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Abstract: Phytoparasitic nematode is a microscopic worm that affects the host plants and causes severe losses in the 

agricultural sector. Accurate and rapid identification of phytoparasitic nematodes is required to determine proper pest 

control and management. Hence it has become a necessity to automate the phytoparasitic nematode identification 

procedure. This study conducts a comparative analysis of 15 popular convolutional neural networks models, namely 

CoAtNet-0, DenseNet121, DenseNet169, DenseNet201, EfficientNetV2B0, EfficientNetV2B3, EfficientNetV2L, 

EfficientNetV2M, EfficientNetV2S, InceptionResNetV2, InceptionV3, ResNet101v2, ResNet50v2, VGG19, and 

Xception to deals with phytoparasitic nematode identification from the microscopic image. The results are compared 

using several evaluation metrics, namely test accuracy, mean class accuracy, F1 score, precision, and recall. The 

results show that CoAtNet-0 outperformed other models with 98.06% test accuracy, 97.86% mean class accuracy, 

0.9803 F1 score, 0.9818 Precision, and 0.9806 Recall. 

Keywords: convolutional neural networks; classifications; phytoparasitic nematode. 
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1. INTRODUCTION 

Phytoparasitic nematode is a harmful nematode that is usually found in plants. Around 4100 

identified phytoparasitic nematode species [1], each impacting the host plants differently. 

Phytoparasitic nematodes cause an enormous crop loss, projected to be around 157 billion USD 

globally [2]. The current identification process is based on the classical method, where the 

nematologist performs visual observation from the morphological characteristic of the microscopic 

nematode image. Other supplementary techniques were based on molecular analysis using 

fingerprint, DNA sequencing, and protein analysis [3]. Conventional methods are challenging as 

the morphological characteristic between species is similar. The identification also requires a long 

process, prone to error, and there is a decrease in the number of nematode experts. Therefore, an 

alternative method with high accuracy to assist phytoparasitic nematode identification is necessary 

for proper pest control and management. 

The image-based method has been proven to have a notable result in nematode identification 

processes. The pioneer in integrating the advanced image-based method for nematode 

identification was first introduced by [4]. The research demonstrated image processing techniques, 

such as filtering, segmentation, and morphological operations for feature extraction and using the 

RBF neural network for classification tasks. The ability of a skeleton-based technique for C. 

Elegans nematode detection and separation in population images was demonstrated by [5]. The 

strategy yield is a vision algorithm with a false rejection rate (FRR) and false acceptance rate (FAR) 

of 7.9% and 8.4%, respectively. An application for automated identification of nematode's size and 

shape, called WormSizer, was introduced by [6]. The application implemented several image 

processing techniques, such as a global thresholding algorithm, image segmentation, and 

skeletonizing, to measure the nematode's width, length, and volume. An image-based algorithm 

was accomplished by [7] to acquire a physical attribute of Meloidogyne type II species. The 

proposed algorithm, which applied several image processing methods, such as illumination 

correction, binarization, and segmentation, achieved an error rate of 15% and 11% for length and 

width measurement, respectively. 

The breakthrough in machine learning and deep learning makes it possible to be implemented 

in nematode identification. This method is adapted for processing extensive data and recognizing 
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different and small things in challenging environments, such as microscopic nematode images. A 

deep convolutional selective encoder architecture was developed [8] to identify and count 

soybeans cyst nematode (SCN) in clutter-field images. The proposed algorithm is comparable to 

the expert's result, with SCN in the less cluttered and highly cluttered image resulting in 92% and 

95% accuracy, respectively. Research by [9] proposed a new architecture combining DenseNet121 

and Inception Blocks for phytonematode identification. The performance was outstanding, with 

an accuracy reach of 98.99% for the model implemented with the transfer learning method. The 

feasibility of the Xception model, a Convolutional Neural Networks (CNN)-based method, for 

classifying entomopathogenic nematodes (EPN) was studied [10]. The performance achieved an 

average validation accuracy of 69.45% for the adult nematode dataset and 88.28% for the juvenile 

nematode dataset. A deep learning-based application was developed by [11] for soil nematode 

identification. A ResNet-101 deployed to a web-based system could correctly identify 60% of the 

nematode genera, 76% of c-p values, and 76% of feeding types applied in the I-nema dataset [12]. 

Faster region-based convolutional neural networks were implemented by [13] to detect the non-

parasitic and plant-parasitic nematode from the microscopic image. The method resulted in an 

accuracy reach of up to 87.5%.   

Deep learning models were recently implemented for identifying plant-parasitic nematodes with 

a self-collected dataset of nematodes commonly found in Indonesia [14]. The previous study 

explored the effect of optimization techniques and augmentation methods on the performance of 

four different deep-learning models. The result shows that most augmentation methods negatively 

impacted the model performance. In terms of optimization, it was found that it is better to use an 

optimizer that is easy to use, but with parameter fine-tuning that is matched to the problem to be 

solved to produce the best performance. 

To further improve the previous research, this study investigates 15 popular and well-known 

CNN-based methods, namely CoAtNet-0, DenseNet121, DenseNet169, DenseNet201, 

EfficientNetV2B0, EfficientNetV2B3, EfficientNetV2L, EfficientNetV2M, EfficientNetV2S, 

InceptionResNetV2, InceptionV3, ResNet101v2, ResNet50v2, VGG19, and Xception. The dataset 

used in this research is an improved version of the prior study [14], which added images to several 

classes. The deep learning models were performed via the transfer learning method with the same 
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optimizer function, namely SGD optimizer. Fine-tuning was applied to match the dataset 

characteristic and the task which will be solved. The model performance was then compared based 

on several metric evaluations, such as test accuracy, mean class accuracy, F1 score, precision, and 

recall, to obtain the best CNN approach for phytoparasitic nematode identification.  

 

2. METHODS 

2.1. Research Workflow. Figure 1 presents the general workflow for this study. Initially, the 

phytoparasitic nematode dataset was collected in Indonesia’s agricultural area and classified by a 

nematologist expert before further processing. The data pre-processing includes several image pre-

processing techniques such as edge detection, cropping, and converting into grayscale. The 

selected CNN models, namely CoAtNet-0, DenseNet121, DenseNet169, DenseNet201, 

EfficientNetV2B0, EfficientNetV2B3, EfficientNetV2L, EfficientNetV2M, EfficientNetV2S, 

InceptionResNetV2, InceptionV3, ResNet101v2, ResNet50v2, VGG19, and Xception, then build 

and configure using several hyperparameter settings. The pre-processing results are used as the 

input for training the CNN models. The results are obtained and compared using several evaluation 

metrics, such as test accuracy, mean class accuracy, F1, precision, and recall, to find the best CNN 

models. 

 

FIGURE 1. Research workflow. 

2.2. Datasets. The images were captured using an optical system linked to a laptop and a 

microscope with the samples presented in Figure 2. Initially, a soil sample collection of 

phytoparasitic nematodes from diseased Indonesian agricultural plants was collected. The 

nematodes then extracted from the soil using modified Whitehead Tray [15]. The specimen was 

then prepared for morphological assessment by using an Olympus CX 31 light microscope with a 
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magnification range of 40–1000. The picture was captured using an optical system linked to a 

laptop and a microscope, with the sample results presented in Figure 3. We added fifty-nine new 

images to the dataset in the prior study [14], resulting in the image distribution classes as presented 

in Table 1. The datasets consist of 1016 plant-parasitic nematode images divided into 11 classes. 

As can be seen in Table 1, the total image in each class is considered unbalanced. However, it 

represents the real-world constraint faced by nematologists as some nematode genera were limited 

in the agricultural area. 

 

FIGURE 2. Data acquisition workflow. 

 

FIGURE 3. Sample of phytoparasitic nematode dataset. a. Meloidogyne, b. Hirschmanniella, c. 

Pratylenchus, d. Criconema, e. Criconemoides, f. Xiphinema, g. Trichodorus, h. Helicotylenchus, 

i. Radopholus, j. Hoplolaimus, k. Hemicycliophora. 
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TABLE 1. Phytoparasitic nematode dataset distribution. 

Genus No. of samples 

Genus Meloidogyne 211 

Genus Hirschmanniella 130 

Genus Pratylenchus 116 

Genus Criconema 4 

Genus Criconemoides 103 

Genus Xiphinema 85 

Genus Trichodorus 44 

Genus Helicotylenchus 135 

Genus Radopholus 31 

Genus Hoplolaimus 151 

Genus Hemicycliophora 6 

Total 1016 

 

 

FIGURE 4. CNN implementation workflow. 

2.3. CNN Implementations. The workflow for training the phytoparasitic nematode using CNN 

models is presented in Figure 4. The data acquisition result from the procedure in Figure 2 was 

used as the input image of the CNN architecture. The images were then pre-processed using the 

same method as the previous works [12–14]. Edge detection was implemented to find the boundary 
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of the nematode specimens contained in the image. The detection result was then used as an input 

for image cropping, a technique to equalize the areas of the image containing the nematode objects 

by eliminating white space and lessening superfluous information. Grayscale pictures of the 

samples were then generated because nematode identification relies exclusively on their 

morphological characteristics. Then, to meet the input size of all models evaluated, all microscopic 

photos are downsized to 224 x 224. The data was then split into train, validation, and testing data 

with the composition of 80:10:10, with the total images of 813, 102, and 101 in train, validation, 

and testing data, respectively. 

TABLE 2. Parameters of CNN models 

Model Size Parameters Depth Initial LR 

CoAtNet-0 86  25 M - 0.0021 

DenseNet121 27  8.1 M 242 0.001 

DenseNet169 49  14.3 M 338 0.003 

DenseNet201 71  20.2 M 402 0.003 

EfficientNetV2B0 23  7.2 M - 0.065 

EfficientNetV2B3 50  14.5 M - 0.065 

EfficientNetV2L 450  119 M - 0.049 

EfficientNetV2M 203  54.4 M - 0.134 

EfficientNetV2S 78  21.6 M - 0.029 

InceptionResNetV2 208  55.9 M 449 0.013 

InceptionV3 84  23.9 M 189 0.009 

ResNet101v2 163  44.7 M 205 0.007 

ResNet50v2 90  25.6 M 103 0.001 

VGG19 549  143.7M 19 0.01 

Xception 80  22.9 M 81 0.025 

The optimizer will determine how weight updates are carried out during training. This research 

implements SGD and momentum when training deep convolutional neural networks due to its 

superior validation and test results. Besides, SGD also has a better generalization to unobserved 

data [16–17]. However, SGD requires learning rate tuning and is slower to converge than Adam 

Optimizer. Those issues can be resolved by applying a good starting learning rate (LR). The 
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selection of an LR during deep neural network training is essential for both quick convergence and 

minimal error. Learning rate and momentum value significantly affect neural network 

performances [18]. This study implements LRfinder proposed by [19] to find the initial learning 

rate value for each model, except for CoAtNet-0, due to memory limitations. The initial learning 

rate for each model is given in Table 2. Moreover, zero momentum of SGD was also applied when 

training the CNN model. 

Hyperparameters are crucial when training convolutional neural networks since they directly 

influence the actions of training algorithms and significantly impact the models' performance [20]. 

For consistency, each model will be trained by utilizing the same hyperparameter value in batch 

size, activation layer, loss function, and epoch. A batch size of 32 was selected for the CNN models 

due to its improved generalization performance and memory saver [21]. However, because of 

memory limitations, the batch size of CoANet-0 was set to 16. For a multi-class classification 

problem, a sparse cross-entropy loss function was applied. The SoftMax activation layer was 

implemented for the dense layer. The training epoch was assigned to 100 with a callback early 

stopping function to end the training process when it reaches a certain condition and to avoid 

overfitting. LearningRateScheduler callback was also used to take the step decay function as an 

argument and return the updated learning rates with 0.97 from the initial LR value. 

Large datasets are ideal for training convolutional neural network models [22]. However, in this 

study, the total data is considered small. Transfer learning is frequently used to reduce overfitting 

caused by smaller datasets [23]. This method transfer knowledge from the model trained using the 

ImageNet dataset to the new phytoparasitic nematode dataset. This study also avoided training 

from scratch due to the computational expense of building the architecture. When implementing 

the transfer learning model, the final fully connected layer was removed, replaced with a layer with 

11 output nodes, and then retrained by varying weights to better categorize phytoparasitic 

nematodes. 

This study investigates 14 popular pre-trained deep learning models provided by Keras [24], 

which are trained using ImageNet [25] weight. The models were selected based on the 
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computational limitations and image classification performance using the ImageNet benchmark 

[24–26]. The selected models are CoAtNet-0, DenseNet121, DenseNet169, DenseNet201, 

EfficientNetV2B0, EfficientNetV2B3, EfficientNetV2L, EfficientNetV2M, EfficientNetV2S, 

InceptionResNetV2, InceptionV3, ResNet101v2, ResNet50v2, VGG19, and Xception. All models 

have the same based architecture by applying convolutional architecture. The parameters, an 

internal value related to model architecture, and the main backbone for each convolutional neural 

network architecture implemented in this study are summarized in Table 2 and Table 3, respectively. 

All models were then trained on Google Colab Pro with the specifications of NVIDIA P100 or T4 

as GPU, CPU Xeon Processor@ 2.3GHz, and memory up to 25GB based on availability. 

TABLE 3. Main characteristics of CNN models 

Model Architecture Key points 

CoAtNet-0 Convolution & 

transformers 

Combination of two different 

architecture 

DenseNet121 Convolution Deep network with shorter connections 

between layers  DenseNet169 Convolution 

DenseNet201 Convolution 

EfficientNetV2B0 Convolution Scaling method and neural architecture 

search EfficientNetV2B3 Convolution 

EfficientNetV2L Convolution 

EfficientNetV2M Convolution 

EfficientNetV2S Convolution 

InceptionResNetV2 Convolution Inception layer with residual connection 

InceptionV3 Convolution Inception layer  

ResNet101v2 Convolution Residual connections 

ResNet50v2 Convolution 

VGG19 Convolution Deep network of small convolution layer 

Xception Convolution Depth wise separable convolution 
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2.3.1 CoAtNet. The Convolution and Attention Networks (CoAtNet) were proposed by [27] 

through combining the strength of the convolution and transformer networks. This method has 

better generalization, a larger capacity, faster convergence, and improved efficiency. CoAtNet-0 

consists of three convolutional stages and two transformers (attention) layers, as seen in the 

architecture presented in Figure 5. Global pooling is implemented in this model as the pooling 

layer before the final fully connected layer. 

 

 

FIGURE 5. CoAtNet-0 architecture. 

 

 

FIGURE 6. DenseNet121 architecture 
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FIGURE 7. DenseNet169 architecture. 

 

 

FIGURE 8. DenseNet201 architecture. 
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2.3.2 DenseNet. Dense Convolutional Networks (DenseNet) are based on the connection between 

each layer in a feed-forward manner [28]. This neural network architecture offers a variety of 

significant advantages, including eliminating the vanishing-gradient issue, improving feature 

propagation, promoting feature reuse, and significantly decreasing parameter requirements. The 

networks are divided into multiple densely connected, namely dense blocks, to facilitate the down-

sampling layers that change the feature map. The network configuration in the dense block 

differentiated the version of this model. The configuration for DenseNet121 is presented in Figure 

6, while DenseNet169 and DenseNet201 are presented in Figure 7 and Figure 8, respectively. 

Those three DenseNet models are implemented in this study.  

2.3.3 EfficientNet. The EfficientNet model advances the performance compared to other 

architecture by implementing a smaller model and faster convergence speed. The core of this 

model uses a new scaling technique with a straightforward compound coefficient to scale the 

model's breadth, depth, and resolution to increase model capacity [29]. A new baseline model 

utilizing MBConv blocks is then built using Neural Architecture Search (NAS) and is scaled using 

the compound coefficient to build EfficientNet [30]. The network's core features of MBConv and 

Fused-MBConv increase training efficiency while reducing model size. 

 The newer and enhanced models, namely EfficientNetV2, with a certain training technique, 

can reach a 5–11 faster convergence rate than the existing cutting-edge models while being up to 

6 smaller in size [31]. The EfficientNetV2B has four models starting from B0 to B3 version. The 

architecture of EfficientNetV2B0 and EfficientNetV2B3 implemented in this study is presented in 

Figure 9 and Figure 10, respectively. The small version of EfficientNetV2, namely 

EfficientNetV2S, was also utilized in this study. EfficientNetV2S is scaled up to generate 

EfficientNetV2M (Medium) and EfficientNetV2L (Large) with a few additional optimizations by 

limiting image size and adding more layers gradually in a later scale. The architecture for 

EfficientNetV2L, EfficientNetV2M, and EfficientNetV2S is presented in Figure 11, Figure 12, and 

Figure 13, respectively. 
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FIGURE 9. EfficientNetV2B0 architecture. 

 

 

FIGURE 10. EfficientNetV2B3 architecture. 
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FIGURE 11. EfficientNetV2L architecture. 

 

 

FIGURE 12. EfficientNetV2M architecture. 
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FIGURE 13. EfficientNetV2S architecture. 

 

2.3.4 Inception. The scaling up of networks is the core of the inception model. The model uses 

aggressive regularization and factorized convolutions to improve processing efficiency [32]. In 

this study, InceptionV3 and InceptionResNetV2 were used. Configuration of InceptionV3, 

presented in Figure 14, is retained, and improves the network by employing factorized 7x7 

convolutions and BatchNorm in the auxiliary classifier. To prevent the network from overfitting, 

a regularizing component has been added to the loss formula [32]. The InceptionResNetV2 model 

[33] is a hybrid Inception architecture incorporating elements from ResNet's functionality. This 

model incorporates residual connections in place of the Inception's filter concatenation stage. This 

method allows Inception to achieve all its benefits while maintaining its processing efficiency. The 

InceptionResNetV2 implemented in this research is given in Figure 15. 
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FIGURE 14. InceptionV3 architecture. 

 

 

FIGURE 15. InceptionResNetV2 architecture. 
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FIGURE 16. ResNet101V2 architecture. 

 

FIGURE 17. ResNet50V2 architecture. 
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2.3.5 ResNet. The Residual Network (ResNet) architecture was built to accommodate the VGG 

model, which is far deeper and challenging to train [34]. The training procedure can be made 

simpler with ResNet's residual learning framework. By omitting connections and offering 

shortcuts, the previous model's problem with disappearing gradients is resolved. The two core 

ResNet blocks are the identity and convolutional blocks. These blocks can be stacked to produce 

deep residual networks. By implementing identity mapping on the skip connections, the most 

recent iteration of this model, known as ResNetV2, enhanced the prior version. Each residual 

block's data transfer speed can be increased using this method [35]. The variation of version two's 

model lies in the number of layers. The ResNet101V2 and ResNet50V2 architectures implemented 

in this research are presented in Figure 16 and Figure 17, respectively. 

 

FIGURE 18. VGG19 architecture. 
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2.3.6 VGG. Visual Geometry Group (VGG) was introduced in [36], where the implementation 

used 3x3 convolutional filters and increased the depth of the layer to improve the classification 

performance. The VGG19 implemented in this study consists of 19 layers, including 16 

convolutional layers and three fully connected layers, as seen in Figure 18. 

2.3.6 Xception. The Inception model inspired the Xception model but with the replacement of the 

inception module by using depthwise separable convolution [37]. The model has the exact 

parameters count as Inception but performed better on ImageNet classification. The architecture 

of Xception utilized in this research is presented in Figure 19. 

 

FIGURE 19. Xception architecture. 
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2.4. Metric Performance Evaluation. Several metrics were utilized to evaluate the performance 

of the CNN model: test accuracy, mean class accuracy, Precision, Recall, and F1 score. The test 

accuracy can be used to evaluate how frequently a machine learning classification algorithm 

classifies a data point correctly. It can be obtained by calculating the number of items accurately 

classified out of the total number, which the formula is given in Eqs. (1). Mean class accuracy is 

used to calculate average accuracy from all classes with the formula presented in Eqs. (2). 

Precision is achieved by calculating the actual class labels divided by the value obtained by adding 

all the results from the CNN model, as seen in Eqs. (3). Recall measures the effectiveness of the 

CNN model by summing True Positive and False Negative across all classes, as given in the 

formula in Eqs. (4). The F1 score is usually used for the unbalanced dataset by measuring the 

harmonic mean of Precision and recall with the formula in Eqs. (5). 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (1) 

𝑀𝑒𝑎𝑛 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑐
∑

1

𝑛𝑖
∑ 𝑎𝑗

𝑖𝑛𝑖
𝑗=1

𝑐
𝑖=1          (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (5) 

where TP – True Positive; FP – False Positive; TN – True Negative; FN –False Negative; c is the 

number of nematode genus; 𝑛𝑖 the number of the image in 𝑖𝑡ℎ class; and 𝑎𝑗
𝑖 is the accuracy for 

image number 𝑗𝑡ℎ in 𝑖𝑡ℎ class. 

3. RESULTS AND DISCUSSION 

This study compared several pre-trained CNN models based on the test accuracy, mean class 

accuracy, precision, F1 score, precision, and recall, as tabulated in Table 4. The CoAtNet-0 

outperformed other CNN pre-trained models with a test accuracy of 98.06%. Both Inception 

Family and VGG19 followed the test accuracy with the value of 95.15%. The lowest test accuracy 

was 89.32%, obtained from EfficientNetV2M and ResNet101V2 model. CoAtNet-0 was also 
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observed to have the highest mean class accuracy, followed by VGG19, with values of 97.87% and 

96.53%, respectively. EfficientNetV2L was the least performed in mean class accuracy, with a 

value of 82.35%. Based on the Precision metric, a metric which describes how well a model 

predicts the positive class, CoAtNet-0 obtained the highest result of 98.18% followed with the 

InceptionV3 with value of 95.57%. The recall metrics measure the percentage of actual positive 

classes identified by the model. The CoAtNet-0 model resulted in the highest recall with the value 

of 98.06%, followed with Inception-ResNetV2, Inception-V3 and VGG-19 model with the value 

of 95.15%.  

TABLE 4. Performance metrics result 

MODEL 
Test Acc. 

(%) 

Mean Class 

Acc. (%) 

F1-score 

(%) 

Precision 

(%) 

Recall 

(%) 

CoAtNet-0 98.06 97.86 98.03 98.18 98.06 

DenseNet121 91.26 90.55 91.35 92.23 91.26 

DenseNet169 93.20 93.49 93.15 93.45 93.20 

DenseNet201 92.23 93.98 92.28 93.04 92.23 

EfficientNetV2B0 94.17 93.49 94.13 94.47 94.17 

EfficientNetV2B3 92.22 92.42 92.21 92.61 92.23 

EfficientNetV2L 91.26 82.35 90.73 91.19 91.26 

EfficientNetV2M 89.32 90.35 89.44 91.09 89.32 

EfficientNetV2S 94.17 94.77 94.19 94.90 94.17 

InceptionResNetV2 95.15 95.76 95.18 95.44 95.15 

InceptionV3 95.15 95.34 95.13 95.57 95.15 

ResNet101v2 89.32 89.67 89.29 89.77 89.32 

ResNet50v2 92.23 91.38 92.44 94.05 92.23 

VGG19 95.15 96.53 95.10 95.55 95.15 

Xception 94.17 94.09 94.09 94.37 94.17 

It is also observed that the training process of EfficientNetV2S, InceptionResNetV2, 

InceptionV3, ResNet101v2, and VGG19 was stopped before 60 epochs, indicating that those 

models reached minimum loss faster compared to other models in phytoparasitic nematode dataset. 

Only three models, namely DenseNet121, EfficientNetV2B3, and EfficientNetV2M, reached up 
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to 100 epochs during the training process, which shows that those three models required more 

epochs to reach the optimum result. All models implemented in this study show satisfactory 

accuracy and loss results during training. However, most of the learning curves show that the model 

experienced overfitting. This result is presumably due to the small size of the dataset, with 

insufficient data samples to accurately represent the feature of each nematode genus morphology. 

Regarding stability and regularization, ResNet101v2 is observed to provide the best result 

compared to other CNN models. Only ResNet101v2 provides a good fit learning curve for model 

accuracy, as shown in Figure 20. 

 

FIGURE 20. ResNet101V2 learning curve. 

In conclusion, we recommend utilizing CoAtNet-0 for identifying phytoparasitic nematode in 

the small dataset due to its outstanding performance (98.06% test accuracy, 97.86% mean class 

accuracy, 0.9803 F1 score, 0.9818 Precision, and 0.9806 Recall). There is performance 

improvement from this result compared to the previous study [14]. Note that the previous study 

with the highest test accuracy of 97.94% resulted from the model implementing data augmentation, 

which means that the time required to train the model is longer due to the additional pre-processing 

technique. This study shows that using the right optimizer with fine tuning and proper learning rate 

can give higher performance. 
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4. CONCLUSIONS 

This study demonstrated the performance comparison of Convolutional Neural Network 

approaches to identify phytoparasitic nematodes. The performance from CNN models 

implemented in this study, namely CoAtNet-0, DenseNet121, DenseNet169, DenseNet201, 

EfficientNetV2B0, EfficientNetV2B3, EfficientNetV2L, EfficientNetV2M, EfficientNetV2S, 

InceptionResNetV2, InceptionV3, ResNet101v2, ResNet50v2, VGG19, and Xception showing 

satisfactory results. CNN models utilized the transfer learning technique with SGD optimizer, and 

a good initial learning rate can perform well in multi-class phytoparasitic nematode identification. 

The highest performance was obtained from CoAtNet-0 with test accuracy, mean class accuracy, 

F1 score, Precision, and Recall of 98.06%, 97.86%, 0.9803, 0.9818, and 0.9806, respectively. The 

lowest test accuracy was 89.32%, obtained from EfficientNetV2M and ResNet101V2 model. The 

performance of CNN models can be used to further implement in automate the phytoparasitic 

nematode identification process. 
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