for convex

and linear models, respectively), and we studied the existence of equilibrium points and their
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stability. Thus, we showed the potential of using the utility function for solving optimal control

problems associated to ecological systems.
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