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Abstract: In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator 

with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t 

distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as 

existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible 

equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation 

analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to 

validate the main findings and obtain the critical values of the bifurcation parameters, if any. It is obtained that the 

existence of fear controls the disease outbreak and the system's persistence. While in the case of a rising hunting 

cooperation rate, the induced fear may control the outbreak of disease. 
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1. INTRODUCTION 

Ecology research has long focused on the interaction between predators and their prey, which 

is a very important aspect of the field. A significant and well-known topic of study in population 

dynamics and applied mathematical modeling is the prey-predator relationship. Such relationships 

are one of many types of inter-species interactions that are important in determining how complex 

ecological systems in our diverse planet behave [1]. According to studies, it has an impact on the 

ecosystem as a whole and not just the species of predator and prey that interact [2]. 

However, some recent theoretical and experimental research has challenged conventional 

wisdom. Studies have shown how crucial indirect effects (panic or fear) are in influencing both 

the dynamics of prey-predator relationships and the ecosystem as a whole. Although Cannon first 

proposed the concept of fear in 1915 [3], it is still a relatively new concept in the world of 

mathematical modeling. Prey individuals have been seen to alter their typical foraging activity in 

the presence of predator species as a result of the psychological stress of being captured and 

murdered by predators. In some ways, this helps the prey species at that specific time by boosting 

their chances of surviving, but in the long run, it could result in a significant loss. In addition to 

affecting their foraging habits, this perceived predation risk lowers both their birth rate and the 

likelihood that their children will survive more than typical adults. Several recent field trials and 

theoretical analyses back up the aforementioned assertions. According to certain paradoxical 

findings from studies [4] and the references therein, the influence of indirect fear may occasionally 

outweigh the effect of direct predation. Since direct predation is relatively simple to detect in nature, 

it is typically believed in traditional prey-predator models that predators only have an impact on 

prey populations by direct killing. However, the presence of a predator may drastically alter prey 

physiology and behavior to the point where it may have a greater impact on the prey population 

than direct predation [5-6]. Numerous mathematical models examined how fear affected the 

relationship between prey and predator, see for example [7-15]. Recently, a tri-trophic food web 

with a fear reaction for the base prey and a Lotka-Volterra functional response for predation by 

both a specialist predator and a superpredator was recently developed and studied by Fakhry et al. 
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[16]. They discovered a surprising result of the prey's fear of its expert predator, which is the 

potential extinction of the superpredator. 

Even while epidemiology is a significant subject of research in and of itself, there has been a 

recent movement toward combining it with ecology to better understand how species interact in 

ecosystems under the influence of epidemiological causes. Because no species lives alone in nature 

but interacts with many other species directly or indirectly, studying the impact of disease in the 

context of interspecies interactions is more realistic than the one without it. As a result, it gave 

birth to a new branch of science called eco-epidemiology. This innovative approach is motivated 

by a curiosity to understand the impact of disease in prey-predator scenarios. The first to introduce 

eco-epidemiological modeling was Anderson and May [17]. In order to create a new essence of 

nature, scholars are becoming more and more interested in combining these two crucial fields of 

study. Eco-epidemiology is a new field of mathematical biology that addresses both ecological and 

epidemiological concerns. Eco-epidemiological systems, which are used to explain how illnesses 

interact with predators and prey in one population or both populations, must become crucial 

instruments in studying the transmission and management of infectious diseases. Therefore, 

several researchers examined ecological systems where the disease affects prey, predator, or both 

populations in eco-epidemiology systems [18–22]. On the other hand, others studies focused the 

eco-epidemiological systems in the existence of fear, see for example [23-25]. 

In the prey-predator concept, group hunting is also prevalent. Animals frequently engage in 

cooperative hunting, which helps predators survive by ensuring they have access to enough food 

[26]. The cooperative hunting strategy has been widely researched mathematically. Consequently, 

several researchers have recently included cooperative hunting strategies in their studies; see for 

example [25-27].  

The analyses mentioned above inspired the development of a generic prey-predator model with 

fear cost, disease in the prey population, and hunting cooperation strategy. The prey population 

was split into two classes, susceptible prey, and diseased prey, with the former playing a substantial 
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mathematical role. Predators are said to be unable to tell the difference between healthy and sick 

prey, therefore they both end up in their stomachs.  

 

2. MODEL FORMULATION 

In this section, an eco-epidemiological system incorporating a prey-predator with an infective 

disease in the prey population is proposed and studied. It is believed that there are two population 

classes that make up the entire population of prey: the susceptible prey class and the infected prey 

class, whose population densities are given by 𝑆(𝑡)  and 𝐼(𝑡) , respectively. While 𝑌(𝑡) 

represents the predator population density. Therefore, to formulate the described system 

mathematically the following hypotheses are adopted. 

1. It is assumed that the disease is spread among the prey population exclusively, that only the 

susceptible prey may reproduce, while the sick prey competes for the resource only, and that 

the disease is not genetically inherited. 

2. It is assumed that the predator consumes both populations of the prey according to the Lotka-

Volterra functional response. However, the prey population grows logistically in the absence 

of the predator. 

3.  It is thought that predation anxiety changes the foraging behavior of the prey population, 

which in turn reduces the risk of disease transmission among prey. 

4. As the predator has a hunting cooperation capability, it will profit and successfully acquire 

prey. As a result, the predator population's attack rate, say 𝛼1 > 0, can be increased by the 

cooperation term to become (𝛼1 + 𝛼2𝑌), where 𝛼2 ≥ 0 describes the predator cooperation 

in hunting [26]. 

Accordingly, the dynamic of the described eco-epidemiological system can be represented using 

the following set of nonlinear first-order differential equations. 

𝑑𝑆

𝑑𝑡
=

𝑟

1+Ɣ1𝑌
𝑆 [1 −

𝑆+𝐼

𝑘
] −

𝛽

1+Ɣ2𝑌
𝑆𝐼 − (𝛼1 + 𝛼2𝑌)𝑆𝑌

𝑑𝐼

𝑑𝑡
=

𝛽

1+Ɣ2𝑌
𝑆𝐼 − (𝛼1 + 𝛼2𝑌)𝐼𝑌 − 𝑑1𝐼           

𝑑𝑌

𝑑𝑡
= (𝛼1 + 𝛼2𝑌)(𝑐1𝑆 + 𝑐2𝐼)𝑌 − 𝑑2𝑌           

,                       (1) 
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where 𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, and 𝑌(0) = 𝑌0 ≥ 0 represent the initial condition of the 

system (1), and all parameters are assumed nonnegative and can be described in Table 1. 

Table 1: The parameters description 

Parameters Description 

𝑟 > 0 The prey’s intrinsic growth rate 

𝑘 > 0 The environment-carrying capacity 

Ɣ1 ≥ 0 The level of fear that reduces the growth of the prey 

Ɣ2 ≥ 0 The level of fear that reduces the disease transmission 

𝛽 > 0 The disease transmission rate 

𝛼1 > 0 The attack rate of the predator on the prey 

𝛼2 > 0 The predator cooperation in hunting 

𝑑1 > 0 The death rates of the infected prey populations 

𝑑2 > 0 The death rates of the predator populations 

𝑐1 ∈ (0,1] The conversion efficiency from susceptible prey biomass to predator biomass 

𝑐2 ∈ (0,1] The conversion efficiency from infected prey biomass to predator biomass 

To non-dimensionalize the system (1), the following transformation is used.  

 𝑟𝑡 = 𝑡̅, 
𝑆

𝑘
= 𝑥1, 

𝐼

𝑘
= 𝑥2, 

𝛼2

𝛼1
𝑌 = 𝑥3.  

Then, after dropping the bar, the system (1) reduces to the following form

 

𝑑𝑥1

𝑑𝑡
= 𝑥1 [

1−𝑥1−𝑥2

1+𝑤1𝑥3
−

𝑤2𝑥2

1+𝑤3𝑥3
− 𝑤4(1 + 𝑥3)𝑥3] = 𝑥1𝑓1(𝑥1, 𝑥2, 𝑥3),

𝑑𝑥2

𝑑𝑡
= 𝑥2 [

𝑤2𝑥1

1+𝑤3𝑥3
− 𝑤4(1 + 𝑥3)𝑥3 − 𝑤5] = 𝑥2𝑓2(𝑥1, 𝑥2, 𝑥3),    

𝑑𝑥3

𝑑𝑡
= 𝑥3[𝑤6(1 + 𝑥3)(𝑐1𝑥1 + 𝑐2𝑥2) − 𝑤7] = 𝑥3𝑓3(𝑥1, 𝑥2, 𝑥3),   

                (2) 

where 𝑤1 = Ɣ1
𝛼1

𝛼2
, 𝑤2 =

𝛽𝑘

𝑟
, 𝑤3 = Ɣ2

𝛼1

𝛼2
, 𝑤4 =

𝛼1
2

𝑟𝛼2
, 𝑤5 =

𝑑1

𝑟
, 𝑤6 =

𝛼1𝑘

𝑟
, 𝑤7 =

𝑑2

𝑟
. 

It is clear from the system (2) that, the interaction functions 𝑥𝑖𝑓𝑖(𝑥1, 𝑥2, 𝑥3); 𝑖 = 1,2,3 in the right-

hand side of the system (2), are continuous and have continuous partial derivatives on the domain 

ℝ+
3 = {(𝑥1, 𝑥2, 𝑥3) ∈ ℝ

3: 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0}. Hence, they are locally Lipschitz functions in 

ℝ+
3 . Consequently, due to the fundamental existence and uniqueness theorem, it is obtained that 
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system (2) with any non-negative initial condition 𝑥1(0) ≥ 0, 𝑥2(0) ≥ 0, and 𝑥3(0) ≥ 0 there 

exists 𝑇 > 0 so that the system (2) has a unique solution defined in ℝ+
3 .  

 

3. PROPERTIES OF THE SOLUTION 

This section treats the properties of the solution of system (2), such as positivity and bounded 

as presented in the next theorems. 

Theorem 1: All system (2)’s solutions with the initial conditions belong to 𝑖𝑛𝑡. ℝ+
3  are positively 

invariant. 

Proof. From the first equation of the system (2), it is obtained: 

  
𝑑𝑥1

𝑥1
= 𝑓1(𝑥1, 𝑥2, 𝑥3)𝑑𝑡 

Then integrating the above equation within the limit [0, t], gives that:  

𝑥1(𝑡) = 𝑥1(0)𝑒
∫ 𝑓1(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡
0 𝑑𝑠 > 0; ∀ 𝑡 

Similarly, the second and third equations, it is obtained  

𝑥2(𝑡) = 𝑥2(0)𝑒
∫ 𝑓2(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡
0 𝑑𝑠 > 0; ∀ 𝑡 

𝑥3(𝑡) = 𝑥3(0)𝑒
∫ 𝑓3(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡
0 𝑑𝑠 > 0; ∀ 𝑡 

This completes the proof. 

Theorem 2: All system (2)’s solutions with the initial conditions belonging to ℝ+
3  are uniformly 

bounded 

Proof. From system (2), it is easy to verify that 

𝑑𝑥1
𝑑𝑡

≤ 𝑥1(1 − 𝑥1) 

Then according to the lemma (2.2) (Chen, 2005), it is obtained that 

 𝑥1(𝑡) ≤ [1 + (
1

𝑥1(0)
− 1) 𝑒−𝑡]

−1

 

Hence for 𝑡 → ∞, it is obtained that 𝑥1(𝑡) ≤ 1. 

Let = 𝑥1 + 𝑥2 +
𝑤4

𝑤6
𝑥3 , then using the fact that 𝑐𝑖 ∈ (0,1]; 𝑖 = 1,2, system (2) gives that: 

𝑑𝑊

𝑑𝑡
≤ 𝑥1(1 − 𝑥1) − 𝑤5𝑥2 −

𝑤4𝑤7

𝑤6
𝑥3 ∓𝑀𝑥1, 
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where 𝑀 = 𝑚𝑖𝑛 {𝑤5,
𝑤4𝑤7

𝑤6
}. Hence, simple manipulation yields  

𝑑𝑊

𝑑𝑡
+𝑀𝑊 ≤

(1+𝑀)2

4
. 

Then according to the lemma (2.1) [28], it is obtained that 

 𝑊(𝑡) ≤
(1+𝑀)2

4𝑀
[1 + (

4𝑀𝑊(0)

(1+𝑀)2
− 1) 𝑒−𝑀𝑡] 

Therefore, for 𝑡 → ∞, it is obtained that:  

𝑊(𝑡) ≤
(1+𝑀)2

4𝑀
. 

That completes the proof. 

 

4. EXISTENCE OF EQUILIBRIUM POINTS AND STABILITY ANALYSIS 

The examination of each potential equilibrium point's stability is determined in this section. 

System (2) has the following equilibrium points (EPs): 

The total extinction equilibrium point (TEEP) 𝑝1 = (0,0,0) always exists. 

The axial equilibrium point (AEP) 𝑝2 = (1,0,0) always exists. 

The predator-free equilibrium point (PFEP) 𝑝3 = (�̅�1, �̅�2, 0) = (
𝑤5

𝑤2
,
𝑤2−𝑤5

𝑤2(1+𝑤2)
, 0), where 

�̅�1 =
𝑤5

𝑤2
, �̅�2 = 

𝑤2−𝑤5

𝑤2(1+𝑤2)
,                                  (3) 

exists provided that 

𝑤5 < 𝑤2.                                              (4) 

The disease-free equilibrium point (DFEP) 𝑝4 = (�̂�1, 0, �̂�3), where 

�̂�1 =
𝑤7

𝑐1𝑤6(1+�̂�3)
,                                     (5) 

while �̂�3 is a positive root of the following fourth-degree polynomial equation. 

𝑐1𝑤1𝑤4𝑤6𝑥3
4 + 𝑐1𝑤4𝑤6(1 + 2𝑤1)𝑥3

3 + 𝑐1𝑤4𝑤6(2 + 𝑤1)𝑥3
2

+𝑐1(𝑤4 − 1)𝑤6𝑥3 − 𝑐1𝑤6 + 𝑤7 = 0.
                  (6) 

Obviously, this equation has a unique positive root provided that 

  𝑤7 < 𝑐1𝑤6                                    (7) 

It may have two positive roots or zero positive roots provided that 
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𝑤4 < 1

𝑤7 > 𝑐1𝑤6
}.                                    (8)   

The positive equilibrium point (PEP) 𝑝5 = (�̃�1, �̃�2, �̃�3), where 

�̃�1 =
(1+𝑤3�̃�3)(𝑤5+𝑤4�̃�3+𝑤4�̃�3

2)

𝑤2
             

�̃�2 =
𝑤2𝑤7−𝑐1𝑤6(1+�̃�3)(1+𝑤3�̃�3)(𝑤5+𝑤4�̃�3+𝑤4�̃�3

2)

𝑤2𝑐2𝑤6(1+�̃�3)

}.                      (9) 

While �̃�3 represents a positive root of the following fifth-order polynomial equation. 

𝐴0𝑥3
5 + 𝐴1𝑥3

4 + 𝐴2𝑥3
3 + 𝐴3𝑥3

2 + 𝐴4𝑥3 + 𝐴5 = 0,                      (10) 

where 

𝐴0 = 𝑤3𝑤4𝑤6(𝑐2 − 𝑐1)(𝑤1𝑤2 + 𝑤3). 

𝐴1 = 𝑤4𝑤6(𝑐2 − 𝑐1)[𝑤1𝑤2 + 2𝑤3 + 𝑤2𝑤3 + 2𝑤1𝑤2𝑤3 + 2𝑤3
2]. 

𝐴2 = (𝑐2 − 𝑐1)𝑤4𝑤6[1 + 𝑤2 + 2𝑤1𝑤2 + 4𝑤3 + 2𝑤2𝑤3 + 𝑤1𝑤2𝑤3 + 𝑤3
2]

+𝑤5𝑤6[(𝑐2 − 𝑐1)𝑤3
2 − 𝑐1𝑤1𝑤2𝑤3]

. 

𝐴3 = 𝑤6[−(𝑐2 + 𝑐1𝑤5)𝑤2𝑤3 + 2(𝑐2 − 𝑐1)𝑤4 + 2(𝑐2 − 𝑐1)𝑤2𝑤4 + (𝑐2 − 𝑐1)𝑤1𝑤2𝑤4
+2(𝑐2 − 2𝑐1)𝑤3𝑤4 + (𝑐2 − 𝑐1)𝑤2𝑤3𝑤4 − 𝑐1𝑤1𝑤2𝑤5(1 + 𝑤3)

+2(𝑐2 − 𝑐1)𝑤3𝑤5 + (𝑐2 − 𝑐1)𝑤3
2𝑤5]

. 

𝐴4 = −𝑐2𝑤2𝑤6(1 + 𝑤3)(𝑐2 − 𝑐1) 𝑤4𝑤6 + (𝑐2 − 𝑐1)𝑤2𝑤4𝑤6 + (𝑐2 − 𝑐1)𝑤5𝑤6
−𝑐1𝑤2𝑤5𝑤6(1 + 𝑤1) + 2(𝑐2 − 𝑐1) 𝑤3𝑤5𝑤6 − 𝑐1𝑤2𝑤3𝑤5𝑤6

+𝑤2𝑤7(𝑤2𝑤1 + 𝑤3)
. 

𝐴5 = −(𝑐2𝑤2 + 𝑐1𝑤5)𝑤6 + (𝑐2 − 𝑐1𝑤2)𝑤5𝑤6 +𝑤2𝑤7(1 + 𝑤2). 

Accordingly, due to the discarding rule of signs, equation (10) has at least one positive root 

provided that one set of the following sets of conditions occurs. 

 
𝐴0 > 0 , 𝐴5 < 0
𝐴0 < 0 , 𝐴5 > 0

} .                                 (11) 

However, it has a unique positive root provided that one set of the following sets of conditions 

occurs. 

 

𝐴0 > 0, 𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0, 𝐴4 > 0, 𝐴5 < 0
𝐴0 > 0, 𝐴1 > 0, 𝐴2 < 0, 𝐴3 < 0, 𝐴4 < 0, 𝐴5 < 0

𝐴0 > 0, 𝐴1 > 0, 𝐴2 > 0, 𝐴4 < 0, 𝐴5 < 0
𝐴0 < 0, 𝐴1 < 0, 𝐴2 < 0, 𝐴3 < 0, 𝐴4 < 0, 𝐴5 > 0
𝐴0 < 0, 𝐴1 < 0, 𝐴2 > 0, 𝐴3 > 0, 𝐴4 > 0, 𝐴5 > 0

𝐴0 < 0, 𝐴1 < 0, 𝐴2 < 0, 𝐴4 > 0, 𝐴5 > 0
𝐴0 = 0, 𝐴1 = 0, 𝐴2 < 0, 𝐴3 < 0, 𝐴5 > 0 }

  
 

  
 

.                   (12) 

Keeping the existence of a unique positive root of equation (10) that denoted by �̃�3, the PEP will 
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be exists in the interior of positive octant provided that. 

𝑐1𝑤6(1 + �̃�3)(1 + 𝑤3�̃�3)(𝑤5 + 𝑤4�̃�3 + 𝑤4�̃�3
2) < 𝑤2𝑤7.              (13)   

The local stability analysis of the above equilibrium points can be determined using the following 

determined Jacobain matrix (JM) 

𝐽 = (𝑞𝑖𝑗)3×3,                            (14) 

where 

 𝑞11 = −𝑤4𝑥3(1 + 𝑥3) −
𝑥1

1+𝑤1𝑥3
+
1−𝑥1−𝑥2

1+𝑤1𝑥3
−

𝑤2𝑥2

1+𝑤3𝑥3
. 

 𝑞12 = −𝑥1 (
1

1+𝑤1𝑥3
+

𝑤2

1+𝑤3𝑥3
). 

 𝑞13 = 𝑥1 (−𝑤4𝑥3 − 𝑤4(1 + 𝑥3) −
𝑤1(1−𝑥1−𝑥2)

(1+𝑤1𝑥3)2
+

𝑤2𝑤3𝑥2

(1+𝑤3𝑥3)2
). 

 𝑞21 =
𝑤2𝑥2

1+𝑤3𝑥3
. 

 𝑞22 = −𝑤5 − 𝑤4𝑥3(1 + 𝑥3) +
𝑤2𝑥1

1+𝑤3𝑥3
. 

 𝑞23 = −𝑥2 (𝑤4𝑥3 + 𝑤4(1 + 𝑥3) +
𝑤2𝑤3𝑥1

(1+𝑤3𝑥3)2
). 

 𝑞31 = 𝑐1𝑤6𝑥3(1 + 𝑥3). 

 𝑞32 = 𝑐2𝑤6𝑥3(1 + 𝑥3). 

 𝑞33 = −𝑤7 + 𝑤6(𝑐1𝑥1 + 𝑐2𝑥2)𝑥3 + 𝑤6(𝑐1𝑥1 + 𝑐2𝑥2)(1 + 𝑥3). 

Then at 𝑝1 = (0,0,0), the JM becomes 

 𝐽(𝑝1) = (
1 0 0
0 −𝑤5 0
0 0 −𝑤7

).                            (15) 

Therefore, the eigenvalues of  𝐽(𝑝1) are given by  

𝜆11 = 1 > 0 , 𝜆12 = −𝑤5 < 0 , 𝜆13 = −𝑤7 < 0.                     (16) 

Hence, 𝑝1 is a saddle point. 

At 𝑝2 = (1,0,0), the JM becomes. 

 𝐽(𝑝2) = (
−1 −1 − 𝑤2 −𝑤4
0 𝑤2 − 𝑤5 0
0 0 𝑐1𝑤6 − 𝑤7

).                        (17) 

Therefore, the eigenvalues of  𝐽(𝑝2) are given by 
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𝜆21 = −1 < 0 , 𝜆22 = 𝑤2 − 𝑤5, 𝜆23 = 𝑐1𝑤6 − 𝑤7.                     (18) 

Hence, 𝑝2 is locally asymptotically stable (LAS) provided that the following two conditions are 

met. 

𝑤2 < 𝑤5
𝑐1𝑤6 < 𝑤7

}                                  (19) 

However, the point 𝑝2 is a saddle point when at least one of these inequalities given is reflected. 

Finally, the AEP becomes a non-hyperbolic point if any one of these inequalities becomes equality. 

At 𝑝3 = (
𝑤5

𝑤2
,
𝑤2−𝑤5

𝑤2(1+𝑤2)
, 0) the JM can be written as: 

 𝐽(𝑝3) =

(

  
 
−
𝑤5

𝑤2
−
(1+𝑤2)𝑤5

𝑤2

𝑤5[−𝑤4+
𝑤3(𝑤2−𝑤5)

1+𝑤2
−𝑤1(1−

𝑤2−𝑤5
𝑤2(1+𝑤2)

−
𝑤5
𝑤2
)]

𝑤2
𝑤2−𝑤5

1+𝑤2
0 −

(𝑤2−𝑤5)(𝑤4+𝑤3𝑤5)

𝑤2(1+𝑤2)

0 0 (
𝑐2(𝑤2−𝑤5)

𝑤2(1+𝑤2)
+
𝑐1𝑤5

𝑤2
)𝑤6 − 𝑤7 )

  
 

.             (20)  

Hence, the characteristic equation of 𝐽(𝑝3) can be written as: 

[(
𝑐2(𝑤2−𝑤5)

𝑤2(1+𝑤2)
+
𝑐1𝑤5

𝑤2
)𝑤6 − 𝑤7 − 𝜆] + [𝜆

2 + (
𝑤5

𝑤2
) 𝜆 +

(𝑤2−𝑤5)𝑤5

𝑤2
] = 0.         (21) 

Direct computation gives the following roots 

 

𝜆31 = −
𝑤5

2𝑤2
+
1

2
√(

𝑤5

𝑤2
)
2

− 4
(𝑤2−𝑤5)𝑤5

𝑤2

𝜆32 = −
𝑤5

2𝑤2
−
1

2
√(

𝑤5

𝑤2
)
2

− 4
(𝑤2−𝑤5)𝑤5

𝑤2

𝜆33 = (
𝑐2(𝑤2−𝑤5)

𝑤2(1+𝑤2)
+
𝑐1𝑤5

𝑤2
)𝑤6 − 𝑤7    }

 
 

 
 

.                      (22) 

Hence, as the 𝜆31 and 𝜆32 have negative real parts, the point 𝑝3 is LAS provided that  

 (
𝑐2(𝑤2−𝑤5)

𝑤2(1+𝑤2)
+
𝑐1𝑤5

𝑤2
)𝑤6 < 𝑤7.                               (23) 

Otherwise, the PFEP will be saddle point if the condition (23) is reflected and becomes a non-

hyperbolic point when the inequality of the condition (23) transfers to quality. 

At 𝑝4 = (�̂�1, 0, �̂�3) the JM can be written as 

 𝐽(𝑝4) = (𝑏𝑖𝑗)3×3                       (24) 

where 
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 𝑏11 = −
�̂�1

1+𝑤1�̂�3
, 𝑏12 = −�̂�1 (

1

1+𝑤1�̂�3
+

𝑤2

1+𝑤3�̂�3
),  

𝑏13 = �̂�1 [−𝑤4�̂�3 − 𝑤4(1 + �̂�3) −
𝑤1(1−�̂�1)

(1+𝑤1𝑥3)2
], 

𝑏22 = −𝑤5 − 𝑤4�̂�3(1 + �̂�3) +
𝑤2�̂�1

1+𝑤3�̂�3
, 

𝑏31 = 𝑐1𝑤6�̂�3(1 + �̂�3), 𝑏32 = 𝑐2𝑤6�̂�3(1 + �̂�3), 𝑏33 = 𝑐1𝑤6�̂�1�̂�3. 

Hence, the characteristic equation of 𝐽(𝑝4) can be written as: 

 [𝑏22 − 𝜆][𝜆
2 − (𝑏11 + 𝑏33)𝜆 + 𝑏11𝑏33 − 𝑏13𝑏31] = 0.               (25) 

Consequently, the eigenvalues of the 𝐽(𝑝4) can be written as 

 

𝜆41 =
𝑏11+𝑏33

2
+
1

2
√(𝑏11 + 𝑏33)2 − 4(𝑏11𝑏33 − 𝑏13𝑏31)

𝜆42 = −𝑤5 − 𝑤4�̂�3(1 + �̂�3) +
𝑤2�̂�1

1+𝑤3�̂�3
              

𝜆43 =
𝑏11+𝑏33

2
−
1

2
√(𝑏11 + 𝑏33)2 − 4(𝑏11𝑏33 − 𝑏13𝑏31)}

 
 

 
 

.               (26) 

Direct computation shows that all the eigenvalues given by equation (26) have negative real parts 

if and only if the following two conditions are met. 

𝑐1𝑤6�̂�1�̂�3 <
�̂�1

1+𝑤1�̂�3
< [𝑤4(1 + 2�̂�3) +

𝑤1(1−�̂�1)

(1+𝑤1�̂�3)2
] (1 + �̂�3).                (27) 

𝑤2�̂�1

1+𝑤3�̂�3
< 𝑤5 + 𝑤4�̂�3(1 + �̂�3).                           (28) 

However, violating any one of these two conditions makes the DFEP unstable. 

Finally, at 𝑝5 = (�̃�1, �̃�2, �̃�3) the JM will be written as 

  𝐽(𝑝5) = (𝑎𝑖𝑗)3×3,                                 (29) 

where 

𝑎11 = −
�̃�1

1+𝑤1�̃�3
, 𝑎12 = −�̃�1 (

1

1+𝑤1�̃�3
+

𝑤2

1+𝑤3�̃�3
), 

𝑎13 = �̃�1 [−𝑤4(1 + 2�̃�3) −
𝑤1(1−�̃�1−�̃�2)

(1+𝑤1�̃�3)2
+

𝑤2𝑤3�̃�2

(1+𝑤3�̃�3)2
], 

𝑎21 =
𝑤2�̃�2

1+𝑤3�̃�3
, 𝑎22 = 0, 𝑎23 = −�̃�2 [𝑤4(1 + 2�̃�3) +

𝑤2𝑤3�̃�1

(1+𝑤3�̃�3)2
], 

𝑎31 = 𝑐1𝑤6�̃�3(1 + �̃�3), 𝑎32 = 𝑐2𝑤6�̃�3(1 + �̃�3), 𝑎33 = 𝑤6(𝑐1�̃�1 + 𝑐2�̃�2)�̃�3. 

The characteristic equation of 𝐽(𝑝5) can be written as 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0,                    (30) 
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where  

𝐴1 = −(𝑎11 + 𝑎33), 

𝐴2 = −𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 − 𝑎23𝑎32, 

𝐴3 = −[𝑎23(𝑎12𝑎31 − 𝑎11𝑎32) + 𝑎21(𝑎13𝑎32 − 𝑎12𝑎33)], 

∆= 𝐴1𝐴2 − 𝐴3 = −(𝑎11 + 𝑎33)[𝑎11𝑎33 − 𝑎13𝑎31] + 𝑎12(𝑎11𝑎21 + 𝑎23𝑎31)

+𝑎32(𝑎23𝑎33 + 𝑎13𝑎21).
 

According to the Routh-Hurwitz criterion [1] the characteristic equation (30) has three eigenvalues 

with negative real parts if the following conditions are satisfied 𝐴1 > 0; 𝐴3 > 0, and ∆= 𝐴1𝐴2 −

𝐴3 > 0. Therefore, the following theorem for local stability of the PEP is follows. 

Theorem 3: The PEP of the system (2) is LAS if and only if the following set of conditions is met. 

   𝑤6(𝑐1�̃�1 + 𝑐2�̃�2)�̃�3 <
�̃�1

1+𝑤1�̃�3
.                               (31) 

 
�̃�1

1+𝑤1�̃�3
𝑐2 > �̃�1 (

1

1+𝑤1�̃�3
+

𝑤2

1+𝑤3�̃�3
) 𝑐1.                         (32) 

 
(

1

1+𝑤1�̃�3
+

𝑤2

1+𝑤3�̃�3
) (𝑐1�̃�1 + 𝑐2�̃�2)                                    

< [𝑤4(1 + 2�̃�3) +
𝑤1(1−�̃�1−�̃�2)

(1+𝑤1�̃�3)2
−

𝑤2𝑤3�̃�2

(1+𝑤3�̃�3)2
] 𝑐2(1 + �̃�3).

            (33) 

 
(𝑎11 + 𝑎33)𝑎13𝑎31 + 𝑎12(𝑎11𝑎21 + 𝑎23𝑎31)               

     > (𝑎11 + 𝑎33)𝑎11𝑎33 − 𝑎32(𝑎23𝑎33 + 𝑎13𝑎21).
                  (34) 

Proof. Direct with the application of the Routh-Hurwitz criterion. 

 

5. PERSISTENCE 

This section studies an eco-epidemiological model's persistence and extinction property involving 

fear and hunting cooperation. The objective is to investigate the influence of fear and hunting 

cooperation within a diseased prey-predator system, on the persistence and extinction of system 

species. In order to determine the conditions that ensure the continuity, the dynamics at the 

boundary levels of the system must be understood. 

It is clear that system (2) has two subsystems; the first subsystem can be representing in case of 

the absence of predator, and the second subsystem can be representing in the absence of disease 

from the system. Therefore, these two subsystems can be written in the following forms 
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respectively. 

The first subsystem is  

𝑑𝑥1

𝑑𝑡
= 𝑥1(1 − 𝑥1 − 𝑥2 − 𝑤2𝑥2) = 𝑥1𝑔11(𝑥1, 𝑥2),

𝑑𝑥2

𝑑𝑡
= 𝑥2(𝑤2𝑥1 − 𝑤5) = 𝑥2𝑔12(𝑥1, 𝑥2).       

                   (35) 

The second subsystem is 

𝑑𝑥1

𝑑𝑡
= 𝑥1 (

1−𝑥1

1+𝑤1𝑥3
− 𝑤4(1 + 𝑥3)𝑥3) = 𝑥1𝑔21(𝑥1, 𝑥3),

𝑑𝑥3

𝑑𝑡
= 𝑥3(𝑤6𝑐1𝑥1(1 + 𝑥3) − 𝑤7) = 𝑥3𝑔22(𝑥1, 𝑥3).  

                  (36) 

The first subsystem (35) has the following equilibrium points 𝑝11 = (0,0) , 𝑝12 = (1,0) , and 

𝑝13 = (
𝑤5

𝑤2
,
𝑤2−𝑤5

𝑤2(1+𝑤2)
), while the second subsystem has the equilibrium points 𝑝21 = (0,0), 𝑝22 =

(1,0), and 𝑝23 = (�̂�1, �̂�3), where �̂�1 is given by equation (5) and �̂�3 exists uniquely under the 

condition (7). Obviously, the equilibrium points of the above two subsystems coincide with the 

boundary equilibrium points of the system (2). Therefore, they have the same local stability 

conditions. Now, to investigate the possibilities of non-existence of periodic dynamics in the 

interior of positive quadrants corresponding to these two subsystems, Dulac-Bendixon criterion is 

applied. 

Theorem 4: There are no periodic dynamics fall entirely:  

1. In the interior of positive quadrant of 𝑥1𝑥2 −plane. 

2. In the interior of positive quadrant of 𝑥1𝑥3 − plane, provided that the following 

condition is met. 

𝑤6𝑐1 >
1

𝑥3(1+𝑤1𝑥3)
.                               (37) 

Proof. (1) Consider the continuously differential function 𝐷1(𝑥1, 𝑥2) =
1

𝑥1𝑥2
  on a simple 

connected region of the interior of positive quadrant of 𝑥1𝑥2 −plane. Then the expiration   

 ∆=
𝜕(𝐷1𝑔11)

𝜕𝑥1
+
𝜕(𝐷1𝑔12)

𝜕𝑥2
= −

1

𝑥2
 < 0. 

It’s clear that ∆ has the same sign and does not equal to zero. Therefore, due to Dulac-Bendixon 

criterion the first subsystem (35) do not have periodic dynamic in the interior of positive quadrant 

of 𝑥1𝑥2 −plane. 
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(2) Similarly, consider a continuously differential function 𝐷2(𝑥1, 𝑥3) =
1

𝑥1𝑥3
  on the simple 

connected region of the interior of positive quadrant of 𝑥1𝑥3 −plane. Then the expiration   

 ∆=
𝜕(𝐷2𝑔21)

𝜕𝑥1
+
𝜕(𝐷2𝑔22)

𝜕𝑥3
= −

1

𝑥3(1+𝑤1𝑥3)
+ 𝑤6𝑐1 

So using condition (37), subsystem (36) do not have periodic dynamic in the interior of positive 

quadrant of 𝑥1𝑥3 −plane. 

Theorem 5: Assume that condition (37) holds, then system (2) is uniformly persistent if the 

following conditions are met. 

𝑤5 < 𝑤2.                                (38)    

𝑤7 < 𝑐1𝑤6.                       (39) 

𝑤7 < 𝑤6 (𝑐1
𝑤5

𝑤2
+ 𝑐2

𝑤2−𝑤5

𝑤2(1+𝑤2)
).                  (40) 

𝑤4�̂�3(1 + �̂�3) + 𝑤5 <
𝑤2�̂�1

1+𝑤3�̂�3
.                  (41) 

Proof. Define the function (𝑥1, 𝑥2, 𝑥3) = 𝑥1
𝑎𝑥2

𝑏𝑥3
𝑐 , where 𝑎, 𝑏, and 𝑐 are positive constants. 

Hence, 𝜌(𝑥1, 𝑥2, 𝑥3)  is a non-negative continuously differentiable function that satisfies  

𝜌(𝑥1, 𝑥2, 𝑥3) → 0 if any one of 𝑥𝑖 → 0. Moreover,  

 𝜌′(𝑥1, 𝑥2, 𝑥3) =
𝜕𝜌

𝜕𝑥1

𝑑𝑥1

𝑑𝑡
+

𝜕𝜌

𝜕𝑥2

𝑑𝑥2

𝑑𝑡
+

𝜕𝜌

𝜕𝑥3

𝑑𝑥3

𝑑𝑡
. 

Then, it is obtained that 

 𝜑(𝑥1, 𝑥2, 𝑥3) =
𝜌′(𝑥1,𝑥2,𝑥3)

𝜌(𝑥1,𝑥2,𝑥3)
= 𝑎𝑓1(𝑥1, 𝑥2, 𝑥3) + 𝑏𝑓2(𝑥1, 𝑥2, 𝑥3) + 𝑐𝑓3(𝑥1, 𝑥2, 𝑥3), 

where 𝑓𝑖;  𝑖 = 1,2,3 are given in system (2). 

Consequently, due to the average Lyapunov function method, the proof will follows if and only if 

𝜑(𝑝𝑖) > 0, for all boundary points 𝑝𝑖. 

Now, we have  

𝜑(𝑝1) = 𝑎 − 𝑏𝑤5 − 𝑐𝑤7.      

𝜑(𝑝2) = 𝑏(𝑤2 − 𝑤5) + 𝑐(𝑐1𝑤6 − 𝑤7). 

𝜑(𝑝3) = 𝑐 [𝑤6 (𝑐1
𝑤5

𝑤2
+ 𝑐2

𝑤2−𝑤5

𝑤2(1+𝑤2)
) − 𝑤7]. 

𝜑(𝑝4) = 𝑏 [
𝑤2�̂�1

1+𝑤3�̂�3
− 𝑤4�̂�3(1 + �̂�3) − 𝑤5]. 
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Obviously, 𝜑(𝑝1) > 0 for suitable choice of positive constants 𝑎, 𝑏, and 𝑐. However, 𝜑(𝑝2), 

𝜑(𝑝3), and 𝜑(𝑝4) are positive under the conditions (38), (39), (40), and (41) respectively. Hence 

the proof is complete. 

 

6. LOCAL BIFURCATION 

The occurrence of local bifurcation is investigated in this section using the Sotomayor theorem 

[29]. Recall that a non-hyperbolic equilibrium point represents a necessary but not sufficient 

condition for a local bifurcation to occur. Therefore, in the following theorems, the bifurcation 

parameter is selected so that the equilibrium point becomes a non-hyperbolic point. 

Now, rewrite the system (2) in the vector form as: 

 
𝑑𝐗

𝑑𝑡
= 𝐅(𝐗, 𝜇), 𝐗 = (𝑥1, 𝑥2, 𝑥3)

T, 𝐅 = (𝑥1𝑓1(𝐗, 𝜇), 𝑥2𝑓2(𝐗, 𝜇), 𝑥3𝑓3(𝐗, 𝜇))
T,    (42) 

where 𝜇 ∈ ℝ represents a bifurcation parameter. Hence the second directional derivatives for (42) 

can be written as: 

𝐷2𝐅(𝑿, 𝜇)(𝐕, 𝐕) = [𝑛𝑖1]3×1,                      (43) 

where 𝐕 = (𝑣1, 𝑣2, 𝑣3)
𝑇 be any vector with 

𝑛11 = −2𝑣3𝑤4(𝑣1 + 𝑣3𝑥1) − 4𝑣1𝑣3𝑤4𝑥3 −
2𝑣3

2𝑤1
2𝑥1(−1+𝑥1+𝑥2)

(1+𝑤1𝑥3)3

+
2𝑣3𝑤1(𝑣2𝑥1+𝑣1(−1+2𝑥1+𝑥2))

(1+𝑤1𝑥3)2
−
2𝑣1(𝑣1+𝑣2)

1+𝑤1𝑥3

−
2𝑣3

2𝑤2𝑤3
2𝑥1𝑥2

(1+𝑤3𝑥3)3
+
2𝑣3𝑤2𝑤3(𝑣2𝑥1+𝑣1𝑥2)

(1+𝑤3𝑥3)2
−
2𝑣1𝑣2𝑤2

1+𝑤3𝑥3

, 

𝑛21 = −2𝑣3𝑤4(𝑣2 + 𝑣3𝑥2) − 4𝑣2𝑣3𝑤4𝑥3 +
2𝑣3

2𝑤2𝑤3
2𝑥1𝑥2

(1+𝑤3𝑥3)3

−
2𝑣3𝑤2𝑤3(𝑣2𝑥1+𝑣1𝑥2)

(1+𝑤3𝑥3)2
+
2𝑣1𝑣2𝑤2

1+𝑤3𝑥3

, 

 𝑛31 = 2𝑣3𝑤6(𝑐1(𝑣3𝑥1 + 𝑣1(1 + 2𝑥3)) + 𝑐2(𝑣3𝑥2 + 𝑣2(1 + 2𝑥3))). 

However, the third directional derivatives for (42) can be written as: 

𝐷3𝐅(𝐗, 𝜇)(𝐕, 𝐕, 𝐕) = [𝑛𝑖2]3×1,                    (44) 

where 

 

𝑛12 = 6𝑣3 [−𝑣1𝑣3𝑤4 +
𝑣3
2𝑤1

3𝑥1(−1+𝑥1+𝑥2)

(1+𝑤1𝑥3)4
              

−
𝑣3𝑤1

2(𝑣2𝑥1+𝑣1(−1+2𝑥1+𝑥2))

(1+𝑤1𝑥3)3
+
𝑣1(𝑣1+𝑣2)𝑤1

(1+𝑤1𝑥3)2

    +
𝑣3
2𝑤2𝑤3

3𝑥1𝑥2

(1+𝑤3𝑥3)4
−
𝑣3𝑤2𝑤3

2(𝑣2𝑥1+𝑣1𝑥2)

(1+𝑤3𝑥3)3
+

𝑣1𝑣2𝑤2𝑤3

(1+𝑤3𝑥3)2
]

. 
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𝑛22 =

6𝑣3

(1+𝑤3𝑥3)4
[𝑣1𝑤2𝑤3(1 + 𝑤3𝑥3)(−𝑣3𝑤3𝑥2 + 𝑣2(1 + 𝑤3𝑥3))           

+𝑣3(𝑣3𝑤2𝑤3
3𝑥1𝑥2 + 𝑣2(1 + 𝑤3𝑥3)(−𝑤2𝑤3

2𝑥1 + 𝑤4(1 + 𝑤3𝑥3)
3))]

, 

𝑛32 = 6(𝑐1𝑣1 + 𝑐2𝑣2)𝑣3
2𝑤6. 

Theorem 6: The system (2) undergoes a Transcritical bifurcation (TB) near AEP when the 

parameter 𝑤2 passes through the value 𝑤2
∗ = 𝑤5 provided that 𝑐1𝑤6 < 𝑤7. 

Proof. From the equation (17) with 𝑤2 = 𝑤2
∗ the JM becomes 

𝐽1
∗ = 𝐽(𝑝2, 𝑤2

∗) = (
−1 −1 − 𝑤2

∗ −𝑤4
0 0 0
0 0 𝑐1𝑤6 − 𝑤7

).              

Therefore, the eigenvalues of  𝐽1
∗ are given by 

𝜆21(𝑤2
∗) = −1 < 0 , 𝜆22(𝑤2

∗) = 0, 𝜆23(𝑤2
∗) = 𝑐1𝑤6 − 𝑤7 < 0.         

Thus AEP is a non-hyperbolic point at 𝑤2 = 𝑤2
∗. 

Let  𝐕1 = (𝑣11, 𝑣12, 𝑣13)
T be the eigenvector conjugate with the eigenvalue 𝜆22(𝑤2

∗) = 0. Thus, 

𝐽1
∗𝐕1 = 𝟎, gives that 𝐕1 = (−(1 + 𝑤2

∗),1,0)T. 

Now, let 𝐔1 = (𝑢11, 𝑢12, 𝑢13)
T  represents the eigenvector conjugate with the eigenvalue 

𝜆22(𝑤2
∗) = 0, of the matrix 𝐽1

∗T. Thus, 𝐽1
∗T𝐔1 = 𝟎  gives that 𝐔1 = (0,1,0)

𝑇.  

Following Sotomayor’s theorem, gives that: 

  
𝜕

𝜕𝑤2
𝐅(𝐗,𝑤2) = (

−
𝑥1𝑥2

1+𝑤3𝑥3
𝑥1𝑥2

1+𝑤3𝑥3

0

); ⇛ 
𝜕

𝜕𝑤2
𝐅(𝑝2, 𝑤2

∗) = (
0
0
0
) 

Therefore, 𝐔1
𝑇𝐅𝑤2(𝑝2, 𝑤2

∗) = 0, as a result, the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  

 𝐷𝐅𝑤2(𝐗,𝑤2) = [

−
𝑥2

1+𝑤3𝑥3
−

𝑥1

1+𝑤3𝑥3

𝑤3𝑥1𝑥2

(1+𝑤3𝑥3)2

𝑥2

1+𝑤3𝑥3

𝑥1

1+𝑤3𝑥3
−

𝑤3𝑥1𝑥2

(1+𝑤3𝑥3)2

0 0 0

] ⇛ 𝐷𝐅𝑤2(𝑝2, 𝑤2
∗)𝐕1 = [

−1
1
0
]. 

Therefore 

 𝐔1
T𝐷𝐅𝑤2(𝑝2, 𝑤2

∗)𝐕1 = 1 ≠ 0. 

Also, by using equation (43), it is obtained that  
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𝐷2𝐅(𝑝2, 𝑤2
∗)(𝐕1, 𝐕1) = [

0
−2(1 + 𝑤2

∗)𝑤2
∗

𝑐2

] ⇛ 𝐔1
T𝐷2𝐅(𝑝2, 𝑤2

∗)(𝐕1, 𝐕1) = −2(1 + 𝑤2
∗)𝑤2

∗ ≠ 0. 

Hence a TB take place near AEP. 

Theorem 7: The system (2) undergoes a TB near PFEP when the parameter 𝑤7 passes through 

the value 𝑤7
∗ = (

𝑐2(𝑤2−𝑤5)

𝑤2(1+𝑤2)
+
𝑐1𝑤5

𝑤2
)𝑤6 provided that the following condition holds 

 𝑐1 (�̅�1 −
𝜌23

𝜌21
) + 𝑐2 (�̅�2 +

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
) ≠ 0,                (45) 

where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes 

place. 

Proof. From the equation (17) with 𝑤7 = 𝑤7
∗ the JM becomes 

𝐽2
∗ = 𝐽(𝑝3, 𝑤7

∗) =

[
 
 
 −

𝑤5

𝑤2
−
(1+𝑤2)𝑤5

𝑤2

𝑤5[−𝑤4(1+𝑤2)+(𝑤3−𝑤1)(𝑤2−𝑤5)]

𝑤2(1+𝑤2)

𝑤2−𝑤5

1+𝑤2
0 −

(𝑤2−𝑤5)(𝑤4+𝑤3𝑤5)

𝑤2(1+𝑤2)

0 0 0 ]
 
 
 

= [𝜌𝑖𝑗]3×3.      

Therefore, the eigenvalues of  𝐽2
∗ are given by 

𝜆31(𝑤7
∗) = −

𝑤5

2𝑤2
+
1

2
√(

𝑤5

𝑤2
)
2

− 4
(𝑤2−𝑤5)𝑤5

𝑤2

𝜆32(𝑤7
∗) = −

𝑤5

2𝑤2
−
1

2
√(

𝑤5

𝑤2
)
2

− 4
(𝑤2−𝑤5)𝑤5

𝑤2

𝜆33(𝑤7
∗) = 0                         }

 
 

 
 

.         

Thus PFEP is a non-hyperbolic point at 𝑤7 = 𝑤7
∗. 

Let  𝐕2 = (𝑣21, 𝑣22, 𝑣23)
T be the eigenvector conjugate with the eigenvalue 𝜆33(𝑤7

∗) = 0. Thus, 

𝐽2
∗𝐕2 = 𝟎, gives that 𝐕2 = (−

𝜌23

𝜌21
,
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
, 1)

T

. 

Now, let 𝐔2 = (𝑢21, 𝑢22, 𝑢23)
T  represents the eigenvector conjugate with the eigenvalue 

𝜆33(𝑤7
∗) = 0, of the matrix 𝐽2

∗T. Thus, 𝐽2
∗T𝐔2 = 𝟎  gives that 𝐔2 = (0,0,1)𝑇.  

Following Sotomayor’s theorem, gives that: 

  
𝜕

𝜕𝑤7
𝐅(𝐗,𝑤7) = (

0
0
−𝑥3

); ⇛ 
𝜕

𝜕𝑤7
𝐅(𝑝3, 𝑤7

∗) = (
0
0
0
) 

Therefore, 𝐔2
T𝐅𝑤7(𝑝3, 𝑤7

∗) = 0, as a result, the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  
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 𝐷𝐅𝑤7(𝐗,𝑤7) = [
0 0 0
0 0 0
0 0 −1

] ⇛ 𝐷𝐅𝑤7(𝑝3, 𝑤7
∗)𝐕2 = [

0
0
−1
]. 

Therefore 

 𝐔2
T𝐷𝐅𝑤7(𝑝3, 𝑤7

∗)𝐕2 = −1 ≠ 0. 

Also, by using equation (43), it is obtained that  

𝐷2𝐅(𝑝3, 𝑤7
∗)(𝐕2, 𝐕2) = [𝑛𝑖1(𝑝3, 𝑤7

∗)],  

where 

𝑛11(𝑝3, 𝑤7
∗) = −2𝑤4 (−

𝜌23

𝜌21
+ �̅�1) − 2𝑤1

2�̅�1(−1 + �̅�1 + �̅�2)           

+2𝑤1 [
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
�̅�1 −

𝜌23

𝜌21
(−1 + 2�̅�1 + �̅�2)]

+2 (
𝜌23

𝜌21
) [−

𝜌23

𝜌21
+
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
] − 2𝑤2𝑤3

2�̅�1�̅�2

+2𝑤2𝑤3 [
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
�̅�1 −

𝜌23

𝜌21
�̅�2] − 2 (−

𝜌23

𝜌21
)
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
𝑤2

, 

𝑛21(𝑝3, 𝑤7
∗) = −2𝑤4 (

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
+ �̅�2) + 2𝑤2𝑤3

2�̅�1�̅�2

−2𝑤2𝑤3 [
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
�̅�1 −

𝜌23

𝜌21
�̅�2]

+2 (−
𝜌23

𝜌21
)
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
𝑤2

, 

 𝑛31(𝑝3, 𝑤7
∗) = 2𝑤6 [𝑐1 (�̅�1 −

𝜌23

𝜌21
) + 𝑐2 (�̅�2 +

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
)]. 

Then, when the condition (45) is met, it is obtained that 

𝐔2
𝑇𝐷2𝐅(𝑝3, 𝑤7

∗)(𝐕2, 𝐕2) = 2𝑤6 [𝑐1 (�̅�1 −
𝜌23

𝜌21
) + 𝑐2 (�̅�2 +

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
)] ≠ 0. 

Hence a TB take place near PFEP. Otherwise, by using equation (44), it is obtained that 

 𝐷3𝐅(𝑝3, 𝑤7
∗)(𝐕2, 𝐕2, 𝐕2) = [𝑛𝑖2(𝑝3, 𝑤7

∗)],  

where  

𝑛12(𝑝3, 𝑤7
∗) = 6 [

𝜌23
𝜌21

𝑤4 +𝑤1
3�̅�1(−1 + �̅�1 + �̅�2)                            

−𝑤1
2 (
𝜌11𝜌23 − 𝜌13𝜌21

𝜌12𝜌21
�̅�1 −

𝜌23
𝜌21

(−1 + 2�̅�1 + �̅�2))

−
𝜌23
𝜌21

(−
𝜌23
𝜌21

+
𝜌11𝜌23 − 𝜌13𝜌21

𝜌12𝜌21
)𝑤1 + 𝑤2𝑤3

3�̅�1�̅�2

−𝑤2𝑤3
2 (
𝜌11𝜌23 − 𝜌13𝜌21

𝜌12𝜌21
�̅�1 −

𝜌23
𝜌21

�̅�2) −
𝜌23
𝜌21

𝜌11𝜌23 − 𝜌13𝜌21
𝜌12𝜌21

𝑤2𝑤3] .
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𝑛22(𝑝3, 𝑤7

∗) = 6 [−
𝜌23

𝜌21
𝑤2𝑤3 (−𝑤3�̅�2 +

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
) + 𝑤2𝑤3

3�̅�1�̅�2

+
𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
(−𝑤2𝑤3

2�̅�1 + 𝑤4)] .
 

𝑛32(𝑝3, 𝑤7
∗) = 6 [−𝑐1

𝜌23

𝜌21
+ 𝑐2

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
]𝑤6. 

Accordingly, since it is assumed 𝑐1 (�̅�1 −
𝜌23

𝜌21
) + 𝑐2 (�̅�2 +

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
) = 0, it is obtained 

 𝐔2
𝑇𝐷3𝐅(𝑝3, 𝑤7

∗)(𝐕2, 𝐕2, 𝐕2) = 6 [−𝑐1
𝜌23

𝜌21
+ 𝑐2

𝜌11𝜌23−𝜌13𝜌21

𝜌12𝜌21
] 𝑤6 ≠ 0. 

Therefore, PB takes place near PFEP, and the proof is complete.  

Theorem 8: Assume that condition (27) is met, then system (2) undergoes a TB near DFEP when 

the parameter 𝑤5  passes through the value 𝑤5
∗ = −𝑤4�̂�3(1 + �̂�3) +

𝑤2�̂�1

1+𝑤3�̂�3
  provided that the 

following condition holds 

 −2𝜎2𝑤4 − 4𝜎2𝑤4�̂�3 −
2𝜎2𝑤2𝑤3�̂�1

(1+𝑤3�̂�3)2
+

2𝜎1𝑤2

1+𝑤3�̂�3
≠ 0,               (46) 

where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes 

place provided that the following condition holds. 

 𝜎1𝑤2𝑤3(1 + 𝑤3�̂�3)
2 − 𝑤2𝑤3

2𝜎2(1 + 𝑤3�̂�3)�̂�1 + 𝑤4𝜎2(1 + 𝑤3�̂�3)
4 ≠ 0.         (47) 

Proof. From the equation (24) with 𝑤5 = 𝑤5
∗ the JM becomes 

𝐽3
∗ = 𝐽(𝑝4, 𝑤5

∗) = (𝑏𝑖𝑗
∗ )

3×3
, 

where 𝑏𝑖𝑗
∗ = 𝑏𝑖𝑗, for all 𝑖, 𝑗 = 1,2,3 with 𝑏22

∗ = 0.       

Therefore, the eigenvalues of  𝐽3
∗ are given by 

 

𝜆41
∗ =

𝑏11+𝑏33

2
+
1

2
√(𝑏11 + 𝑏33)

2 − 4(𝑏11𝑏33 − 𝑏13𝑏31)

𝜆42
∗ = 0                                      

𝜆43
∗ =

𝑏11+𝑏33

2
−
1

2
√(𝑏11 + 𝑏33)2 − 4(𝑏11𝑏33 − 𝑏13𝑏31)

}. 

Thus DFEP is a non-hyperbolic point at 𝑤5 = 𝑤5
∗, with two other eigenvalues 𝜆41

∗  and 𝜆43
∗  have 

negative real parts due to condition (27). 

Let  𝐕3 = (𝑣31, 𝑣32, 𝑣33)
T  be the eigenvector conjugate with the eigenvalue 𝜆42

∗ = 0 . Thus, 

𝐽3
∗𝐕3 = 𝟎, gives that 𝐕3 = (

𝑏13𝑏32−𝑏12𝑏33

𝑏11𝑏33−𝑏13𝑏31
, 1,

𝑏12𝑏31−𝑏11𝑏32

𝑏11𝑏33−𝑏13𝑏31
)
T

= (𝜎1, 1, 𝜎2)
T. 

Now, let 𝐔3 = (𝑢31, 𝑢32, 𝑢33)
T represents the eigenvector conjugate with the eigenvalue 𝜆42

∗ =
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0, of the matrix 𝐽3
∗T. Thus, 𝐽3

∗T𝐔3 = 𝟎  gives that 𝐔3 = (0,1,0)
𝑇.  

Following Sotomayor’s theorem, gives that: 

  
𝜕

𝜕𝑤5
𝐅(𝐗,𝑤5) = (

0
−𝑥2
0
); ⇛ 

𝜕

𝜕𝑤5
𝐅(𝑝4, 𝑤5

∗) = (
0
0
0
) 

Therefore, 𝐔3
T𝐅𝑤5(𝑝4, 𝑤5

∗) = 0, as a result, the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  

 𝐷𝐅𝑤5(𝐗,𝑤5) = [
0 0 0
0 −1 0
0 0 0

] ⇛ 𝐷𝐅𝑤5(𝑝4, 𝑤5
∗)𝐕3 = [

0
−1
0
]. 

Therefore 

 𝐔3
T𝐷𝐅𝑤5(𝑝4, 𝑤5

∗)𝐕3 = −1 ≠ 0. 

Also, by using equation (43), it is obtained that  

𝐷2𝐅(𝑝4, 𝑤5
∗)(𝐕3, 𝐕3) = [𝑛𝑖1(𝑝4, 𝑤5

∗)],  

where 

 
𝑛11(𝑝4, 𝑤5

∗) = −2𝜎1𝜎2𝑤4 − 2𝜎2
2𝑤4�̂�1 − 4𝜎1𝜎2𝑤4�̂�3 −

2𝜎2
2𝑤1

2�̂�1(−1+�̂�1)

(1+𝑤1�̂�3)3

+
2𝜎2𝑤1�̂�1+2𝜎1𝜎2𝑤1(−1+2�̂�1)

(1+𝑤1�̂�3)2
−
2𝜎1

2+2𝜎1

1+𝑤1�̂�3
+
2𝜎2𝑤2𝑤3�̂�1

(1+𝑤3�̂�3)2
−

2𝜎1𝑤2

1+𝑤3�̂�3

.  

𝑛21(𝑝4, 𝑤5
∗) = −2𝜎2𝑤4 − 4𝜎2𝑤4�̂�3 −

2𝜎2𝑤2𝑤3�̂�1

(1+𝑤3�̂�3)2
+

2𝜎1𝑤2

1+𝑤3�̂�3
. 

 𝑛31(𝑝4, 𝑤5
∗) = 2𝑐1𝜎2

2𝑤6�̂�1 + 2𝑐1𝜎1𝜎2𝑤6(1 + 2�̂�3) + 2𝑐2𝜎2𝑤6(1 + 2�̂�3). 

Then, when the condition (46) is met, it is obtained that 

𝐔3
𝑇𝐷2𝐅(𝑝4, 𝑤5

∗)(𝐕3, 𝐕3) = −2𝜎2𝑤4 − 4𝜎2𝑤4�̂�3 −
2𝜎2𝑤2𝑤3�̂�1

(1+𝑤3�̂�3)2
+

2𝜎1𝑤2

1+𝑤3�̂�3
≠ 0. 

Hence a TB take place near DFEP. Otherwise, by using equation (44), it is obtained that 

𝐷3𝐅(𝑝4, 𝑤5
∗)(𝐕3, 𝐕3, 𝐕3) = [𝑛𝑖2(𝑝4, 𝑤5

∗)],  

where 

 
𝑛12(𝑝4, 𝑤5

∗) = 6𝜎2 [−𝜎1𝜎2𝑤4 +
𝜎2

2𝑤1
3�̂�1(−1+�̂�1)

(1+𝑤1�̂�3)4
−
𝜎2𝑤1

2(�̂�1+𝜎1(−1+2�̂�1))

(1+𝑤1�̂�3)3

+
𝜎1(𝜎1+1)𝑤1

(1+𝑤1�̂�3)2
−
𝜎2𝑤2𝑤3

2�̂�1

(1+𝑤3�̂�3)3
+

𝜎1𝑤2𝑤3

(1+𝑤3�̂�3)2
]

 

𝑛22(𝑝4, 𝑤5
∗) =

6𝜎2

(1+𝑤3𝑥3)
4
[𝜎1𝑤2𝑤3(1 + 𝑤3�̂�3)

2 − 𝑤2𝑤3
2𝜎2(1 + 𝑤3�̂�3)�̂�1 + 𝑤4𝜎2(1 + 𝑤3�̂�3)

4]. 
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𝑛32(𝑝4, 𝑤5
∗) = 6(𝑐1𝜎1 + 𝑐2)𝜎2

2𝑤6. 

Accordingly, due to condition (47), it is obtained 

 𝐔3
𝑇𝐷3𝐅(𝑝4, 𝑤5

∗)(𝐕3, 𝐕3, 𝐕3) = 𝑛22(𝑝4, 𝑤5
∗) ≠ 0. 

Therefore, PB takes place near PFEP, and the proof is complete.  

Theorem 9: Assume that condition (31) is met along with the following condition 

(𝑐1�̃�1+𝑐2�̃�2)

1+𝑤1�̃�3
< [𝑤4

∗(1 + 2�̃�3) +
𝑤1(1−�̃�1−�̃�2)

(1+𝑤1�̃�3)2
−

𝑤2𝑤3�̃�2

(1+𝑤3�̃�3)2
] 𝑐1(1 + �̃�3).           (48) 

 Then system (2) undergoes a saddle-node bifurcation (SNB) near PEP when the parameter 𝑤4 

passes through the value 𝑤4
∗, provided that the following conditions hold 

 −𝜎5(1 + �̃�3)�̃�1�̃�3 − 𝜎6(1 + �̃�3)�̃�2�̃�3 ≠ 0,                  (49) 

 𝜎5𝑛11(𝑝5, 𝑤4
∗) + 𝜎6𝑛21(𝑝5, 𝑤4

∗) + 𝑛31(𝑝5, 𝑤4
∗) ≠ 0,                (50) 

where 

 𝑤4
∗ = [

−�̃�1
𝑤1(1−�̃�1−�̃�2)

(1+𝑤1�̃�3)
2 𝑎21𝑎32+

𝑤2𝑤3�̃�1�̃�2
(1+𝑤3�̃�3)

2[𝑎21𝑎32−𝑎12𝑎31+𝑎11𝑎32]−𝑎12𝑎21𝑎33

(1+2�̃�3)[(𝑎12𝑎31−𝑎11𝑎32)�̃�2+�̃�1𝑎21𝑎32]
]. 

Proof. From the equation (24) with 𝑤4 = 𝑤4
∗ the JM becomes 

𝐽4
∗ = 𝐽(𝑝5, 𝑤4

∗) = (𝑎𝑖𝑗
∗ )

3×3
, 

where 𝑎𝑖𝑗
∗ = 𝑎𝑖𝑗(𝑤4

∗), for all 𝑖, 𝑗 = 1,2,3.       

Therefore, it is easy to verify that the coefficient 𝐴3 = 0 at 𝑤4 = 𝑤4
∗ in equation (30). Hence 

the characteristic equation (30) becomes 

 (𝜆2 + 𝐴1
∗𝜆 + 𝐴2

∗)𝜆 = 0, 

where 𝐴1
∗ = 𝐴1(𝑤4

∗)  and 𝐴2
∗ = 𝐴2(𝑤4

∗)  with 𝐴1  and 𝐴2  as given in equation (30). Clearly, 

𝐴1
∗ > 0 under the condition (31a) and 𝐴2

∗ > 0 under the condition (48). Therefore, due to Routh-

Hurwitz criterion, the above obtained characteristic equation has two eigenvalues with negative 

real parts and third zero eigenvalues: 

 

𝜆51
∗ = −

𝐴1
∗

2
+
1

2
√𝐴1

∗2 − 4𝐴2
∗

𝜆52
∗ = −

𝐴1
∗

2
+
1

2
√𝐴1

∗2 − 4𝐴2
∗

𝜆53
∗ = 0 }

 
 

 
 

. 
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Thus PEP is a non-hyperbolic point at 𝑤4 = 𝑤4
∗. 

Let  𝐕4 = (𝑣41, 𝑣42, 𝑣43)
T  be the eigenvector conjugate with the eigenvalue 𝜆53

∗ = 0 . Thus, 

𝐽4
∗𝐕4 = 𝟎, gives that 𝐕4 = (−

𝑎23
∗

𝑎21
∗ ,

𝑎11
∗ 𝑎23

∗ −𝑎13
∗ 𝑎21

∗

𝑎12
∗ 𝑎21

∗ , 1)
T

= (𝜎3, 𝜎4, 1)
T. 

Now, let 𝐔4 = (𝑢41, 𝑢42, 𝑢43)
T represents the eigenvector conjugate with the eigenvalue 𝜆53

∗ =

0 , of the matrix 𝐽4
∗T . Thus, 𝐽4

∗T𝐔4 = 𝟎   gives that 𝐔4 = (−
𝑎32
∗

𝑎12
∗ ,

𝑎11
∗ 𝑎32

∗ −𝑎12
∗ 𝑎31

∗

𝑎12
∗ 𝑎21

∗ , 1)
T

=

(𝜎5, 𝜎6, 1)
T.  

Following Sotomayor’s theorem, gives that: 

 
𝜕

𝜕𝑤4
𝐅(𝐗,𝑤4) = (

−(1 + 𝑥3)𝑥1𝑥3
−(1 + 𝑥3)𝑥2𝑥3

0

); ⇛ 
𝜕

𝜕𝑤4
𝐅(𝑝5, 𝑤4

∗) = (
−(1 + �̃�3)�̃�1�̃�3
−(1 + �̃�3)�̃�2�̃�3

0

)  

Therefore due to condition (49) the following is obtained 

 𝐔4
T𝐅𝑤4(𝑝5, 𝑤4

∗) = −𝜎5(1 + �̃�3)�̃�1�̃�3 − 𝜎6(1 + �̃�3)�̃�2�̃�3 ≠ 0 

Also, by using equation (43), it is obtained that  

𝐷2𝐅(𝑝5, 𝑤4
∗)(𝐕4, 𝐕4) = [𝑛𝑖1(𝑝5, 𝑤4

∗)],  

where 

𝑛11(𝑝5, 𝑤4
∗) = −2𝑤4

∗(𝜎3 + �̃�1) − 4𝜎3𝑤4
∗�̃�3 −

2𝑤1
2�̃�1(−1+�̃�1+�̃�2)

(1+𝑤1�̃�3)3

+
2𝑤1(𝜎4�̃�1+𝜎3(−1+2�̃�1+�̃�2))

(1+𝑤1�̃�3)2
−
2𝜎3(𝜎3+𝜎4)

1+𝑤1�̃�3

−
2𝑤2𝑤3

2�̃�1�̃�2

(1+𝑤3�̃�3)3
+
2𝑤2𝑤3(𝜎4�̃�1+𝜎3�̃�2)

(1+𝑤3�̃�3)2
−
2𝜎3𝜎4𝑤2

1+𝑤3�̃�3

, 

𝑛21(𝑝5, 𝑤4
∗) = −2𝑤4

∗(𝜎4 + �̃�2) − 4𝜎4𝑤4
∗�̃�3 +

2𝑤2𝑤3
2�̃�1�̃�2

(1+𝑤3�̃�3)3

−
2𝑤2𝑤3(𝜎4�̃�1+𝜎3�̃�2)

(1+𝑤3�̃�3)2
+
2𝜎3𝜎4𝑤2

1+𝑤3�̃�3

, 

 𝑛31(𝑝5, 𝑤4
∗) = 2𝑤6(𝑐1[�̃�1 + 𝜎3(1 + 2�̃�3)] + 𝑐2[�̃�2 + 𝜎4(1 + 2�̃�3)]). 

Thus, due to condition (50) the following is obtained. 

 𝐔4
𝑇𝐷2𝐅(𝑝5, 𝑤4

∗)(𝐕4, 𝐕4) = 𝜎5𝑛11(𝑝5, 𝑤4
∗) + 𝜎6𝑛21(𝑝5, 𝑤4

∗) + 𝑛31(𝑝5, 𝑤4
∗) ≠ 0. 

Therefore, SNB takes place as the 𝑤4 = 𝑤4
∗.  
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7. NUMERICAL SIMULATION 

Numerical simulations were carried out using MATLAB with a set of non-dimensionalized 

parameters as listed in the following equation to support our analytical results and comprehend the 

impact of changing parameter values. 

 
𝑤1 = 0.2, 𝑤2 = 0.6, 𝑤3 = 0.2, 𝑤4 = 0.75, 𝑤5 = 0.1

𝑤6 = 0.5, 𝑤7 = 0.1, 𝑐1 = 0.2, 𝑐2 = 0.4.
                 (51) 

It is observed that, for the dataset given by equation (51), system (2) starting from different initial 

values approach asymptotically to the PEP as shown in figure (1). In all the following figures, the 

star represents the attracting equilibrium point, and the magenta color is used for expressing the 

trajectory of the system (2). In contrast, the blue, green, and red colors are used to describe the 

trajectory of 𝑥1, 𝑥2, and 𝑥3 respectively in the time series. 

 

 

Fig. 1: The dynamics of system (2) utilizing the dataset (51) approach asymptotically to 𝑝5 =

(0.57,0.11,0.24). (a) 3D phase portrait. (b) Time series. 

Note that, figure (1) represents the existence of a unique PEP that is asymptotic stable point. In 

contrast, figures (2) and (3) describe the influence of the fear rates 𝑤1, and 𝑤3 on the dynamics 

of the system (3). 
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Fig. 2: The dynamics of system (2) utilizing the dataset (51) with two different values of 𝑤1 =

0, 50. (a) The trajectory of system (2). (b) Time series. 
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Fig. 3: The dynamics of system (2) utilizing the dataset (51) with two different values of 𝑤3 =

0, 50. (a) The trajectory of system (2). (b) Time series. 

According to figure (2), as 𝑤1 increases, the population density of the species 𝑥2 approaches 

zero. In contrast, figure (3) shows the approaching of the population density species 𝑥3 to zero 

when the parameter 𝑤3 increases. Now the influence of altering 𝑤2 is explored through figure 

(4).  
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Fig. 4: The dynamics of system (2) utilizing the dataset (51) with two different values of 𝑤2. (a) 

- (b) The trajectory of system (2) for 𝑤2 = 0.25, and their time series. (c) - (d) The trajectory of 

system (2) for 𝑤2 = 1.1, and their time series. 

Clearly, increasing the value 𝑤2 leads to PFEP, while decreasing it leads to DFEP. The altering 

of 𝑤4 is investigated through figure (5) below. 
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Fig. 5: The dynamics of system (2) utilizing the dataset (51) with two different values of 𝑤4. (a) 

- (b) The trajectory of system (2) for 𝑤4 = 0.4, and their time series. (c) - (d) The trajectory of 

system (2) for 𝑤4 = 0.01, and their time series. 

Clearly, decreasing the value 𝑤4  leads to DFEP, while decreasing it further leads to periodic 

dynamics in the 𝑥1𝑥2 −plane. The altering of 𝑤5, and 𝑤6 are investigated through figures (5) – 

(6) respectively.  
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Fig. 6: The dynamic of system (2) utilizing the dataset (51) with 𝑤5 = 0.4  approaches 

asymptotically to 𝑝4 = (0.87, 0, 0.14). (a) The trajectory of system (2). (b) Time series. 
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Fig. 7: The dynamic of system (2) utilizing the dataset (51) with different values of 𝑤6 

approaches asymptotically to 𝑝4 = (0.87, 0, 0.14). (a) – (b) The trajectory of system (2) for 𝑤6 =

0.3, and their time series. (c) – (d) The trajectory of system (2) for 𝑤6 = 0.6, and their time series. 

According to figure (6), as 𝑤5 increases, the population density of the species 𝑥2 approaches 

zero. On the other hand, figure (7) shows the approaching of the population density of the species 

𝑥3 to zero when the parameter 𝑤6 decreases, while the approaching of the population density of 

the species 𝑥2 approaching to zero as 𝑤6 increases.  

It is observed that, the parameters 𝑤7 , and 𝑐1  have similar influence as that for 𝑤2 , and 𝑤5 

respectively on the dynamics of the system (2). Finally, the influence of the parameter 𝑐2 can be 

detected fron the figure (8). 
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Fig. 8: The dynamic of the system (2) utilizing the dataset (51) with 𝑐2 = 0.2  approaches 

asymptotically to 𝑝3 = (0.16, 0.52, 0). (a) The trajectory of system (2). (b) Time series. 

Obviously from figure (8), as 𝑐2 decreases, the population density of the species 𝑥3 approaches 

zero. 

 

8. DISCUSSION AND CONCLUSIONS 

This paper suggested and researched the use of an eco-epidemiological system with a prey-

predator and an infectious disease in the prey population. Investigated were the effects of 

predation-related fear and the predator's hunting cooperation. All the properties of the solution of 

the system (2) were studied. The local stability of all the biologically feasible equilibrium points 

was investigated along with their existing requirements. The persistence conditions of the system 

were established. The local bifurcation near the non-hyperbolic points was studied. Finally, all the 

analytical findings were confirmed using the numerical simulation depending on the hypothetical 

dataset (51), and the obtained results are summarized as follows.    

Increasing the fear rate that reduces the growth of the prey (or fear rate that reduces the disease 

transmission) above a vital value leads to extinction in the population of the predator (infected 

prey) and hence the system losses the persistence. Decreasing the infection rate (or predator death 

rate) below a specific value or increasing the infection rate (or predator death rate) above a vital 
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value causes extinction in the infected prey or predator population, respectively. This indicates the 

occurrence of a transcritical bifurcation. Reducing the attack rate (𝑤4 =
𝛼1
2

𝑟𝛼2
), which represents a 

ratio of squared attack rate to predator cooperation in hunting rate, causes extinction in infected 

prey species and the system approaches to DFEP, while reducing this value further leads to losing 

the stability of the DFEP and the solution approaches asymptotically to periodic dynamics. Noting 

that, reducing the parameter 𝑤4 is equivalent to rising the hunting cooperation rate.  Moreover, 

it is observed that rising the value of infected prey’s death rate (or the conversion efficiency from 

susceptible prey biomass to predator biomass) causes extinction of infected prey species and the 

system approaches asymptotically DFEP. Decreasing the infection rate (𝑤6 =
𝛼1𝑘

𝑟
  ), which 

represents the ratio of the product of attack rate and carrying capacity to birth rate), below a specific 

value, or increasing it above a vital value causes extinction in the predator population or infected 

prey, respectively. Finally, decreasing the conversion efficiency from infected prey biomass to 

predator biomass below a specific value causes the extinction of a predator species. 
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