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Abstract: This study has contributed to understanding a delayed prey-predator system involving cannibalism. The 

system is assumed to use the Holling type II functional response to describe the consuming process and incorporates 

the predator's refuge against the cannibalism process. The characteristics of the solution are discussed. All potential 

equilibrium points have been identified. All equilibrium points' local stability analyses for all time delay values are 

investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. 

The center manifold and normal form theorems for functional differential equations are then used to establish the 

direction of Hopf bifurcation and the stability of the periodic solution. To demonstrate the key findings, various 

numerical simulations are then run. 
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1. INTRODUCTION 

Because predators are the main cause of prey death, prey is strongly selected to evolve more 

effective methods of spotting, avoiding, or fending off predators. The population of predators 

declines exponentially in the absence of prey species, forcing predators to develop better tracking 
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and killing techniques or to look for new food sources. Since the predator population derives its 

energy from its species and can thus exist without its lone prey, we develop the model by taking 

cannibalism into account. In some mantises, fish, carnivore mammals, and spiders, cannibalism, 

also known as intraspecific predation, refers to devouring offspring or siblings. This occurrence is 

sometimes referred to as the "lifeboat mechanism" since it prevents a predator community from 

going extinct. Depending on the cannibalism rate, cannibalism can positively or negatively impact 

population abundance. This has sparked the interest of many academics in their research and 

produced a number of notable research findings. Therefore, for certain cannibals, including 

cannibalism in a stage-structured paradigm makes more sense. [1-7]. 

   There is a delay in the appearance of some species' behavior in the natural ecosystem. In 

biological systems, the influence of a population on its condition has frequently been described 

using time delays. Delay differential equations are frequently more practical than regular 

differential equations in physics, ecology, biology, and other applications because a time delay 

could make an equilibrium that was previously stable unstable and induce population fluctuations. 

In the current work, the notion that energy obtained by eating food does not occur instantly is 

included. The functional response of the Holling type frequently displays this as a time delay. In 

delayed predator-prey models, the time delay may have an impact on the stability or instability of 

the prey densities as a result of predation.  [8-11]. Due to new ecological evidence and theoretical 

advancements, there has been a recent increase in interest in various aspects of modeling biological 

interactions. Holling [12] proposed a more accurate illustration, which has since become one of 

the most widely used in ecology. It takes into account the hunt for prey and the handling of prey, 

two different components of the relationship between prey and predators. Functional responses 

may be influenced by a variety of ecological parameters, including prey habitat structure, predator 

hunting skills, and prey escape mechanisms [13]. Actually, the Holling type-II functional response, 

which is based on the traditional Lotka-Volterra model, is a function that increases, concave, 

smooths out, and saturates at high prey numbers. Numerous writers have examined this kind of 

functional response in predator-prey models, both with and without time delays even with spatial 

dependency [11, 14-15] and the references therein. 

   The occurrence of cannibalism is affected by a number of factors, including temperature, 

population density, developmental stage, and prey (predator) refuge [16]. You could argue that 

cannibalized predators have the ability to seek refuge from cannibalistic predators. By lowering 

the likelihood of extinction as a result of excessive predation, the refuge is an anti-predator 
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behavior that can aid in extending a predator-cannibalism relationship. When a predator detects 

cannibalism, they prepare for an attack by altering their behavior, including body shape, size, color, 

and habitat. It becomes particularly intriguing to research the delayed interactions between 

predator and prey, including predator cannibalism and predator refuge [4, 7, 17]. The present article 

modifies an ecological model with logistic growth in the prey to incorporate cannibalism in the 

predator and refuge with a temporal delay. The remainder of this paper is structured as follows. 

The mathematical model is built in section 2. In section 3, the prerequisites for equilibrium points' 

existence are established. In section 4, it is examined if each possible equilibrium of the system is 

locally stable. Section 5 studies the occurrence of Hopf bifurcation around the positive point. The 

direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are 

established in Section 6. Finally, Present some numerical findings and explore their biological 

implications in Sections 7 and 8.  

 

2. MODEL CONSTRUCTION 

The following model, which depicts a Lotka-Volterra prey-predator with predator cannibalism, 

was put forth by Deng et al. [4]. 

𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) − 𝑎1𝑢𝑣,         

𝑑𝑣

𝑑𝑡
= 𝑎2𝑢𝑣 + 𝑏1𝑣 − 𝑐𝑣 −

𝑏2𝑣
2

𝛽+𝑣
,     

                                               (1) 

where prey and predator density are denoted by u ≥ 0 and v ≥ 0. The parameters r, K, a1, a2, 

b1, c, b2, and β are positive constants that, respectively, represent the intrinsic growth rate of 

the prey, the carrying capacity of the prey in the environment, the rate of predation, the rate at 

which prey biomass is converted into predator birth, the rate at which cannibalism is converted 

into predator birth, the rate at which predators die, the rate at which cannibalism occurs within 

predator individuals, and the cannibalism half-saturation constant. The final term and the second 

term in the second equation of the system represent the cannibalism phenomena (1) 

   A model explaining the prey-predator interaction that incorporates predator cannibalism and 

refuge was recently proposed by Rayungsari et al [7], and then the proposed model underwent a 

dynamic study. By employing the Holling type II functional response rather than a Lotka-Volterra 

type of functional response and assuming that there is predator refuge from cannibalization, the 

suggested Rayungsari’s model (2) is an improvement on Deng's model. The saturation predation 

mechanism is essentially described by the Holling type II functional response. 
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𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑎1𝑢 𝑣

𝛽1+𝑢
,                     

𝑑𝑣

𝑑𝑡
=

𝑎2𝑢 𝑣

𝛽1+𝑢
+ 𝑏1𝑣 − 𝑐𝑣 −

𝑏2(1−𝑚)𝑣
2

𝛽2+(1−𝑚)𝑣
,            

                                 (2) 

where β1 , β2 , and m  are positive constants that, respectively, represent the predation half-

saturation constant, the cannibalism half-saturation constant, and the predator refuge constant. 

While the other parameters are described above.  

   In actuality, although hunted victims are transformed into predator growth, there is a delay in 

predator biomass production due to the gestation period. Therefore, model (2) is altered by 

assuming that a continuous temporal lag known as gestation delay τ ∈ ℝ+  governs the 

reproduction of predator populations. Consequently, the new system is expressed as follows: 

 

𝑑𝑢

𝑑𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑎1𝑢𝑣

𝛽1+𝑢
 ,                                   

𝑑𝑣

𝑑𝑡
=

𝑎2𝑢(𝑡−𝜏)𝑣(𝑡−𝜏)

𝛽1+𝑢(𝑡−𝜏)
+ 𝑏1𝑣 − 𝑐𝑣 −

𝑏2(1−𝑚)𝑣
2

𝛽2+(1−𝑚)𝑣
,                    

                 (3) 

where the system’s (3) initial conditions are 

𝑢(𝜗) = 𝜑1(𝜗) > 0, 𝑣(𝜗) = 𝜑2(𝜗) > 0; 𝜗 ∈ [−𝜏, 0];                           (4)                                                             

where 𝜑𝑖: 𝐶([−𝜏, 0] →  ℝ+
2 ), for 𝑖 = 1,2. Here, C represents the Banach space of all continuous 

functions 𝜑 with the norm ‖𝜑‖ = 𝑆𝑢𝑝
−𝜏≤𝜗≤0

{|𝜑1(𝜗)|, |𝜑2(𝜗)|}. 

Now, since the variables in system (3) represent the population densities, hence prey-predator 

populations must be constrained due to the limited carrying capacity of the prey and predator 

resources. So, the solution of system (3) must be nonnegative and uniformly bounded as shown in 

the following theorem.  

Theorem 1: All the solutions of the system (3) with initial conditions (4) are positive and 

uniformly bounded in the interior of ℝ+
2 .  

Proof: Because the functions on the right-hand side of the system (3) are continuous and satisfy the 

local Lipschitz condition on the continuous functions space C. Hence the solution (𝑢(𝑡), 𝑣(𝑡)) of 

the system (3) exists and is unique with the positive initial conditions (4) on [0, 𝛼), where 0 < 𝛼 <

∞ [4].  

Now, from the initial value problem given by equations (3) and (4), it is obtained that: 

𝑢(𝑡) = 𝑢(0) 𝑒𝑥𝑝 ∫ [𝑟 (1 −
𝑢(𝜀)

𝐾
) −

𝑎1 𝑣(𝜀)

𝛽1+𝑢(𝜀)
]

𝑡

0
𝑑𝜀 ,     
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𝑣(𝑡) = 𝑣(0) 𝑒𝑥𝑝 ∫ [
𝑎2 𝑢(𝜀−𝜏)𝑣(𝜀−𝜏)

𝛽1+𝑢(𝜀−𝜏)
+ 𝑏1 − 𝑐 −

𝑏2(1−𝑚)𝑣(𝜀)

𝛽2+(1−𝑚)𝑣(𝜀)
]

𝑡

0
𝑑𝜀   

Therefore, all the solutions of system (3) are positive. Now, to prove the boundedness of the 

solutions of the system (3) for all 𝑡 ≥ 0, we consider 

     𝑉(𝑡, 𝜏) =  𝑐1𝑢(𝑡 −  𝜏) + 𝑐2𝑣(𝑡),   

where c1, and c2 are positive constants. Simple calculations lead to 

     𝑉′ < 𝑟𝑐1𝑢(𝑡 −  𝜏) −
𝑟𝑐1𝑢

2(𝑡 − 𝜏)

𝐾
+
(𝑐2𝑎2−𝑐1𝑎1)𝑢(𝑡 − 𝜏)𝑣(𝑡 − 𝜏)

𝛽1+𝑢(𝑡 − 𝜏)
+ 𝑐2(𝑏1 − 𝑐)𝑣.  

Set c1 = a2 and c2 = a1, then 

     𝑉′ < 𝑟𝑎2𝑢(𝑡 −  𝜏) −
𝑟𝑎2𝑢

2(𝑡 − 𝜏)

𝐾
+ 𝑎1(𝑏1 − 𝑐)𝑣.  

For any positive Μ, such that 

    
𝑉′ +𝛭𝑉 < 𝑟𝑎2𝑢(𝑡 −  𝜏) −

𝑟𝑎2𝑢
2(𝑡 − 𝜏)

𝐾
+ 𝑎1(𝑏1 − 𝑐)𝑣 +𝛭(𝑎2𝑢(𝑡 −  𝜏) + 𝑎1𝑣(𝑡))

= 𝑎2(𝑟 + 𝛭)𝑢(𝑡 −  𝜏) −
𝑟𝑎2𝑢

2(𝑡 − 𝜏)

𝐾
+ 𝑎1(𝑏1 − 𝑐 +𝛭)𝑣            

  

Take Μ < c − b1, it is obtained that 

     𝑉′ +𝛭𝑉 < 𝑎2(𝑟 + 𝛭)𝑢(𝑡 −  𝜏) −
𝑟𝑎2𝑢

2(𝑡 − 𝜏)

𝐾
= 𝑓(𝑢(𝑡 − 𝜏))                         

Since 𝑓′′(𝑢(𝑡 − 𝜏)) = −
2𝑟𝑎2

𝐾
< 0 then 𝑓(𝑢(𝑡 − 𝜏)) has maximum value given by 

𝑎2𝐾(𝑟+𝛭)
2

4𝑟
. 

This implies 𝑉(𝑡, 𝜏) is bounded and so are 𝑢(𝑡) and  𝑣(𝑡). Hence the proof is done. 

 

3. THE EXISTENCE OF EQUILIBRIUM POINTS  

The non-negative equilibrium points of the system (3) are determined, and the following four 

equilibrium points are obtained: 

The trivial equilibrium point 𝑃0 = (0,0) and predator-free point 𝑃1 = (𝑢1, 0), where 𝑢1 = 𝐾, 

exist unconditionally in ℝ+
2 . 

The prey- free point 𝑃2 = (0, 𝑣1), where 𝑣1 =
𝛽2(𝑐−𝑏1)

(1−𝑚)(𝑏1−𝑐−𝑏2)
, exists biologically in ℝ+

2  if the 

following condition holds. 

𝑐 < 𝑏1 < 𝑏2 + 𝑐                                                          (5)                                                                                                                 

In other words, even if the prey is extinct, the predator will continue to exist as long as the rate of 

cannibalism conversion is higher than the rate of the predator's death and lower than the total rates 

of cannibalism and conversion. 

The coexistence equilibrium point 𝑃3 = (𝑢∗, 𝑣∗), where 
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𝑣∗ = 
𝑟

𝑎1
(1 −

𝑢∗

𝐾
) (𝛽1 + 𝑢

∗)                                                (6)                                                                                                 

while 𝑢∗ represents the positive root of the following third-order polynomial equation: 

 𝐴1𝑢
3 + 𝐴2𝑢

2 + 𝐴3𝑢 + 𝐴4 = 0,                                            (7) 

where  

𝐴1 = (1 −𝑚)𝑟(𝑐 − 𝑎2 − 𝑏1 + 𝑏2). 

𝐴2 = (1 −𝑚)𝑟[−𝑘(𝑐 − 𝑎2 − 𝑏1 + 𝑏2) + 𝛽1(2𝑐 − 𝑎2 − 2𝑏1 + 2𝑏2)]. 

𝐴3 = [−𝑘(1 − 𝑚)𝑟𝛽1(2𝑐 − 𝑎2 − 2𝑏1 + 2𝑏2) + (1 − 𝑚)𝑟𝛽1
2(𝑐 − 𝑏1 + 𝑏2)

−𝑘𝑎1𝛽2(𝑐 + 𝑎2 + 𝑏1)]
. 

𝐴4 = −(1 −𝑚)𝑟𝑘𝛽1
2(𝑐 − 𝑏1 + 𝑏2) − 𝑘𝑎1𝛽1𝛽2(𝑐 − 𝑏1). 

Clearly, according to Descartes’ rule of signs, equation (7) has a unique positive root and hence 

system (3) has a unique coexistence equilibrium point if and only if the following sufficient 

condition is met. 

 𝑐 + 𝑏2 < 𝑎2 + 𝑏1,                                         (8) 

with one set of the following sets of conditions. 

 
𝐴2 < 0, 𝐴4 > 0
𝐴3 > 0, 𝐴4 > 0

}.                                    (9) 

 

4. LOCAL STABILITY  

To study the local stability behavior of the equilibrium points, a linearization technique around an 

arbitrary equilibrium point is applied, resulting in the Jacobian matrix, which is then computed at 

each equilibrium point. 

Let 𝑃 = (�̅�, �̅�) be an arbitrary equilibrium point of the system (3). Then by considering the 

transformation  𝑢1(𝑡) = 𝑢(𝑡) − �̅�, 𝑢2 (𝑡) = 𝑣(𝑡) − �̅�  respectively, hence after removing the 

bar, system (3) can be written as the following linear system. 

𝑑𝑢1

𝑑𝑡
= 𝑓10

(1)
 𝑢1(𝑡) + 𝑓01

(1)
𝑢2(𝑡),                                          

𝑑𝑢2

𝑑𝑡
= 𝑓010

(2)
 𝑢1(𝑡 − 𝜏) + 𝑓100

(2)
  𝑢2(𝑡) + 𝑓001

(2)
  𝑢2(𝑡 − 𝜏),                      

              

       (10) 

Where 

𝑓10
(1) = 𝑟 −

2𝑟𝑢

𝐾
−

𝛽1𝑎1𝑣

(𝛽1+𝑢)2
, 𝑓01

(1) = −
𝑎1𝑢

𝛽1+𝑢
,          

𝑓010
(2)
=

𝛽1𝑎2𝑣

(𝛽1+𝑢)2
, 𝑓100

(2)
= 𝑏1 − 𝑐 −

𝑏2(1−𝑚)𝑣(2𝛽2+(1−𝑚)𝑣)

(𝛽2+(1−𝑚)𝑣)2
,

𝑓001
(2)
=

𝑎2𝑢

𝛽1+𝑢
,                                 

        (11)                                     
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With 

𝑓(1)(𝑢1, 𝑢2) = 𝑟𝑢1 + 𝑟�̅� −
 𝑟𝑢1

2+2𝑟𝑢1𝑢+𝑟𝑢
2

𝐾
− 

𝑎1(𝑢2+�̅�)(𝑢1+𝑢) 

𝛽1+𝑢1+𝑢
.

𝑓(2)(𝑢2, 𝑢1(𝑡 − 𝜏), 𝑢2(𝑡 − 𝜏)) =
𝑎2(𝑢2(𝑡−𝜏)+�̅�)(𝑢1(𝑡−𝜏)+�̅�)

𝛽1+𝑢1(𝑡−𝜏)+�̅�
     

                    +(𝑏1 − 𝑐)(𝑢2 + �̅�) −
𝑏2(1−𝑚)(𝑢2+�̅�)

2

𝛽2+(1−𝑚)(𝑢2+�̅�)
.

    

Then the characteristic equation of the system (3) at 𝑃 = (�̅�, �̅�) can be determined by 

|
𝑓10
(1)
− 𝜆 𝑓01

(1)

𝑓010
(2)
𝑒−𝜆𝜏 (𝑓100

(2)
+ 𝑓001

(2)
𝑒−𝜆𝜏) − 𝜆

| = 0                                      (12)                                                                         

The local stability around the equilibrium points of the system (3) is determined by the eigenvalues 

of the characteristic equation (12) and the result is obtained in the following theorem. 

Theorem 2: The trivial equilibrium point 𝑃0 = (0,0) is an unstable point for all 𝜏 ≥ 0. 

Proof: Substituting 𝑃0 = (0,0) in the general characteristic equation (12) gives that 

|
𝑟 − 𝜆 0
0 (𝑏1 − 𝑐) − 𝜆

| = 0.                                                (13)                                                                       

Therefore, the eigenvalues of the system (3) at 𝑃0 are   𝜆01 = 𝑟 > 0, and 𝜆02 = 𝑏1 − 𝑐.  

Then, if 𝑏1 > 𝑐 then 𝑃0 is a source, and if 𝑏1 < 𝑐 then 𝑃0 is a saddle point. So, 𝑃0 is always 

unstable for all 𝜏 ≥ 0.  

Now before the next theorems are given, the following proposition that is given in [10] is presented. 

Proposition 3: Suppose that 𝐶1 > 0 and 𝐶2 > 0, then the following is obtained 

• If 𝐶1 < 𝐶2 , then all the roots of 𝜌 + 𝐶1 − 𝐶2𝑒
−𝜌𝜏 = 0  have positive real parts for         

𝜏 <
1

√𝐶2
2−𝐶1

2
 cos−1 (

𝐶1

𝐶2
).  

• If 𝐶1 > 𝐶2, then all the roots of 𝜌 + 𝐶1 − 𝐶2𝑒
−𝜌𝜏 = 0 have negative real parts for any 𝜏. 

Theorem 4: The predator-free equilibrium point 𝑃1 = (𝐾, 0) of the system (3) is asymptotically 

stable for 𝜏 ≥ 0 provided that the following condition is met 

𝑎2 <
(𝑐−𝑏1)(𝛽1+𝐾)

𝐾
.                                      (14) 

While it is unstable point for all 0 ≤ 𝜏 < 𝜏𝑐 =
1

√(
𝑎2𝐾

𝛽1+𝐾
)
2
−(𝑐−𝑏1)2

 cos−1 (
(𝑐−𝑏1)(𝛽1+𝐾)

𝑎2𝐾
) provided 

that condition (14) is reflected. 

Proof: Substituting 𝑃1 = (𝐾, 0) in the general characteristic equation (12) gives that 
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|
−𝑟 − 𝜆

−𝑎1𝐾

𝛽1+𝐾

0 𝑏1 − 𝑐 +
𝑎2𝐾

𝛽1+𝐾
𝑒−𝜆𝜏 − 𝜆

| = 0,                                      (15)                                                                                       

So the eigenvalues are 𝜆11 = −𝑟 < 0, while the other eigenvalues are given by the roots of the 

following transcendental equation: 

 (
𝑎2𝐾

𝛽1+𝐾
𝑒−𝜆𝜏 − (𝑐 − 𝑏1) − 𝜆) = 0.                                    (16) 

Clearly, for 𝜏 = 0, it is obtained 𝜆12 =
𝑎2𝐾

𝛽1+𝐾
+ 𝑏1 − 𝑐, which is a negative provided condition 

(14) holds, however, 𝜆12 will be positive when the condition (14) is reflected. This makes 𝑃1 a 

saddle point. 

On the other hand, for 𝜏 > 0, due to proposition (3) all the roots of equation (16) have negative 

real parts roots or positive real parts roots for 𝜏 < 𝜏𝑐 =
1

√(
𝑎2𝐾

𝛽1+𝐾
)
2
−(𝑐−𝑏1)2

 cos−1 (
(𝑐−𝑏1)(𝛽1+𝐾)

𝑎2𝐾
) 

when the condition (14) is satisfied or reflected respectively. 

Consequently, the predator-free equilibrium point is locally asymptotically stable for all 𝜏 > 0 if 

the condition (14) is met, while it is an unstable point for 0 < 𝜏 < 𝜏𝑐 when the condition (14) is 

reflected. This is complete the proof.  

Theorem 5: The prey-free equilibrium point 𝑃2 = (0, 𝑣1)  of the system (3) is locally 

asymptotically stable for all 𝜏 ≥ 0  if the following condition is met. 

𝑟 <
𝑎1𝑣1

𝛽1
.                                         (17) 

Proof: Substituting 𝑃2 = (0, 𝑣1) in the general characteristic equation (10) gives that 

|
𝑟 −

𝑎1𝑣1

𝛽1
− 𝜆 0

𝑎2𝑣1

𝛽1
𝑒−𝜆𝜏 𝑏1 − 𝑐 −

𝑏2(1−𝑚)𝑣1(2𝛽2+(1−𝑚)𝑣1)

(𝛽2+(1−𝑚)𝑣1)2
− 𝜆

| = 0,                        (18) 

Therefore, the eigenvalues of the system (3) at 𝑃2 are given by: 

𝜆21 = 𝑟 −
𝑎1𝑣1

𝛽1
   and  𝜆22 = 𝑏1 − 𝑐 −

𝑏2(1−𝑚)𝑣1(2𝛽2+(1−𝑚)𝑣1)

(𝛽2+(1−𝑚)𝑣1)2
=

(𝑏1−𝑐)(𝑏1−𝑐−𝑏2)

𝑏2
. 

Since 𝜆22 is negative under the existing condition of 𝑃2, which is given by equation (5). Then,  

𝑃2 is locally asymptotically stable if and only if condition (17) is met. While it is saddle point if 

that condition is reflected.  

Theorem 6: The coexistence equilibrium point 𝑃3 = (𝑢∗, 𝑣∗)  of the system (3) is locally 

asymptotically stable for all 0 ≤ 𝜏 < 𝜏0 provided that the following condition is met. 

 𝐾 < 𝛽1 + 2𝑢
∗                                          (19) 
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However, it is unstable point for 𝜏0 ≤ 𝜏 provided that  

 𝑀2 − 𝑆2 < 0                                    (20) 

where all the new symbols are given in the proof. 

Proof: The characteristic equation of the system (3) at 𝑃3 is determined by equation (12), where 

𝑓10
(1)

, 𝑓01
(1)

, 𝑓100
(2)

, 𝑓010
(2)

, and 𝑓001
(2)

 can be written as: 

 
𝑓10
(1)
=

𝑟𝑢∗

𝛽1+𝑢∗
(1 −

𝛽1+2𝑢
∗

𝐾
) , 𝑓01

(1) = −
𝑎1𝑢

∗

𝛽1+𝑢∗
, 𝑓010

(2) =
𝑟𝛽1𝑎2

𝑎1(𝛽1+𝑢∗)
(1 −

𝑢∗

𝐾
) ,

𝑓100
(2)
= 𝑏1 − 𝑐 −

𝑏2(1−𝑚)𝑣
∗(2𝛽2+(1−𝑚)𝑣

∗)

(𝛽2+(1−𝑚)𝑣∗)2
, 𝑓001

(2) =
𝑎2𝑢

∗

𝛽1+𝑢∗
.             

            (21) 

Now, according to the linear system (10) and their characteristic equation (12) at 𝑃3, which can 

be rewritten in the following form: 

𝜆2 + 𝑁𝜆 +𝑀 + 𝑒−𝜆𝜏(𝑄𝜆 + 𝑆) = 0,                                         (22) 

where  

𝑁 = −(𝑓10
(1)
+ 𝑓100

(2)
), 𝑀 = 𝑓10

(1)
𝑓100
(2)
, 𝑄 = −𝑓001

(2)
, 𝑆 = 𝑓10

(1)
𝑓001
(2)
− 𝑓01

(1)𝑓010
(2)

. 

For 𝜏 = 0, then the characteristic equation (22) becomes 

𝜆2 + (𝑁 + 𝑄)𝜆 + 𝑀 + 𝑆 = 0,                                              (23) 

By substituting the value of 𝑣∗ = 
𝑟

𝑎1
(1 −

𝑢∗

𝐾
) (𝛽1 + 𝑢

∗)  in the forms 𝑓100
(2)

, and 𝑓001
(2)

 and 

simplifying the resulting terms, it is obtained that:  

𝑓001
(2)
+ 𝑓100

(2)
= −

𝑎1𝑏2𝛽2𝑟(1−𝑚)(1−
𝑢∗

𝐾
)(𝛽1+𝑢

∗)

(𝑎1𝛽2+𝑟(1−𝑚)(1−
𝑢∗

𝐾
)(𝛽1+𝑢∗))

2 < 0.                               (24) 

Moreover, direct computation gives the following two expressions:  

    𝑁 + 𝑄 = −[𝑓10
(1) + (𝑓001

(2)
+ 𝑓100

(2)
)], 

𝑀 + 𝑆 = 𝑓10
(1)
(𝑓100

(2)
+ 𝑓001

(2)
) − 𝑓01

(1)𝑓010
(2)

, 

which are positive under the condition (19), and the expression (24).  

Hence, the coexistence equilibrium point is locally asymptotically stable for 𝜏 = 0. That is, all the 

roots of equation (23) have negative real parts.  

      Now, when 0 < 𝜏, by Butler’s lemma [18], 𝑃3 remains stable for 𝜏 < 𝜏0 where 𝜏0 is a 

specific value. Moreover, due to corollary 2.4 in Ruan and Wei [19], a characteristic root of 

equation (22) must intersect the imaginary axis if instability occurs for a specific value of the delay 

𝜏0.   
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Consequently, it is assumed that equation (22) has a root that is entirely imaginary, 𝜆 = 𝑖𝜃, with 

 𝜃 > 0 to be exist. Then, by substituting it in equation (22), and then separating the real and 

imaginary components, it is obtained that: 

𝑄𝜃 sin 𝜃𝜏 + 𝑆 cos 𝜃𝜏 = 𝜃2 −𝑀,                                          (25) 

𝑄𝜃 cos 𝜃𝜏 − 𝑆 sin 𝜃𝜏 = −𝑁𝜃,                                            (26) 

By squaring and adding (25) and (26), it is arrived the following algebraic equation of 𝜃:  

𝜃4 + Η1𝜃
2 + Η2 = 0,                                                   (27) 

where Η1 = 𝑁
2 − 𝑄2 − 2𝑀, and Η2 = 𝑀2 − 𝑆2. 

Substituting  𝜃2 = 𝑋 in (27) gives the following second-order equation: 

𝑓(𝑋) = 𝑋2 + Η1𝑋 + Η2 = 0.                                             (28) 

Clearly, by applying Descartes’s rule of signs, we can say that equation (28), and hence (27) has 

at least one positive root 𝜃0 = √𝑋 if the condition (20) holds. Thus, for 𝜏0 ≤ 𝜏, the characteristic 

equation (22) has roots with a positive real part and hence 𝑃3 becomes unstable.  

        In the following, the value of 𝜏0 at which the stability 𝑃3 changed is determined. From 

equations (25) and (26), the following is reached. 

sin 𝜃𝜏 =
𝜃2−𝑆 cos𝜃𝜏 −𝑀

𝑄𝜃
, 

cos 𝜃𝜏 =
𝑆(𝜃2−𝑀)−𝑄𝑁𝜃2

Q2𝜃2+𝑆2
. 

Then, 𝜏𝑘 corresponding to 𝜃0 can be obtained as  

𝜏𝑘 =
1

𝜃0
(cos−1

𝑆(𝜃2−𝑀)−𝑄𝑁𝜃2

Q2𝜃2+𝑆2
+ 2𝑘𝜋) , 𝑘 = 0,1,2, . ..                           (29) 

Define 

 𝜏0 = min 𝜏𝑘 , 𝑘 ≥ 0,                                        (30) 

This completes the proof of the theorem. 

 

5. HOPF BIFURCATION ANALYSIS 

In this section, the possibility of occurrence of Hopf bifurcation around the coexistence 

equilibrium point is discissed. From the above, it is proved that the characteristic equation (22) of 

the system (3) has a pair of complex conjugate roots, given by 𝜆 = 𝛾(𝜏) ± 𝑖𝜃(𝜏), which are pure 

imaginary at 𝜏 = 𝜏0  that is 𝛾(𝜏0) = 0 . Therefore, system (3) undergoes a Hopf bifurcation 

around the coexistence equilibrium point at 𝜏 = 𝜏0 if we can prove the transversality criterion 
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[20] that is given by [
𝑑(𝑅𝑒 𝜆(𝜏))

𝑑𝜏
]
𝜏=𝜏0

≠ 0. 

Theorem 7. System (3) undergoes a Hopf bifurcation around the coexistence equilibrium point at    

𝜏 = 𝜏0 provided that the following condition is met. 

𝜓1Γ1 − 𝜓2Γ2 ≠ 0,                                    (31) 

where all the new symbols are given in the proof. 

Proof. From the theorem (6), it is obtained that 𝑃3 = (𝑢
∗, 𝑣∗)  of the system (3) is locally 

asymptotically stable for all 0 ≤ 𝜏 < 𝜏0 , while it is unstable for 𝜏0 ≤ 𝜏 under certain given 

conditions with 𝜏0  is given by equation (30) that satisfy 𝑅𝑒 𝜆(𝜏0) = 0 . Therefore in the 

neighborhood of 𝜏0  the complex eigenvalues can be represented as 𝜆 = 𝛾(𝜏) ± 𝑖𝜃(𝜏)  with 

𝛾(𝜏0) = 0.  

By substituting 𝜆 it in equation (22), and then separating the real and imaginary components, it 

is obtained that: 

 
𝛾2 − 𝜃2 + 𝑁𝛾 + (𝑄𝛾 cos 𝜃𝜏 + 𝑄𝜃 sin 𝜃𝜏 + 𝑆 cos 𝜃 𝜏)𝑒−𝛾𝜏 +𝑀 = 0,         

2𝛾𝜃 + 𝑁𝜃 − (𝑄𝛾 sin 𝜃𝜏 − 𝑄𝜃 cos 𝜃𝜏 + 𝑆 sin 𝜃 𝜏)𝑒−𝛾𝜏 = 0,                 
                                             

Differentiating the above two equations with reference to 𝜏 and then substituting 𝛾 =  0, yields: 

Γ1(𝜏)
𝑑𝛾

𝑑𝜏
+ Γ2(𝜏)

𝑑𝜃

𝑑𝜏
= 𝜓1(𝜏),

−Γ2(𝜏)
𝑑𝛾

𝑑𝜏
+ Γ1(𝜏)

𝑑𝜃

𝑑𝜏
= 𝜓2(𝜏),

                              (32)                                                                                      

where  

Γ1 = 𝑄 cos 𝜃𝜏 − 𝑄𝜃𝜏 sin 𝜃𝜏 − 𝑆𝜏 cos 𝜃𝜏 + 𝑁.                   
Γ2 = 𝑄 sin 𝜃𝜏 + 𝑄𝜃𝜏 cos 𝜃𝜏 − 𝑆𝜏 sin 𝜃𝜏 − 2𝜃.                   

𝜓1 = 𝑄𝜃
2 cos 𝜃𝜏 − 𝑆𝜃 sin 𝜃𝜏.                                

𝜓2 = −𝑄𝜃
2 sin 𝜃𝜏 − 𝑆𝜃 cos 𝜃𝜏.                              

   

Solving the linear algebraic system (32) for 
𝑑𝛾

𝑑𝜏
, gives that:    

[
𝑑𝛾

𝑑𝜏
]
𝜏=𝜏0

=
𝜓1Γ1−𝜓2Γ2

Γ1
2+Γ2

2 .  

Clearly,  [
𝑑𝛾

𝑑𝜏
]
𝜏=𝜏0

= [
𝑑(𝑅𝑒𝜆(𝜏))

𝑑𝜏
]
𝜏=𝜏0

≠ 0 under the condition (31) that complete the proof.  

                                    

6. DIRECTION AND STABILITY OF HOPF BIFURCATION 

The explicit formulas that determine the direction, stability, and period of periodic trajectories 

bifurcating from equilibrium 𝑃3  at critical values of delay 𝜏0  are derived as given in the 

following theorem and are based on the center manifold and normal form theory introduced by 

Hassard et al. [20]. 
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Theorem 8. Under the following established fixed quantities, the stability and direction of the 

bifurcating periodic solution can be calculated. 

𝐶1(0) =  
𝑖

2𝜃𝜏0
 (𝑔11𝑔20 − 2 |𝑔11|

2 +
|𝑔02|

2

3
) + 

𝑔21

2

𝜇2 = −
 𝑅𝑒{𝐶1(0)}

𝑅𝑒{
𝑑𝜆(𝜏∗)

𝑑𝜏
}
                             

𝛽2 = 2 𝑅𝑒{𝐶1(0)}                           

𝑇2 = −
 𝐼𝑚 {𝐶1(0)} + 𝑁2 𝐼𝑚{

𝑑𝜆(𝜏0)

𝑑𝜏
}

𝜃𝜏0
                

  

}
  
 

  
 

                       (33) 

Then, for system (3) around 𝑃3 at critical point 𝜏 =  𝜏0, the physical characteristics of the Hopf 

bifurcation are listed below: 

1. If  𝜇2 > 0 (𝜇2 < 0), then direction of the Hopf bifurcation is supercritical (sub-critical) 

and the bifurcating periodic trajectories exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0). 

2. If  𝛽2 > 0 (𝛽2 < 0), then the bifurcating periodic trajectories are stable (unstable). 

3. If 𝑇2 > 0 (𝑇2 < 0),  then the period of the bifurcating periodic trajectories increases 

(decreases). 

Proof.  System (3) produces the following functional differential equation in 𝐶 = 𝐶([−1,0], ℝ2) 

by transforming the time delay using the linear transformations 𝑢1(𝑡) = 𝑢(𝑡) − 𝑢∗ , 𝑢2(𝑡) =

𝑣(𝑡) − 𝑣∗, 𝜂 = 𝜏 − 𝜏0, where 𝜂 ∈ ℝ. The Hopf bifurcation point 𝜏0 that is defined in equation 

(30) is obviously reached at the value 𝜂 = 0, and the periodic trajectories of system (3) are 

equivalent to those of the subsequent resultant system. 

𝑑𝐮(𝑡)

𝑑𝑡
= 𝐿𝜂(𝐮𝑡) + 𝐹(𝜂 , 𝐮𝑡),                                  (34) 

where 𝐮(𝑡) = 𝐮𝑡 = (𝑢1(𝑡), 𝑢2(𝑡))
𝑇
∈ ℝ2, and 𝐿𝜂: 𝐶 ⟶ ℝ2, and 𝐹:ℝ × 𝐶 ⟶ ℝ2, with 

𝐿𝜂(𝜑) = (𝜏0 + 𝜂) [(
𝑓10
(1)

𝑓01
(1)

0 𝑓100
(2)
) (
𝜑1(0)

𝜑2(0)
) + (

0 0

𝑓010
(2)

𝑓001
(2)) (

𝜑1(−1)

𝜑2(−1)
)],          (35) 

with 𝑓10
(1)

, 𝑓01
(1)

, 𝑓100
(2)

, 𝑓010
(2)

, and 𝑓001
(2)

 are given in equation (11). While, the nonlinear term is 

given by  

𝐹(𝜂, 𝜑) = (𝜏0 + 𝜂) [
∑

1

𝑖!𝑗!
 𝑓𝑖𝑗
(1)
 𝜑1
𝑖 (0) 𝜑2

𝑗(0)𝑖+𝑗≥2                           

∑
1

𝑖!𝑗!𝑘!
 𝑓𝑖𝑗𝑘
(2)
 𝜑2
𝑖 (0) 𝜑1

𝑗(−1)𝑖+𝑗+𝑘≥2 𝜑2
𝑘(−1)

],         (36) 

with 𝛗(𝑥) = (𝜑1(𝑥), 𝜑2(𝑥))
𝑇
∈ 𝐶 , 𝑥 ∈ [−1, 0] , while 𝑓(1)(𝜑1, 𝜑2, ) , 𝑓(2)(𝜑2, ℎ1, ℎ2) , 
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𝑓𝑖𝑗
(1)
𝜑1
𝑖 (0) 𝜑2

𝑗(0) , and 𝑓𝑖𝑗𝑘
(2)
𝜑2
𝑖 (0) 𝜑1

𝑗(−1)𝜑2
𝑘(−1) are given as follows, where ℎ1 = 𝜑1(−1), 

and ℎ2 = 𝜑2(−1). 

 
𝑓(1)(𝜑1, 𝜑2) = 𝑟𝜑1 + 𝑟𝑢

∗ −
 𝑟𝜑1

2+2𝑟𝜑1𝑢
∗+𝑟𝑢∗2

𝐾
− 

𝑎1(𝜑2+𝑣
∗)(𝜑1+𝑢

∗)  

𝛽1+𝜑1+𝑢∗
      

𝑓(2)(𝜑2, ℎ1, ℎ2) =
𝑎2(ℎ2+𝑣

∗)(ℎ1+𝑢
∗)

𝛽1+ℎ1+𝑢∗
+ (𝑏1 − 𝑐)(𝜑2 + 𝑣

∗) −
𝑏2(1−𝑚)(𝜑2+𝑣

∗)2

𝛽2+(1−𝑚)(𝜑2+𝑣∗)
 
, 

 𝑓𝑖𝑗
(1)
=

𝜕𝑖+𝑗 𝑓(1)

𝜕𝜑1
𝑖  𝜑2

𝑗
 
|
(𝜑1,𝜑2)=(0,0)

,   

 𝑓𝑖𝑗𝑘
(2)
=

𝜕𝑖+𝑗 𝑓(2)

𝜕𝜑2
𝑖  ℎ1

𝑗
 ℎ2
𝑗|
(𝜑2,ℎ1,ℎ2)=(0,−1,−1)

.   

Additionally, direct computation yields the higher derivatives listed below. 

𝑓11
(1)
= − 

𝑎1𝛽1

(𝛽1+𝑢∗)2
, 𝑓20

(1) = −
2𝑟

𝐾
+
𝑎1𝑣

∗(1+2𝑢∗)

(𝛽1+𝑢∗)3
, 𝑓02

(1) = 0,               

𝑓200
(2) =

(𝛽2+(1−𝑚)𝑣
∗)[6𝑏2(1−𝑚)

2𝑣∗]−2𝑏2(1−𝑚)
3𝑣∗

2

(𝛽2+(1−𝑚)𝑣∗)3
, 𝑓020

(2)
= −

2𝛽1𝑎2𝑣
∗

(𝛽1+𝑢∗)3
, 𝑓002

(1)
= 0,

𝑓110
(2)
= 0, 𝑓101

(2)
= 0, 𝑓011

(2)
=

𝑎2𝑢
∗

(𝛽1+𝑢∗)2
.                                

 

}
 
 

 
 

      (37) 

According to the Riesz representation theorem [20], a 2 × 2 matrix denoted by Π(𝑥, 𝜂) exists 

with inputs that are bounded variation functions in such a way that 

𝐿𝜂𝛗 = ∫ [𝑑Π(𝑥, 𝜂)]𝛗(𝑥)
0

−1
, for 𝛗 ∈ 𝐶.                            (38) 

In fact, it can be choose 

  Π(𝑥, 𝜂) = (𝜏0 + 𝜂) [(
𝑓10
(1) 𝑓01

(1)

0 𝑓100
(2)
)𝛿(𝑥) − (

0 0

𝑓010
(2) 𝑓001

(2)) 𝛿(𝑥 + 1) ],             (39) 

where 𝛿 (𝑥) denotes the Dirac delta function and is defined as  

 𝛿(𝑥) = {
1,         𝑥 = 0 
0,         𝑥 ≠  0

. 

For  𝛗 ∈ 𝐶1([−1,0], ℝ2), define that  

𝐴(𝜂)𝛗(𝑥) = {

𝑑𝜑(𝑥)

𝑑𝑥
;                    𝑥 ∈ [−1,0)

∫
0

−1
[𝑑Π(𝑥, 𝜂)] 𝜑(𝑥);  𝑥 = 0

,                         (40) 

and 

𝑅(𝜂)𝛗(𝑥) = {
0;        𝑥 ∈ [−1,0)

𝑓(𝜂,𝛗);      𝑥 = 0        
.                             (41) 

Thus, system (34) is corresponding to 
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𝑑𝐮(𝑡)

𝑑𝑡
= 𝐴(𝜂) 𝐮𝑡 + 𝑅(𝜂) 𝐮𝑡,                               (42) 

where 𝐮𝑡(𝑥) = 𝐮(𝑡 + 𝑥) for 𝑥 ∈ [−1,0]. Furthermore, for 𝛙 ∈ 𝐶1([0,1], (ℝ2)∗), define 

 𝐴∗𝛙(𝑠) = {
−
𝑑𝛙(𝑠)

𝑑𝑠
;                       𝑠 ∈ (0,1]

∫
0

−1
[𝑑Π𝑇(𝑡, 0)] 𝛙(− 𝑡);  𝑠 = 0

,                          (43) 

where Π𝑇  represents the transpose matrix Π . For 𝛗 ∈ 𝐶1([−1,0], ℝ2)  and 𝛙 ∈

𝐶1([0,1], (ℝ2)∗), the next bilinear inner product is defined below to normalize the eigenvectors of 

operator 𝐴 and adjoint operator 𝐴∗. 

 〈𝛙(𝑠), 𝛗(𝑥)〉 = �̅�(0) 𝛗(0) − ∫ ∫ �̅�(𝜖 − 𝑥)
𝑥

𝜖=0

0

−1
𝑑Π(𝑥) 𝛗(𝜖) 𝑑𝜖,               (44) 

where Π(𝑥) =  Π(𝑥, 0). Obviously, 𝐴 = 𝐴(0) and 𝐴∗ = 𝐴∗(0) are adjoint operators, then it is 

obtained that 〈𝛙, 𝐴𝛗〉 = 〈𝐴∗𝛙,𝛗〉.  

Now, since the system (34) undergoes a Hopf bifurcation near equilibrium point 𝑃3. Then system 

(34) has two pure imaginary eigenvalues ∓ 𝑖𝜃𝜏0 of 𝐴, which are also eigenvalues of 𝐴∗. 

   Now, by a simple calculation, the eigenvectors of 𝐴(0)  and 𝐴∗  associated with the 

eigenvalues ∓ 𝑖𝜃𝜏0 are computed, respectively, as follows: 

𝑞(𝑥) = (1, 𝑞1)
𝑇𝑒𝑖𝜃𝜏0𝑥      

𝑞∗(𝑠) = 𝐷(1, 𝑞1
∗)𝑇𝑒−𝑖𝜃𝜏0𝑠   

},                                            (45) 

where 

 

𝑞1 = −
 𝑓010
(2)
 𝑒−𝑖𝜏0𝜃

𝑓100
(2)
+𝑓001

(2)
𝑒−𝑖𝜏0𝜃

 

𝑞1
∗ = −

 𝑓01
(1)
 

𝑓100
(2)
+𝑓001

(2)
𝑒−𝑖𝜏0𝜃}

 

 

.                                       (46) 

Moreover, determine the parameter value of 𝐷, such that: 

⟨𝑞∗(𝑠), 𝑞(𝑥)⟩ = 1; ⟨𝑞∗(𝑠), �̅�(𝑥)⟩ = 0.                                        (47) 

According to equation (44), it is observed that:  

〈𝑞∗(𝑠), 𝑞(𝑥)〉 = �̅�(1, 𝑞1
∗̅̅̅) (1, 𝑞1)

𝑇 − ∫ ∫ �̅�(1, 𝑞1
∗̅̅̅) 𝑒−𝑖𝜃𝜏0(𝜖−𝑥)

𝑥

𝜖=0

0

−1

 𝑑Π(𝑥)(1, 𝑞1)
𝑇𝑒𝑖𝜃𝜏0𝜖 𝑑𝜖 

= �̅� (1 + 𝑞1 𝑞1
∗̅̅̅̅ + 𝜏0 𝑞1

∗̅̅̅̅ (𝑓010
(2)
+ 𝑞1 𝑓001

(2)
) 𝑒  𝑖𝜃𝜏0)                        

Therefore, due to (47), it is obtained that  
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�̅� = (1 + 𝑞1 𝑞1
∗̅̅̅̅ + 𝜏0 𝑞1

∗̅̅̅̅ (𝑓010
(2)
+ 𝑞1 𝑓001

(2)
) 𝑒  𝑖𝜃𝜏0)

−1

 

𝐷 = (1 + 𝑞1̅̅̅𝑞1
∗ + 𝜏0𝑞1

∗(𝑓010
(2)
+ 𝑞1̅̅̅ 𝑓001

(2)
) 𝑒  𝑖𝜃𝜏0)

−1

   
}                     (48) 

Moreover, from the adjoining property 〈𝛙, 𝐴𝛗〉 = 〈𝐴∗𝛙,𝛗〉, it follows that ⟨𝑞∗(𝑠), �̅�(𝑥)⟩ = 0. 

  The characteristics of the bifurcating periodic trajectories of the system (34) can then be 

explored and evaluated using a method similar to that in [20]. In the following, the coefficients 

𝑔𝑖𝑗 determine the stability and direction of the Hopf bifurcation are listed. 

 

𝑔20 = 2 𝜏0 �̅�(𝑅1 +  𝑞1
∗̅̅̅̅  𝑅5)  

𝑔11 = 𝜏0  �̅�(𝑅2 +  𝑞1
∗̅̅̅̅  𝑅6)   

𝑔02 = 2𝜏0 �̅�(𝑅3 +  𝑞1
∗̅̅̅̅  𝑅7)

𝑔21 = 2𝜏0 �̅�(𝑅4 +  𝑞1
∗̅̅̅̅  𝑅8)

  

 

}
 
 

 
 

,                                   (49) 

where 

𝑅1 = 𝑞1 𝑓11
(1)
+  𝑓20

(1)
, 

𝑅2 = 2 𝑓20
(1)
+ (𝑞1 + 𝑞1̅̅̅)  𝑓11

(1)
, 

𝑅3 = 𝑞1̅̅̅  𝑓11
(1)
+  𝑓20

(1)
, 

𝑅4 =  𝑓11
(1) (𝑞1𝑤11

(1)(0) +
1

2
 �̅�1𝑤20

(1)(0) +
1

2
 𝑤20

(2)(0) + 𝑤11
(2)(0)) +  𝑓20

(1) (𝑤20
(1)(0) +

       +2𝑤11
(1)(0)),  

𝑅5 = 𝑞1𝑒
−2𝑖θ𝜏0  𝑓011

(2)
+ 𝑞1

2 𝑓200
(2)
+ 𝑒−2𝑖θ𝜏0  𝑓020

(2)
, 

𝑅6 = 2 𝑓020
(2)
+ 2𝑞1𝑞1̅̅̅  𝑓200

(2)
+ (𝑞1 + 𝑞1̅̅̅) 𝑓011

(2)
, 

𝑅7 = 𝑞1̅̅̅ 𝑒
2𝑖θ𝜏0𝑓011

(2)
+ 𝑞1

2̅̅ ̅ 𝑓200
(2)
+  𝑒2𝑖θ𝜏0𝑓020

(2)
, 

𝑅8 =  𝐾1 𝑓011
(2) + 𝐾2 𝑓200

(2) +𝐾3 𝑓020
(2)

, 

with, 

𝐾1 =
1

2
 𝑞1̅̅̅̅  𝑊20

(1)(−1)𝑒𝑖θ𝜏0 + 𝑞1 𝑊11
(1)(−1)𝑒−𝑖θ𝜏0 +  𝑊11

(2)(−1)𝑒−𝑖θ𝜏0 +

         
1

2
𝑊20

(2)(−1)𝑒𝑖θ𝜏0, 

𝐾2 =  𝑞1̅̅̅̅  𝑊20
(1)(0) + 2𝑞1 𝑊11

(1)(0), 
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𝐾3 =  𝑊20
(1)(−1)𝑒𝑖θ𝜏0 + 2 𝑊11

(1)(−1)𝑒−𝑖θ𝜏0, 

Clearly, the values of 𝑔20, 𝑔11, and 𝑔02 can be determined from the above findings, while 𝑔21 

needs to determine 𝑊20(𝑥)  and 𝑊11(𝑥) . So, performing certain arithmetic procedures and 

solving for 𝑊20(𝑥) and 𝑊11(𝑥) yields:  

𝑊20(𝑥) =
𝑖𝑔20

θ𝜏0
𝑞(0) 𝑒  𝑖θ𝜏0𝑥 +

𝑖 𝑔11̅̅ ̅̅ ̅

3θ𝜏0
�̅�(0) 𝑒−𝑖θ𝜏0𝑥 + 𝑈1 𝑒

 2𝑖θ𝜏0𝑥  

𝑊11(𝑣) = −
 𝑖𝑔11

θ𝜏0
𝑞(0) 𝑒  𝑖θ𝜏0𝑥 +

𝑖 𝑔02̅̅ ̅̅ ̅

θ𝜏0
�̅�(0) 𝑒−𝑖θ𝜏0𝑥 +𝑈2       

 } ,            (50) 

where 𝑈𝑖 = (𝑈𝑖
(1)
, 𝑈𝑖

(2)
)
𝑇

∈ ℝ2 for 𝑖 = 1,2 are constant vectors, which can be determined from 

the following equations: 

 [
2𝑖θ −  𝑓10

(1)      − 𝑓01
(1) 

−  𝑓010
(2) 𝑒  2𝑖θ𝜏0 2𝑖θ −  (𝑓100

(2) + 𝑓001
(2) 𝑒  2𝑖θ𝜏0)

] [
𝑈1
(1)

𝑈1
(2)
] = 2 [

𝑅1
𝑅5
].             (51) 

 [
− 𝑓10

(1)      − 𝑓01
(1)

−  𝑓010
(2)      −( 𝑓100

(2)
+  𝑓001

(2)
 )
] [
𝑈2
(1)

𝑈2
(2)
] = [

𝑅2
𝑅6
].                        (52) 

As a result, using Cramer’s rule, it is obtained that 

 𝑈1
(1)
= 

det(𝑗11)

det(𝑗1)
, 𝑈1

(2)
= 

det(𝑗12)

det(𝑗1)
, 𝑈2

(1)
= 

det(𝑗21)

det(𝑗2)
, 𝑈2

(2)
= 

det(𝑗22)

det(𝑗2)
,               (53) 

where 

𝑗1 = [ 
2𝑖θ −  𝑓10

(1)      − 𝑓01
(1) 

−  𝑓010
(2) 𝑒 2𝑖θ𝜏0 2𝑖θ −  (𝑓100

(2) + 𝑓001
(2) 𝑒  2𝑖θ𝜏0)

 ], 

𝑗11 = [ 
𝑅1      − 𝑓01

(1) 

𝑅5      2𝑖θ −  (𝑓100
(2) + 𝑓001

(2) 𝑒  2𝑖θ𝜏0)
 ], 

𝑗12 = [  
− 𝑓10

(1)      𝑅1

−  𝑓010
(2)      𝑅5

  ], 𝑗2 = [ 
− 𝑓10

(1)
      − 𝑓01

(1)

−  𝑓010
(2)      −( 𝑓100

(2)
+  𝑓001

(2)
 )
], 

𝑗21 = [ 
𝑅2      − 𝑓01

(1)

𝑅6      −( 𝑓100
(2)
+  𝑓001

(2)
 )
], 𝑗22 = [ 

− 𝑓10
(1)      𝑅2

−  𝑓010
(2)      𝑅6

 ], 

Therefore, it becomes easy to find the value of both 𝑊20(𝑥)  and  𝑊11(𝑥) in equation (50) using 

the obtained results from equation (53). Hence, the values of 𝑔21  in equation (49) can be 

determined. Finally, utilizing the determined value of 𝑔𝑖𝑗 , the value of the fixed quantities in 

equation (33) is obtained, then all the properties of the bifurcating Hopf bifurcation follow and the 
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proof is complete. 

 

7. NUMERICAL SIMULATION 

In this section, the main results is illustrated numerically using the following biologically feasible 

hypothetical set of parameters set. The objective is confined the theoretical obtained results and 

understand the influence of the parameters on the dynamics of the system (3).  

𝑟 = 1, 𝐾 = 10, 𝑎1 = 0.5, 𝛽1 = 2, 𝑎2 = 0.32, 𝑏1 = 0.1,
𝑐 = 0.15, 𝑏2 = 0.4, 𝛽2 = 2,𝑚 = 0.8, 𝜏 = 0.1

.                  (54) 

It is obtained that, the trajectory of the system (3) utilizing the parameters set (54) is approached 

to the coexistence equilibrium point 𝑃3 = (4.16,7.19) starting from different initial points, see 

Figure (1). 

 

Figure 1: The trajectories of system (3) using the parameters set (54) with different initial points. (a) The phase portrait. 

(b) The time series. 

The influence of the time delay is studied in Figure (2), the occurrence of Hopf bifurcation is 

clearly shown in that Figure at the bifurcation point 𝜏0 = 6.3. 

According to Figure (2), system (3) undergoes a Hopf bifurcation as the parameters 𝜏  pass 

through the value 𝜏0 = 6.3. The periodic dynamics are asymptotic stable and become larger as 

the value of 𝜏 increases. 

The influence of the varying other parameters is investigated in the following Figures. It is 

observed that, for the ranges 𝑟 ∈ (0,0.15] , 𝑟 ∈ [0.16,0.81] , and 𝑟 ≥ 0.82  the system (3) 

approaches asymptotically to 𝑃3, limit cycle, and 𝑃3 respectively as shown in the Figure (3) for 

the typical values of 𝑟. 
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Figure 2: The trajectory of the system (3) using the parameters set (54) with different values of time delay shows the 

occurrence of Hopf bifurcation. 
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Figure 3: The trajectory of system (3) using the parameters set (54) with different values of 𝑟. (a) Asymptotic stable 

point 𝑃3 = (3.65,6.45) for 𝑟 = 0.9. (b) Time series for 𝑟 = 0.9. (c) Asymptotic stable limit cycle for 𝑟 = 0.5. (d) 
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Time series for 𝑟 = 0.5. (e) Asymptotic stable point 𝑃3 = (0.54,0.48) for 𝑟 = 0.1. (b) Time series for 𝑟 = 0.1. 

 

   For the parameter 𝐾, it is observed that for the ranges 𝐾 ∈ (0,0.37], and 𝐾 ≥ 0.38 system 

(3) approaches asymptotically to 𝑃1, and 𝑃3 respectively as shown in Figure (4) for the typical 

values of 𝐾. 

 

 

Figure 4: The trajectory of system (3) using the parameters set (54) with different values of 𝐾. (a) Asymptotic stable 

point 𝑃1 = (0.37,0) for 𝐾 = 0.37. (b) Time series for 𝐾 = 0.37. (c) Asymptotic stable 𝑃1 = (0.47,0.28) for 𝐾 =

0.5. (d) Time series for 𝐾 = 0.5. 

 

   Now for the parameter 𝑎1, it is observed that, for the ranges 𝑎1 ∈ (0,0.59], and 𝑎1 ≥ 0.6 

system (3) approaches asymptotically to 𝑃3, and stable limit cycle respectively as shown in the 

Figure (5) for the typical values of 𝑎1. 
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Figure 5: The trajectory of system (3) using the parameters set (54) with different values of 𝑎1. (a) Asymptotic stable 

point 𝑃3 = (3.35,6.03) for 𝑎1 = 0.59. (b) Time series for 𝑎1 = 0.59. (c) Asymptotic stable limit cycle for 𝑎1 =

0.6. (d) Time series for 𝑎1 = 0.6. 

 

   For the parameter 𝛽1, it is observed that, for the ranges 𝛽1 ∈ (0,1.75], and 𝛽1 ≥ 1.76 system 

(3) approaches asymptotically to a stable limit cycle, and 𝑃3 respectively as shown in the Figure 

(6) for the typical values of 𝛽1. 

Moreover, for the parameter 𝑎2 , it is observed that, for the ranges 𝑎2 ∈ (0,0.06] , 𝑎2 ∈

[0.07,0.34], and 0.35 ≤ 𝑎2 ≤ 𝑎1  system (3) approaches asymptotically 𝑃1 , 𝑃3 , and a stable 

limit cycle respectively as shown in the Figure (7) for the typical values of 𝑎2. 
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Figure 6: The trajectory of system (3) using the parameters set (54) with different values of 𝛽1. (a) Asymptotic stable 

limit cycle for 𝛽1 = 1.7. (b) Time series for 𝛽1 = 1.7. (c) Asymptotic stable point 𝑃3 = (3.6,6.91) for 𝛽1 = 1.8. 

(d) Time series for 𝛽1 = 1.8. 
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Figure 7: The trajectory of system (3) using the parameters set (54) with different values of 𝑎2. (a) Asymptotic stable 

limit cycle for 𝑎2 = 0.35. (b) Time series for 𝑎2 = 0.35. (c) Asymptotic stable point 𝑃3 = (3.52,7.15) for 𝑎2 =
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0.34. (d) Time series for 𝑎2 = 0.34. (e) Asymptotic stable point 𝑃1 = (10,0) for 𝑎2 = 0.05. (f) Time series for 

𝑎2 = 0.05. 

 

For the parameter 𝑏1, it is observed that, for the ranges 𝑏1 ∈ (0,0.11], 𝑏1 ∈ [0.12,0.23], 𝑏1 ∈

[0.24,0.26], and 0.27 ≤ 𝑏1 system (3) approaches asymptotically 𝑃3, a stable limit cycle, 𝑃3, 

and 𝑃2 respectively as shown in the Figure (8) for the typical values of 𝑏1. 
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Figure 8: The trajectory of system (3) using the parameters set (54) with different values of 𝑏1. (a) Asymptotic stable 

limit cycle for 𝑏1 = 0.12. (b) Time series for 𝑏1 = 0.12. (c) Asymptotic stable point 𝑃3 = (0.21,4.33) for 𝑏1 =

0.24. (d) Time series for 𝑏1 = 0.24. (e) Asymptotic stable point 𝑃2 = (0,4.28) for 𝑏1 = 0.27. (f) Time series for 

𝑏1 = 0.27. 

 

   Now, for the parameter 𝑐, it is observed that, for the ranges 𝑐 ∈ (0,0.012], 𝑐 ∈ [0.013,0.13], 

𝑐 ∈ [0.14,0.36], and 0.37 ≤ 𝑐 system (3) approaches asymptotically 𝑃3, a stable limit cycle, 𝑃3, 

and 𝑃1 respectively as shown in the Figure (9) for the typical values of 𝑐. 
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Figure 9: The trajectory of system (3) using the parameters set (54) with different values of 𝑐. (a) Asymptotic stable 

point 𝑃3 = (0.21,4.33) for 𝑐 = 0.01. (b) Time series for 𝑐 = 0.01. (c) Asymptotic stable limit cycle for 𝑐 = 0.13. 



27 
THE DYNAMICS OF A DELAYED ECOLOGICAL MODEL 

(d) Time series for 𝑐 = 0.13. (e) Asymptotic stable point 𝑃3 = (3.64,7.2) for 𝑐 = 0.14. (f) Time series for 𝑐 =

0.14. (g) Asymptotic stable point 𝑃1 = (10,0) for 𝑐 = 0.37. (h) Time series for 𝑐 = 0.37. 

 

   Finally, it is observed that the influence of other parameters on the system's dynamics (3) is 

similar to some of the above parameters, and Table (1) summarizes them. 

Table 1: The dynamics of the system (3) as a function of the parameter 

The parameter Its range The dynamics 

𝑏2 
𝑏2 ∈ (0,0.36] The system (3) approaches asymptotically to limit cycle 

𝑏2 ≥ 0.37 The system (3) approaches asymptotically to 𝑃3 

𝛽2 

𝛽2 ∈ (0,0.0005] The system (3) approaches asymptotically to 𝑃1 

𝛽2 ∈ [0.0006,0.38] The system (3) approaches asymptotically to 𝑃3 

𝛽2 ≥ 0.39 The system (3) approaches asymptotically to limit cycle 

𝑚 
𝑚 ∈ (0,0.83] The system (3) approaches asymptotically to 𝑃3 

𝑚 ∈ [0.84,1) The system (3) approaches asymptotically to limit cycle 

 

8. CONCLUSIONS 

In this paper, a model describing a delayed prey-predator interaction that incorporates predator 

cannibalism and refuge is investigated. The Holling type II functional response was used to 

describe the predation and cannibalism processes. All the system solution properties are discussed. 

It is obtained that, system (3) has four possible nonnegative equilibrium points. The local stability 

of them are studied for 𝜏 ≥ 0, and the stability conditions are determined. The existence of Hopf 

bifurcation as a function of 𝜏 is proved. The stability and direction of the bifurcated periodic 

dynamics is investigated using the center manifold and normal form theory. Finally, numerical 

simulation was used to verified the obtained results and understand the influence of varying 

system’s parameters using hypothetical set of parameters values. The following conclusions are 

obtained numerically depending on the parameters set (54). 

1. The system has two types of attractors, stable point or else stable limit cycle depending on 

the set of parameters used. For set (54), the system approaches asymptotically to the 

coexistence equilibrium point from different initial points. 

2. The system undergoes a Hopf bifurcation as the parameter 𝜏 passing the bifurcation point 

𝜏0 = 6.3. 
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3. The system approaches the coexistence equilibrium point with large values of intrinsic 

growth rates asymptotically. While decreasing this parameter destabilizes the coexistence 

point and periodic dynamics obtained. It is observed that lowering the intrinsic growth rate 

further returns the system stability at the coexistence point. 

4. Increasing the carrying capacity keeps the system stability at the coexistence point, while, 

decreasing it below a specific value causing extinction in a predator and the system 

approaches to predator-free point. 

5. Increasing the predation rate above a specific value destabilizes the coexistence 

equilibrium point and the system approaches periodic dynamics. A similar effect had been 

shown with increasing the predator refuge constant. 

6. Decreasing the predation half-saturation constant below a specific value destabilizes the 

coexistence equilibrium point and the system approaches periodic dynamics. A similar 

effect had been shown with decreasing the cannibalism rate. 

7. Increasing the conversion rate above a specific value causes destabilizing the coexistence 

equilibrium point and the system approaches a stable limit cycle. However, decreasing it 

below a threshold value leads to extinction in predator species and the system comes 

asymptotically to a predator-free point. A similar effect had been shown with varying the 

cannibalism half-saturation constant. 

8. With the exception of the existence of a threshold value at which the system approaches an 

asymptotically prey-free equilibrium point, the cannibalism conversion rate has effects on 

the system dynamics that are comparable to those observed with an intrinsic growth rate. 

9. With the exception of the existence of a threshold value at which the system approaches an 

asymptotically predator-free equilibrium point, the predator death rate has comparable 

effects on the system's dynamics as those demonstrated with an intrinsic growth rate. 
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