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Abstract: The mathematical construction of an ecological model with a prey-predator relationship was done. It 

presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the 

power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect 

of the harvest was considered on the prey.   All the solution’s properties were discussed. All potential equilibrium 

points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated 

using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence 

equilibrium point while exhibiting a transcritical bifurcation near the vanishing and predator-free equilibrium points. 

The analytical results are then validated using a numerical approach. It is discovered that the cooperative hunting rate 

and conversion rate persistently affect the system. In contrast, the anti-predator rate leads to the extinction of the 

predator. 
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1. INTRODUCTION 

Ecology is the study of the dispersion, resources, connections, and interactions of organisms 

with their surroundings. Ecological research aims to investigate every factor that influences how 
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individual organisms interact with one another and their surroundings to produce findings 

supporting the ecosystem's continued sustainability. An important area of study in ecological 

systems has centered on the prey-predator relationship [1]. Lotka and Volterra propose and 

examine the earliest model of the prey-predator interaction, which includes two first-order, 

nonlinear differential equations. Following that, multiple attempts have been made to expand the 

groundbreaking work, see [2-8]. 

The rate at which prey is consumed by the predator population or the predator's functional 

response is a key element in the dynamics of prey-predator interaction. It aids in more accurate 

prey-predator dynamics analysis. Predation rates vary depending on several factors including age 

category, corpulence, environment characteristics, interference, and cooperation among members 

of a specific species. A linear function called the Holling type I functional response consumes the 

prey if it is weak, tiny, juvenile, or readily available. Functional responses come in 

various categories: prey-dependent, prey-predator-dependent, and ratio-dependent. In the 

literature, numerous investigations of prey-predator systems with various categories have been 

conducted, see [5-6, 9-13]. Most biological species depend on individuals' age or stage of 

development to determine their survival and rate of reproduction. Adult and juvenile stages of a 

species' life cycle can be distinguished from one another. For adult versus juvenile prey, a 

predator's nature is entirely different. While adult prey has greater potential to escape than juvenile 

prey, the predator has a strong attraction to juvenile prey. Therefore, it makes sense to incorporate 

the impact of a species' past life to get more accurate results. Many academics analyze stage-

structured models in an effort to overcome the drawbacks of traditional Lotka-Volterra models [14-

18]. Even while biologists categorize animals as either predators or prey, the ecological function 

of an individual is frequently unclear. There are numerous instances of predators and prey 

switching roles, where an adult prey attacks juvenile, weak predators, see [19] and the references 

therein. This suggests that young prey can grow up, escape from predators, and subsequently 

become a threat to weak predators. Anti-predator adaptations are biological defenses created by 

evolution to aid prey creatures in their ongoing conflict with predators. For every stage of this 

conflict, adaptations have developed throughout the animal kingdom. Recently, some researchers 

have proposed and studied prey-predator models with anti-predator properties; see for example 

[20-21]. 
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On the other hand, some ecosystem predators engage in cooperative behavior when hunting 

and frightening their prey. During hunting, wolves participate as a potential keystone species, and 

they indirectly impact their prey [22]. Numerous studies examined the function of hunting 

cooperation in predator-prey systems [23–24]. To our knowledge, no research has been done on 

the combined impact of hunting cooperation, stage structure, and harvest in a prey-predator system. 

The current study aims to simultaneously examine the effects of cooperation and stage structure in 

a harvested prey-predator scenario. 

 

2. MATHEMATICAL MODEL CONSTRUCTION 

 In this section, an ecological model consisting of a prey-predator system has been constructed 

mathematically. Different biological factors are included in this system according to the following 

assumptions. 

1. The prey population is a stage structure species consisting of the juvenile prey population 

and the adult prey population, which are denoted to their population densities at time 𝑇 

by 𝑋1(𝑇) and 𝑋2(𝑇) so that the total prey population density is 𝑋1(𝑇) + 𝑋2(𝑇). On the 

other hand, 𝑋3(𝑇) is represented the predator population density at time 𝑇. 

2. The prey population grows logistically in the absence of the predation process, while the 

predator decays exponentially in the absence of their prey. 

3. The adult prey has anti-predator defensive property so that it can kill the attacked predator.  

However, the predator cooperates in hunting the juvenile prey according to the Lotka-

Volterra type of functional response. 

4. An external force harvests the prey population only. 

According to the above assumptions, the dynamics of the described prey-predator system can be 

simulated mathematically using the following set of non-linear first-order differential equations. 

𝑑𝑋1

𝑑𝑇
= 𝑟𝑋2 (1 −

𝑋1

𝐾
) − 𝑎𝑋1 − (𝜌 + 𝛼𝑋3)𝑋1𝑋3 − ℎ1𝑋1,

𝑑𝑋2

𝑑𝑇
= 𝑎𝑋1 − 𝑑1𝑋2 − ℎ2𝑋2,                     

𝑑𝑋3

𝑑𝑇
= 𝑒(𝜌 + 𝛼𝑋3)𝑋1𝑋3 − 𝑑2𝑋3 − 𝑏𝑋2𝑋3,         

                       (1)  

where 𝑋1(0) ≥ 0, 𝑋2(0) ≥ 0, and 𝑋3(0) ≥ 0 are the initial values of the populations. Moreover, 

all the system parameters are positive and described in Table 1. 
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Table 1. Description of Parameters 

Parameter Description 

r The birth rate of the juvenile prey  

𝐾 Carrying capacity of the prey environment. 

𝑎 The grown-up rate of juvenile prey to adult prey 

𝜌 The attack rate of the predator to the juvenile prey.  

𝛼 The hunting cooperative rate of a predator on the juvenile prey. 

ℎ1 The harvesting rate of the juvenile prey. 

ℎ2 The harvesting rate of adult prey. 

𝑑1 The death rate of adult prey 

𝑑2 The death rate of predator 

𝑒 The conversion rate of juvenile prey biomass to predator biomass. 

𝑏 The anti-predator rate by the adult prey  

 

To simplify the study of a system (1) and reduce the number of its parameters, the following non-

dimensional system is examined instead of the corresponding system (1). 

𝑑𝑦1

𝑑𝑡
= 𝑦2(1 − 𝑦1) − 𝑤1𝑦1 − (1 + 𝑤2𝑦3)𝑦1𝑦3 − 𝑤3𝑦1,

𝑑𝑦2

𝑑𝑡
= 𝑤1𝑦1 − 𝑤4𝑦2 − 𝑤5𝑦2,                    

𝑑𝑦3

𝑑𝑡
= 𝑤6(1 + 𝑤2𝑦3)𝑦1𝑦3 − 𝑤7𝑦3 − 𝑤8𝑦2𝑦3,       

                (2) 

with the initial values 𝑦1(0) ≥ 0, 𝑦2(0) ≥ 0, and 𝑦3(0) ≥ 0, where the dimensionless variables 

and parameters are given by: 

𝑦1 =
𝑋1

𝐾
, 𝑦2 =

𝑋2

𝐾
, 𝑦3 =

𝑋3

𝐾
, 𝑡 = 𝑟𝑇. 

𝑤1 =
𝑎

𝑟
, 𝑤2 =

𝑟𝛼

𝜌2
, 𝑤3 =

ℎ1

𝑟
, 𝑤4 =

𝑑1

𝑟
, 𝑤5 =

ℎ2

𝑟
, 𝑤6 =

𝑒𝜌𝐾

𝑟
, 𝑤7 =

𝑑2

𝑟
, 𝑤8 =

𝑏𝐾

𝑟
. 

It is obvious, the interaction functions on the right-hand side of the system (2), are continuous and 

have continuous partial derivatives on the domain ℝ+
3 = {(𝑦1, 𝑦2, 𝑦3) ∈ ℝ3: 𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥

0}. Then, they are locally Lipschitz functions in ℝ+
3 . Accordingly, there exists 𝑇 > 0 so that the 

fundamental existence and uniqueness theorem guarantee that system (2) with any given non-

negative initial condition has a unique solution defined in ℝ+
3 .  

Now it is easy to prove that, the solution of system (2) has the following properties. 
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Theorem 1: All system (2) solutions with positive initial conditions are positively invariant. 

Proof. From the first equation of the system (2), it is obtained: 

𝑦1(𝑡) = 𝑦1(0)𝑒
∫ [

𝑦2(𝑠)(1−𝑦1(𝑠))

𝑦1(𝑠)
−𝑤1−(1+𝑤2𝑦3(𝑠))𝑦3(𝑠)−𝑤3]

𝑡
0 𝑑𝑠

> 0; ∀ 𝑡 

Similarly, the second and third equations, it is obtained  

𝑦2(𝑡) = 𝑦2(0)𝑒
∫ [

𝑤1𝑦1(𝑠)

𝑦2(𝑠)
−𝑤4−𝑤5]

𝑡
0 𝑑𝑠

> 0; ∀ 𝑡 

𝑦3(𝑡) = 𝑦3(0)𝑒∫ [𝑤6(1+𝑤2𝑦3(𝑠))𝑦1(𝑠)−𝑤7−𝑤8𝑦2(𝑠)]
𝑡
0

𝑑𝑠 > 0; ∀ 𝑡 

This completes the proof. 

Theorem 2: All system (2) solutions with nonnegative initial conditions are uniformly bounded. 

Proof. Assume that 𝑁1(𝑡) = 𝑦1 + 𝑦2 is the total prey density, then from the system (2), it is easy 

to verify that 

𝑑𝑁1

𝑑𝑡
= 𝑦2(1 − 𝑦1) − (1 + 𝑤2𝑦3)𝑦1𝑦3 − 𝑤3𝑦1 − (𝑤4 + 𝑤5)𝑦2 

Since 𝑁1(𝑡) = 𝑦1 + 𝑦2 represents the same species that is growing logistically in the absence of 

the predator, its density will be bounded by the environment carrying capacity. Hence, it is obtained 

that   

 
𝑑𝑁1

𝑑𝑡
≤ 𝑁1(1 − 𝑁1) − 𝑚1𝑁1 ≤

1

4
− 𝑚1𝑁1, 

where 𝑚1 = min{𝑤3, (𝑤4 + 𝑤5)}. Thus according to the lemma (2.1) [25], it is obtained that 

 𝑁1(𝑡) ≤
1

4𝑚1
[1 + (4𝑚1𝑁1(0) − 1)𝑒−𝑚1𝑡] 

Therefore, for 𝑡 → ∞, it is obtained that:  

 𝑁1(𝑡) ≤
1

4𝑚1
 

Let 𝑁2 = 𝑦1 + 𝑦2 +
𝑦3

𝑤6
,  then system (2) gives that: 

𝑑𝑁2

𝑑𝑡
= 𝑦2(1 − 𝑦1) − 𝑤3𝑦1 − (𝑤4 + 𝑤5)𝑦2 −

𝑤7

𝑤6
𝑦3 −

𝑤8

𝑤6
𝑦2𝑦3          

≤ 2𝑦2 − 𝑤3𝑦1 − (1 + 𝑤4 + 𝑤5)𝑦2 −
𝑤7

𝑤6
𝑦3 ≤ 2𝑦2 − 𝑚2𝑁2

, 

where 𝑚2 = 𝑚𝑖𝑛 {𝑤3, (1 + 𝑤4 + 𝑤5),
𝑤7

𝑤6
}. Hence, using the bound of 𝑁1(𝑡) = 𝑦1 + 𝑦2 ≤

1

4𝑚1
, it 

is obtained:  

𝑑𝑁2

𝑑𝑡
+ 𝑚2𝑁2 ≤

1

2𝑚1
. 

Then according to the lemma (2.1) [25], it is obtained that 
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 𝑁2(𝑡) ≤
1

2𝑚1𝑚2
[1 + (2𝑚1𝑚2𝑁2(0) − 1)𝑒−𝑚2𝑡] 

Therefore, for 𝑡 → ∞, it is obtained that:  

𝑁2(𝑡) ≤
1

2𝑚1𝑚2
. 

That completes the proof. 

 

3. STABILITY ANALYSIS 

In this section, the existence and stability analysis of all possible equilibrium points are 

investigated. System (2) has at most three nonnegative equilibrium points given by: 

The vanishing equilibrium point is represented by 𝑒0 = (0,0,0) always exists. 

The predator-free equilibrium point is represented by 𝑒1 = (�̅�1, �̅�2, 0) where 

 �̅�1 =
𝑤1−(𝑤1+𝑤3)(𝑤4+𝑤5)

𝑤1
, �̅�2 =

𝑤1�̅�1

𝑤4+𝑤5
.                            (3) 

Clearly, 𝑒1 exists if and only if the following condition holds. 

 (𝑤1 + 𝑤3)(𝑤4 + 𝑤5) < 𝑤1.                                (4) 

The coexistence equilibrium point is represented by 𝑒2 = (𝑦1
∗, 𝑦2

∗, 𝑦3
∗) where 

 𝑦1
∗ =

(𝑤4+𝑤5)𝑤7

𝑤6(𝑤4+𝑤5)−𝑤1𝑤8+𝑤2(𝑤4+𝑤5)𝑤6𝑦3
∗, 𝑦2

∗ =
𝑤1𝑦1

∗

𝑤4+𝑤5
 .                (5)  

While 𝑦3
∗ is a positive root of the following third-order polynomial equation. 

 𝐵1𝑦3
3 + 𝐵2𝑦3

2 + 𝐵3𝑦3 + 𝐵4 = 0,                              (6) 

where 

 𝐵1 = −𝑤2
2𝑤6(𝑤4 + 𝑤5)

2 < 0. 

 𝐵2 = −2𝑤2𝑤6(𝑤4 + 𝑤5)
2 + 𝑤1𝑤2𝑤8(𝑤4 + 𝑤5). 

 𝐵3 = 𝑤1(𝑤4 + 𝑤5)[𝑤2𝑤6 + 𝑤8] − 𝑤6(𝑤4 + 𝑤5)
2[1 + 𝑤1𝑤2 + 𝑤2𝑤3]. 

 
𝐵4 = 𝑤1(𝑤4 + 𝑤5)[𝑤6 + 𝑤3𝑤8 − 𝑤7] − 𝑤6(𝑤4 + 𝑤5)

2[𝑤1 + 𝑤3]

−𝑤1
2𝑤8[1 + 𝑤4 + 𝑤5]

 

Obviously, the point 𝑒2 exists uniquely in the interior of ℝ+
3 = {(𝑦1, 𝑦2, 𝑦3) ∈ ℝ3: 𝑦1 ≥ 0, 𝑦2 ≥

0, 𝑦3 ≥ 0} provided that the following conditions are met 

 𝑤1𝑤8 + 𝑤2(𝑤4 + 𝑤5)𝑤6𝑦3
∗ < 𝑤6(𝑤4 + 𝑤5).                      (7) 

 
𝑤6(𝑤4 + 𝑤5)

2[𝑤1 + 𝑤3] + 𝑤1
2𝑤8[1 + 𝑤4 + 𝑤5]

         < 𝑤1(𝑤4 + 𝑤5)[𝑤6 + 𝑤3𝑤8 − 𝑤7]
}.                  (8) 

The Jacobian matrix of the system (2) at the point (𝑦1, 𝑦2, 𝑦3) can be written as: 

𝐽 = [𝑘𝑖𝑗]𝟑×𝟑
,                                        (9) 
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where  

 𝑘11 = −𝑤1 − 𝑤3 − 𝑦2 − 𝑦3(1 + 𝑤2𝑦3), 𝑘12 = 1 − 𝑦1, 𝑘13 = −𝑦1(1 + 2𝑤2𝑦3), 

 𝑘21 = 𝑤1, 𝑘22 = −(𝑤4 + 𝑤5), 𝑘23 = 0, 𝑘31 = 𝑤6𝑦3(1 + 𝑤2𝑦3), 𝑘32 = −𝑤8𝑦3, 

 𝑘33 = −𝑤7 − 𝑤8𝑦2 + 𝑤6𝑦1(1 + 2𝑤2𝑦3). 

Accordingly, the Jacobian matrix at the point 𝑒0 can be written as: 

 𝐽(𝑒0) = [

−(𝑤1 + 𝑤3) 1 0
𝑤1 −(𝑤4 + 𝑤5) 0
0 0 −𝑤7

].                     (10)  

The characteristic equation of 𝐽(𝑒0) can be written as 

 [𝜆2 + (𝑤1 + 𝑤3 + 𝑤4 + 𝑤5)𝜆 + (𝑤1 + 𝑤3)(𝑤4 + 𝑤5) − 𝑤1](−𝑤7 − 𝜆) = 0.    (11) 

Direct computation shows that the eigenvalues of 𝐽(𝑒0) are given by: 

 
𝜆01, 𝜆02 =

−(𝑤1+𝑤3+𝑤4+𝑤5)

2
±

√(𝑤1+𝑤3+𝑤4+𝑤5)2−4[(𝑤1+𝑤3)(𝑤4+𝑤5)−𝑤1]

2

𝜆03 = −𝑤7

.           (12) 

Obviously, the Jacobian matrix 𝐽(𝑒0) has three negative real parts eigenvalues if and only if the 

following condition is met. 

 𝑤1 < (𝑤1 + 𝑤3)(𝑤4 + 𝑤5).                             (13) 

Therefore, the point 𝑒0 is locally asymptotically stable. However, if condition (4) holds (that is 

the predator-free equilibrium point exists) then the vanishing point becomes a saddle point.   

The Jacobian matrix at the point 𝑒1 can be written as: 

𝐽(𝑒1) =

[
 
 
 
 −𝑤1 − 𝑤3 −

Γ

𝑤4+𝑤5
1 −

Γ

𝑤1
−

Γ

𝑤1

𝑤1 −(𝑤4 + 𝑤5) 0

0 0
Γ𝑤6

𝑤1
− 𝑤7 −

Γ𝑤8

𝑤4+𝑤5]
 
 
 
 

= [𝑎𝑖𝑗],         (14) 

with Γ = 𝑤1 − (𝑤1 + 𝑤3)(𝑤4 + 𝑤5) > 0 due to existence condition. The characteristic equation 

of 𝐽(𝑒1) can be written as 

 [𝜆2 − (𝑎11 + 𝑎22)𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21](𝑎33 − 𝜆) = 0.                 (15) 

Direct computation shows that the eigenvalues of 𝐽(𝑒1) are given by: 

 𝜆11, 𝜆12 =
(𝑎11+𝑎22)

2
±

√(𝑎11+𝑎22)2−4(𝑎11𝑎22−𝑎12𝑎21)

2
, 𝜆13 = 𝑎33.            (16) 

Obviously, the above eigenvalues have negative real parts provided that the following condition is 

met. 

 1 <
Γ

𝑤1
<

1

𝑤6
(𝑤7 +

Γ𝑤8

𝑤4+𝑤5
).                               (17) 

Therefore, condition (17) guarantees the local stability of the predator-free equilibrium point.  
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Now, the Jacobian matrix of the system (2) at the coexistence equilibrium point is computed by:  

𝐽(𝑒2) = [

−𝑤1 − 𝑤3 − 𝑦2
∗ − 𝑦3

∗(1 + 𝑤2𝑦3
∗) 1 − 𝑦1

∗ −𝑦1
∗(1 + 2𝑤2𝑦3

∗)
𝑤1 −𝑤4 − 𝑤5 0

𝑤6𝑦3
∗(1 + 𝑤2𝑦3

∗) −𝑤8𝑦3
∗ 𝑤2𝑤6𝑦1

∗𝑦3
∗

] = [𝑏𝑖𝑗] . (18) 

Then the characteristic equation of 𝐽(𝑒2) can be written by: 

 𝜆3 + 𝐵1𝜆
2 + 𝐵2 𝜆 + 𝐵3 = 0,                             (19) 

where 

 𝐵1 = −(𝑏11 + 𝑏22 + 𝑏33), 

 𝐵2 = 𝑏11𝑏22 − 𝑏12𝑏21 + 𝑏11𝑏33 − 𝑏13𝑏31 + 𝑏22𝑏33, 

 𝐵3 = −𝑏22[𝑏11𝑏33 − 𝑏13𝑏31] − 𝑏21[𝑏13𝑏32 − 𝑏12𝑏33], 

with  

 
∆= 𝐵1𝐵2 − 𝐵3 = −(𝑏11 + 𝑏22)[𝑏11𝑏22 − 𝑏12𝑏21] − (𝑏11 + 𝑏33)[𝑏11𝑏33 − 𝑏13𝑏31]

−𝑏22𝑏33(2𝑏11 + 𝑏22 + 𝑏33) + 𝑏13𝑏21𝑏32
 

Theorem 3. The coexistence equilibrium point 𝑒2 is locally asymptotically stable provided that 

the following set of sufficient conditions are satisfied. 

 𝑦1
∗ < 1.                         (20) 

 𝑤2𝑤6𝑦1
∗𝑦3

∗ < 𝑤1 + 𝑤3 + 𝑦2
∗ + 𝑦3

∗(1 + 𝑤2𝑦3
∗) <

(1+2𝑤2𝑦3
∗)(1+𝑤2𝑦3

∗)

𝑤2
.             (21) 

 
𝑤8𝑦1

∗𝑦3
∗(1+2𝑤2𝑦3

∗)

𝑤2𝑤6𝑦1
∗𝑦3

∗ < (1 − 𝑦1
∗) <

(𝑤1+𝑤3+𝑦2
∗+𝑦3

∗(1+𝑤2𝑦3
∗))(𝑤4+𝑤5)

𝑤1
.                  (22)  

 𝑏22𝑏33(2𝑏11 + 𝑏22 + 𝑏33) < 𝑏13𝑏21𝑏32.                       (23) 

Proof. According to the Routh-Hurwitz criterion, the proof follows if the following requirements 

𝐵1 > 0, 𝐵3 > 0, and ∆= 𝐵1𝐵2 − 𝐵3 > 0 are satisfied. Straightforward computation shows that, 

conditions (20), (21), and (22) guarantee that 𝐵1 > 0, 𝐵3 > 0. However, the conditions (20), (21), 

and (22) in addition to (23) guarantee that ∆= 𝐵1𝐵2 − 𝐵3 > 0. Hence the proof is done. 

 

4. PERSISTENCE AND GLOBAL STABILITY 

In order to discuss the persistence the possibility of the existence of periodic dynamics in the 

boundary planes is discussed using a Bendixson criterion [26] that provides a sufficient condition 

for the non-existence of periodic solutions within simply connected domains in the phase plane. 

Since system (2) has only one subsystem falling in the 𝑦1𝑦2 −plane and is defined by: 

 

𝑑𝑦1

𝑑𝑡
= 𝑦2(1 − 𝑦1) − 𝑤1𝑦1 − 𝑤3𝑦1 = 𝑔1(𝑦1, 𝑦2).

𝑑𝑦2

𝑑𝑡
= 𝑤1𝑦1 − 𝑤4𝑦2 − 𝑤5𝑦2 = 𝑔1(𝑦1, 𝑦2).     

                    (24) 



9 

THE DYNAMICS OF A STAGE-STRUCTURE PREY-PREDATOR MODEL 

Accordingly, there are no periodic dynamics in the 𝑦1𝑦2 − plane if and only if the following 

expression is not identically zero over any subdomain of 𝐷 ⊆ ℝ2 and does not change the sign 

over 𝐷 

 𝑑𝑖𝑓 𝐠 =
𝜕𝑔1(𝑦1,𝑦2)

𝜕𝑦1
+

𝜕𝑔2(𝑦1,𝑦2)

𝜕𝑦2
. 

Direct computation on the system (24) shows that: 

 𝑑𝑖𝑓 𝐠 = −𝑦2 − 𝑤1 − 𝑤3 − 𝑤4 − 𝑤5. 

Clearly, 𝑑𝑖𝑓 𝐠 is not identically zero and does not change the sign over any subdomain of 𝐷 ⊆

ℝ+
2 . Thus the only possible attractor in the boundary planes of the system (2) is the equilibrium 

point 𝐸1. 

In the following theorem, the following Butler-McGhee lemma, which is stated in Freedman and 

Waltman [27], is used in the proof. Let Ω(𝑥) stand for the omega limit set of an orbit, and let 

𝛾(𝑥) stand for the orbit via a point 𝑥. The stable and unstable manifolds of 𝑞 are denoted by 

Μ𝑠(𝑞) and Μ𝑢(𝑞), respectively, if 𝑞 is a hyperbolic equilibrium. 

Lemma A1. Let 𝑞 be an isolated hyperbolic equilibrium in the omega limit set Ω(𝑥) of an orbit 

𝛾(𝑥). Then either Ω(𝑥) = 𝑞 or there exist points 𝑝1, 𝑝2 in Ω(𝑥) with 𝑝1 ∈ Μ𝑠(𝑞) and 𝑝2 ∈

Μ𝑢(𝑞).   

Theorem 4. The system (2) persists if the following conditions are met 

(𝑤1 + 𝑤3)(𝑤4 + 𝑤5) < 𝑤1.                                   (25) 

  𝑤7 +
Γ𝑤8

𝑤4+𝑤5
<

Γ𝑤6

𝑤1
.                                    (26) 

Proof. Assume that 𝑧 belongs to the interior of ℝ+
3  and 𝛾(𝑧) represents the orbit through z  

and suppose Ω(𝑧) be the omega limit set of the 𝛾(𝑧). Recall that Ω(𝑧) is bounded, due to the 

boundedness of the system (2). 

To show that 𝑒0 ∉ Ω(𝑧), consider the contrary. Since 𝑒0 is a saddle point due to condition (25), 

𝑒0 cannot be the only point in Ω(𝑧), and hence by Butler-McGhee lemma there is at least one 

other point 𝑤 such that 𝑤 ∈ Μ𝑠(𝑒0) ∩ Ω(𝑧). 

Now, since Μ𝑠(𝑒0)  is the positive 𝑦1 −  axis (or 𝑦2 −  axis) and the entire orbit 𝛾(𝑤)  is 

contained in Ω(𝑧). Then the positive specific axis (that containing 𝑤) is contained in Ω(𝑧) that 

contradicting its boundedness. 

Similarly, the proof of 𝑒1 ∉ Ω(𝑧) under the condition (26) can be proved. Hence, as the system 

(2) has no periodic dynamics in the boundary plans the system (2) persists.        ■ 

In the following, the global stability of the equilibrium points of system (2) is investigated utilizing 
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the Lyapunov function. 

Theorem 5. The vanishing equilibrium point of system (2) is globally stable provided that the 

following condition is satisfied. 

  1 < 𝑤4 + 𝑤5.                        (28) 

Proof. Consider the following real-valued function 𝐿0 = 𝑦1 + 𝑦2 +
𝑦3

𝑤6
. Clearly, 𝐿0(0,0,0) = 0, 

and 𝐿0(𝑦1, 𝑦2, 𝑦3) > 0  for all (𝑦1, 𝑦2, 𝑦3) ∈ ℝ+
3   and (𝑦1, 𝑦2, 𝑦3) ≠ (0,0,0) . Now, differentiate 

𝐿0 with respect to 𝑡 gives: 

  

𝑑𝐿0

𝑑𝑡
= 𝑦2(1 − 𝑦1) − 𝑤3𝑦1 − 𝑤4𝑦2 − 𝑤5𝑦2 −

𝑤7

𝑤6
𝑦3 −

𝑤8

𝑤6
𝑦2𝑦3

≤ −𝑤3𝑦1 + (1 − 𝑤4 − 𝑤5)𝑦2 −
𝑤7

𝑤6
𝑦3

  

Clearly, condition (28) guarantees the negative definite of  
𝑑𝐿0

𝑑𝑡
 . Hence 𝐸0  is a global 

asymptotically stable in the ℝ+
3 .  

Theorem 6. The predator-free equilibrium point is a globally asymptotically stable provided that 

the following conditions are satisfied 

  (1 + 𝑤2𝑦3)�̅�1 <
𝑤7

𝑤6
.                                (29) 

  𝑘12
2 < 4𝑘11𝑘22,                                   (30) 

where all the new symbols are given in the proof. 

Proof.  Consider the following real-valued function 𝐿1 = (𝑦1 − �̅�1 − �̅�1 ln (
𝑦1

�̅�1
)) +

(𝑦2−�̅�2)2

2
+

𝑦3

𝑤6
 . Clearly, 𝐿1(�̅�1, �̅�2, 0) = 0 , and 𝐿1(𝑦1, 𝑦2, 𝑦3) > 0  for all (𝑦1, 𝑦2, 𝑦3) ∈ ℝ+

3   and 

(𝑦1, 𝑦2, 𝑦3) ≠ (�̅�1, �̅�2, 0). Now, differentiate 𝐿1 with respect to 𝑡 gives: 

 

𝑑𝐿1

𝑑𝑡
= −𝑘11(𝑦1 − �̅�1)

2 + 𝑘12(𝑦1 − �̅�1)(𝑦2 − �̅�2) − 𝑘22(𝑦2 − �̅�2)
2

+(1 + 𝑤2𝑦3)�̅�1𝑦3 −
𝑤7

𝑤6
𝑦3 −

𝑤8

𝑤6
𝑦2𝑦3,

 

where 𝑘11 =
[(𝑤1+𝑤3)+𝑦2]

𝑦1
, 𝑘12 = [𝑤1 +

(1−�̅�2)

𝑦1
], and 𝑘22 = (𝑤4 + 𝑤5). 

Therefore, using the above-given conditions gives that 

 
𝑑𝐿1

𝑑𝑡
≤ −[√𝑘11(𝑦1 − �̅�1) − √𝑘22(𝑦2 − �̅�2)]

2
− [

𝑤7

𝑤6
− (1 + 𝑤2𝑦3)�̅�1] 𝑦3. 

Clearly, 
𝑑𝐿1

𝑑𝑡
  is a negative definite and hence the predator-free equilibrium point is an 

asymptotically stable point. Since, the Lyapunov function 𝐿1 is a radially unbounded function in 

the ℝ+
3 , hence it’s a globally asymptotically stable point.    

https://math.stackexchange.com/questions/2958398/radially-unbounded-functions
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Theorem 7. The coexistence equilibrium point 𝑒2  has a basin of attraction that satisfies the 

following conditions.  

 (𝑤1 +
(1−𝑦1)

𝑦1
)
2

< (𝑤4 + 𝑤5)
𝑦2

∗

𝑦1
∗𝑦1

.                          (31) 

 (𝑤2𝑦3)
2 <

𝑦2
∗

𝑦1
∗𝑦1

 .                                 (32)   

 (
𝑤8

𝑤6
)
2

< (𝑤4 + 𝑤5).                                 (33)     

 (1 + 𝑤2𝑦1)(𝑦3 − 𝑦3
∗)2 < 𝑀,                              (34) 

where 

𝑀 =
1

2
[√

𝑦2
∗

𝑦1
∗𝑦1

 (𝑦1 − 𝑦1
∗) − √(𝑤4 + 𝑤5)(𝑦2 − 𝑦2

∗)]
2

+
1

2
[√

𝑦2
∗

𝑦1
∗𝑦1

 (𝑦1 − 𝑦1
∗) − (𝑦3 − 𝑦3

∗)]
2

+
1

2
[√(𝑤4 + 𝑤5)(𝑦2 − 𝑦2

∗) − (𝑦3 − 𝑦3
∗)]

2
. 

Proof.  Consider the following real-valued function 𝐿2 = (𝑦1 − 𝑦1
∗ − 𝑦1

∗ ln (
𝑦1

𝑦1
∗)) +

(𝑦2−𝑦2
∗)2

2
+

1

𝑤6
(𝑦3 − 𝑦3

∗ − 𝑦3
∗ ln (

𝑦3

𝑦3
∗)) . Clearly, 𝐿2(𝑦1

∗, 𝑦2
∗, 𝑦3

∗) = 0 , and 𝐿1(𝑦1, 𝑦2, 𝑦3) > 0  for all 

(𝑦1, 𝑦2, 𝑦3) ∈ ℝ+
3  and (𝑦1, 𝑦2, 𝑦3) ≠ (𝑦1

∗, 𝑦2
∗, 𝑦3

∗). Now, differentiate 𝐿2 with respect to 𝑡 gives 

after some algebraic manipulations: 

𝑑𝐿2

𝑑𝑡
= −

𝑦2
∗

𝑦1
∗𝑦1

(𝑦1 − 𝑦1
∗)2 + (𝑤1 +

(1−𝑦1)

𝑦1
) (𝑦1 − 𝑦1

∗)(𝑦2 − 𝑦2
∗)               

−(𝑤4 + 𝑤5)(𝑦2 − 𝑦2
∗)2 − 𝑤2𝑦3(𝑦1 − 𝑦1

∗)(𝑦3 − 𝑦3
∗) − (𝑦3 − 𝑦3

∗)2

−
𝑤8

𝑤6
(𝑦2 − 𝑦2

∗)(𝑦3 − 𝑦3
∗) + (1 + 𝑤2𝑦1)(𝑦3 − 𝑦3

∗)2

. 

Therefore, by using the conditions (31)-(33), it is obtained that 

𝑑𝐿2

𝑑𝑡
< −

1

2
[√

𝑦2
∗

𝑦1
∗𝑦1

 (𝑦1 − 𝑦1
∗) − √(𝑤4 + 𝑤5)(𝑦2 − 𝑦2

∗)]
2

                 

−
1

2
[√

𝑦2
∗

𝑦1
∗𝑦1

 (𝑦1 − 𝑦1
∗) − (𝑦3 − 𝑦3

∗)]
2

+ (1 + 𝑤2𝑦1)(𝑦3 − 𝑦3
∗)2

−
1

2
[√(𝑤4 + 𝑤5)(𝑦2 − 𝑦2

∗) − (𝑦3 − 𝑦3
∗)]

2

. 

Clearly, 
𝑑𝐿2

𝑑𝑡
 is a negative definite under the condition (34) and hence the coexistence equilibrium 

point is asymptotically stable point and has a basin of attraction satisfies the given conditions.    

 

5. BIFURCATION ANALYSIS 

This section examines the potential that altering a parameter could lead to a change in quality. 
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Write the system (2) in the vector norm shown below. 

𝑑𝐘

𝑑𝑡
= 𝐅(𝐘, 𝜃), 𝐘 = (𝑦1, 𝑦2, 𝑦3), 𝜃 ∈ ℝ+.                    (35) 

Here 𝐅  is the interaction functions vector of system (2). The second and third directional 

derivative of 𝐅(𝐘, 𝜃) can be written: 

 𝐷2𝐅(𝐘, 𝜃) = (
−2(𝑣3

2𝑤2𝑦1 + 𝑣1[𝑣2 + 𝑣3(1 + 2𝑤2𝑦3)])

0
2𝑣3(−𝑣2𝑤8 + 𝑤6[𝑣3𝑤2𝑦1 + 𝑣1(1 + 2𝑤2𝑦3)])

),              (36) 

and 

𝐷3𝐅(𝐘, 𝜃) = (
−6𝑣1𝑣3

2𝑤2

0
6𝑣1𝑣3

2𝑤2𝑤6

),                               (37) 

with  𝐕 = (𝑣1, 𝑣2, 𝑣3) be any vector. 

Theorem 8: Assume that the parameter 𝑤1 fulfills 𝑤1 = (𝑤1 + 𝑤3)(𝑤4 + 𝑤5) ≡ (𝑤1
∗), then at 

the vanishing equilibrium point, the system (2) undergoes a transcritical bifurcation. 

Proof. For 𝑤1
∗ = (𝑤1

∗ + 𝑤3)(𝑤4 + 𝑤5) the Jacobian matrix becomes 

𝐽0 = 𝐽(𝑒0, 𝑤1
∗) = [

−(𝑤1
∗ + 𝑤3) 1 0
𝑤1

∗ −(𝑤4 + 𝑤5) 0
0 0 −𝑤7

]. 

Note that, 𝐽0  has the eigenvalues 𝜆01 = 0 , 𝜆02 = −(𝑤1
∗ + 𝑤3 + 𝑤4 + 𝑤5) , and 𝜆03 = −𝑤7 . 

Therefore, the eigenvectors of 𝐽0 and 𝐽0
T corresponding 𝜆01 = 0 can be determined as 𝐕0 =

(𝑣01, 𝑣02, 𝑣03)
T and 𝐔0 = (𝑢01, 𝑢02, 𝑢03)

T respectively, where 

  𝐕0 = (
1

(𝑤1
∗+𝑤3)

, 1,0)
T

, 𝐔0 = (
𝑤1

∗

(𝑤1
∗+𝑤3)

, 1,0)
T

. 

In addition, equation (36) yields the result that 

𝐅𝑤1
= (

−𝑦1

𝑦1

0
) ⟹ 𝐅𝑤1

(𝑒0, 𝑤1
∗) = (

0
0
0
) ⟹ 𝐔0

T𝐅𝑤1
(𝑒0, 𝑤1

∗) = 0 

𝐷𝐅𝑤1
(𝑒0, 𝑤1

∗). 𝐕0 =

(

 

−
1

(𝑤1
∗+𝑤3)

1

(𝑤1
∗+𝑤3)

0 )

  ⟹ 𝐔0
T[𝐷𝐅𝑤1

(𝑒0, 𝑤1
∗). 𝐕0] =

𝑤3

(𝑤1
∗+𝑤3)2

 

𝐷2𝐅(𝑒0, 𝑤1
∗)(𝐕0, 𝐕0) = (

−
2

(𝑤1
∗+𝑤3)

0
0

) ⟹ 𝐔0
T[𝐷2𝐅(𝑒0, 𝑤1

∗)(𝐕0, 𝐕0)] = −2
𝑤1

∗

(𝑤1
∗+𝑤3)2

 

The Sotomayor theorem [26] causes the system (2) to face a transcritical bifurcation at the 

equilibrium point 𝑒0 as the parameter 𝑤1 swings through 𝑤1
∗. 
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Theorem 9: Assume that the parameter 𝑤7  fulfills 𝑤7 =
Γ𝑤6

𝑤1
−

Γ𝑤8

𝑤4+𝑤5
≡ (𝑤7

∗) , then at the 

predator-free equilibrium point, the system (2) undergoes a transcritical bifurcation provided that 

 1 <
Γ

𝑤1
,                              (38) 

 −𝛿2𝑤8 + 𝑤2𝑤6�̅�1 + 𝑤6𝛿1 ≠ 0,                              (39) 

where Γ = 𝑤1 − (𝑤1 + 𝑤3)(𝑤4 + 𝑤5) that is positive due to existence condition. Furthermore, 

if we reflect condition (39) the system (2) undergoes a pitchfork bifurcation. 

Proof. For 𝑤7
∗ =

Γ𝑤6

𝑤1
−

Γ𝑤8

𝑤4+𝑤5
 the Jacobian matrix becomes 

𝐽1 = 𝐽(𝑒1, 𝑤7
∗) = [

−𝑤1 − 𝑤3 −
Γ

𝑤4+𝑤5
1 −

Γ

𝑤1
−

Γ

𝑤1

𝑤1 −(𝑤4 + 𝑤5) 0
0 0 0

] = [𝑎𝑖𝑗]. 

Note that, 𝐽1 has two eigenvalues that are given in equation (16) with negative real parts due to 

condition (37), and 𝜆13(𝑤7
∗) = 0 . Thus, the eigenvectors of  𝐽1  and 𝐽1

T  corresponding 

𝜆13(𝑤7
∗) = 0  can be determined as 𝐕1 = (𝑣11, 𝑣12, 𝑣13)

T  and 𝐔1 = (𝑢11, 𝑢12, 𝑢13)
T 

respectively, where 

  𝐕1 = (−
𝑎13𝑎22

𝑎11𝑎22−𝑎12𝑎21
,

𝑎13𝑎21

𝑎11𝑎22−𝑎12𝑎21
, 1)

T

= (𝛿1, 𝛿2, 1)T, 𝐔1 = (0,0,1)T. 

Obviously, 𝛿1 and 𝛿2 are negative. In addition, equation (36) yields the result that 

𝐅𝑤7
= (

0
0

−𝑦3

) ⟹ 𝐅𝑤7
(𝑒1, 𝑤7

∗) = (
0
0
0
) ⟹ 𝐔1

T𝐅𝑤7
(𝑒1, 𝑤7

∗) = 0 

𝐷𝐅𝑤7
(𝑒1, 𝑤7

∗). 𝐕1 = (
0
0

−1
) ⟹ 𝐔1

T[𝐷𝐅𝑤7
(𝑒1, 𝑤7

∗). 𝐕1] = −1 

𝐷2𝐅(𝑒1, 𝑤7
∗)(𝐕1, 𝐕1) = (

−2(𝑤2�̅�1 + 𝛿1𝛿2 + 𝛿1)

0
2(−𝛿2𝑤8 + 𝑤2𝑤6�̅�1 + 𝑤6𝛿1)

)  

Therefore, 

 𝐔1
T[𝐷2𝐅(𝑒1, 𝑤7

∗)(𝐕1, 𝐕1)] = 2(−𝛿2𝑤8 + 𝑤2𝑤6�̅�1 + 𝑤6𝛿1) 

Therefore condition (39) guarantees that system (2) faces a transcritical bifurcation at the 

equilibrium point 𝑒1 as the parameter 𝑤7 swings through 𝑤7
∗.  

On the other hand, if we reflect condition (39), then using equation (37) gives that 

  𝐷3𝐅(𝑒1, 𝑤7
∗)(𝐕1, 𝐕1) = (

−6𝛿1𝑤2

0
6𝛿1𝑤2𝑤6

). 
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Hence, it is obtained that 𝐔1
T[𝐷3𝐅(𝑒1, 𝑤7

∗)(𝐕1, 𝐕1)] = 6𝛿1𝑤2𝑤6 < 0. 

Therefore, pitchfork bifurcation takes place and the proof is done.  

Theorem 10: Assume that conditions (20) and (21) are met. Then if the parameter 𝑤5 fulfills 

𝑤5 =
𝑏21[𝑏13𝑏32−𝑏12𝑏33]

[𝑏11𝑏33−𝑏13𝑏31]
− 𝑤4 ≡ (𝑤5

∗) , at the coexistence equilibrium point, the system (2) 

undergoes a saddle-node bifurcation provided that 

 (1 − 𝑦1
∗) < min {

(𝑤1+𝑤3+𝑦2
∗+𝑦3

∗(1+𝑤2𝑦3
∗)−𝑤2𝑤6𝑦1

∗𝑦3
∗)(𝑤4+𝑤5

∗)

𝑤1
,
𝑤8𝑦1

∗𝑦3
∗(1+2𝑤2𝑦3

∗)

𝑤2𝑤6𝑦1
∗𝑦3

∗  }.       (40) 

 2(−𝛿3𝛿4𝑤8 + 𝑤2𝑤6𝑦1
∗ + 𝛿3𝑤6(1 + 2𝑤2𝑦3

∗)) ≠ 2𝛿5(𝑤2𝑦1
∗ + 𝛿3𝛿4 + 𝛿3(1 + 2𝑤2𝑦3

∗)) .        (41) 

Proof. For 𝑤5
∗ =

𝑏21[𝑏13𝑏32−𝑏12𝑏33]

[𝑏11𝑏33−𝑏13𝑏31]
− 𝑤4 the Jacobian matrix becomes 

𝐽2 = 𝐽(𝑒2, 𝑤5
∗) = [

−𝑤1 − 𝑤3 − 𝑦2
∗ − 𝑦3

∗(1 + 𝑤2𝑦3
∗) 1 − 𝑦1

∗ −𝑦1
∗(1 + 2𝑤2𝑦3

∗)
𝑤1 −𝑤4 − 𝑤5

∗ 0

𝑤6𝑦3
∗(1 + 𝑤2𝑦3

∗) −𝑤8𝑦3
∗ 𝑤2𝑤6𝑦1

∗𝑦3
∗

] = [𝑏𝑖𝑗]. 

Here, 𝑏22 = −𝑤4 − 𝑤5
∗ ≡ (𝑏22

∗ ). Note that, 𝐽2 has two eigenvalues that are given in equation (16) 

with negative real parts due to conditions (20), (21), and (40); while the third eigenvalue is given 

by 𝜆23(𝑤5
∗) = 0 . Thus, the eigenvectors of  𝐽2  and 𝐽2

T  corresponding 𝜆23(𝑤5
∗) = 0  can be 

determined as 𝐕2 = (𝑣21, 𝑣22, 𝑣23)
T and 𝐔2 = (𝑢21, 𝑢22, 𝑢23)

T respectively, where 

 𝐕2 = (−
𝑏13𝑏22

∗

𝑏11𝑏22
∗ −𝑏12𝑏21

,
𝑏13𝑏21

𝑏11𝑏22
∗ −𝑏12𝑏21

, 1)
T

= (𝛿3, 𝛿4, 1)T,  

𝐔2 = (
𝑏21𝑏32−𝑏22𝑏31

𝑏11𝑏22
∗ −𝑏12𝑏21

, −
𝑏11𝑏32−𝑏12𝑏31

𝑏11𝑏22
∗ −𝑏12𝑏21

, 1)
T

= (𝛿5, 𝛿6, 1)T. 

Obviously, 𝛿3 and 𝛿4 are negative. In addition, equation (36) yields the result that 

𝐅𝑤5
= (

0
−𝑦2

0
) ⟹ 𝐅𝑤5

(𝑒2, 𝑤5
∗) = (

0
−𝑦2

∗

0
) ⟹ 𝐔2

T𝐅𝑤5
(𝑒2, 𝑤5

∗) = −𝛿6𝑦2
∗ 

𝐷2𝐅(𝑒2, 𝑤5
∗)(𝐕2, 𝐕2) = (

−2(𝑤2𝑦1
∗ + 𝛿3𝛿4 + 𝛿3(1 + 2𝑤2𝑦3

∗))

0
2(−𝛿3𝛿4𝑤8 + 𝑤2𝑤6𝑦1

∗ + 𝛿3𝑤6(1 + 2𝑤2𝑦3
∗))

)  

Therefore, 

 
𝐔2

T[𝐷2𝐅(𝑒2, 𝑤5
∗)(𝐕2, 𝐕2)] = −2𝛿5(𝑤2𝑦1

∗ + 𝛿3𝛿4 + 𝛿3(1 + 2𝑤2𝑦3
∗))

+2(−𝛿3𝛿4𝑤8 + 𝑤2𝑤6𝑦1
∗ + 𝛿3𝑤6(1 + 2𝑤2𝑦3

∗)).
 

Therefore condition (41) guarantees that system (2) faces a saddle-node bifurcation at the 

equilibrium point 𝑒2 as the parameter 𝑤5 swings through 𝑤5
∗.  
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6. NUMERICAL SIMULATION 

To verify our theoretical findings and comprehend the impact of changing the parameter values 

on the system's dynamics, we run some numerical simulations of the system (2). The following 

fictitious parameters are used for the simulation that follows. 

 𝑤1 = 0.3, 𝑤2 = 0.5, 𝑤3 = 0.2, 𝑤4 = 0.1, 𝑤5 = 0.2, 𝑤6 = 0.5, 𝑤7 = 0.1, 𝑤8 = 0.2.     (42) 

It is observed that the system (2) has a globally asymptotically stable coexistence equilibrium point 

𝑒2 = (0.28,0.28,0.19) using the data set (42) as shown in figure (1) below. 

 

 

Fig. 1: The trajectories of system (2) using the set of data (42) and starting from multi initial points. (a) 3D phase plot 

converges to 𝑒2 = (0.28,0.28,0.19) . (b) Trajectories of 𝑦1  versus time. (c) Trajectories of 𝑦2  versus time. (d) 

Trajectories of 𝑦3 versus time. 



16 

DAHLIA KHALED BAHLOOL 

Now, the influence of varying the value of the 𝑤1  is studied. It is noted that for the ranges 

(0,0.085] , (0.085,0.135] , (0.135,0.5) , and 𝑤1 ≥ 0.5  the solution approaches asymptotically 

to 𝑒0, 𝑒1, 𝑒2, and 𝑒1 respectively, see figure (2) for the selected values. 

 

 

 

Fig. 2: The trajectories of system (2) using the set of data (42) with different values of 𝑤1 and starting from multi 

initial points. (a) 3D phase plot converges to 𝑒0 when 𝑤1 = 0.05. (b) 3D phase plot converges to 𝑒1 = (0.2,0.08,0) 

when 𝑤1 = 0.12 . (c) 3D phase plot converges to 𝑒2 = (0.33,0.45,0.25)  when 𝑤1 = 0.4 . (d) 3D phase plot 

converges to 𝑒1 = (0.58,0.99,0) when 𝑤1 = 0.51. 
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Moreover, figure (3) explains the influence of 𝑤2  on the system’s (2) dynamics at a selected 

values. 

 

 

Fig. 3: The trajectories of system (2) using the set of data (42) with 𝑤1 = 0.51 and different values of 𝑤2. The 

system’s solution approaches 𝑒1 = (0.58,0.99,0) ,  𝑒2 = (0.34,0.56,0.3) , 𝑒2 = (0.25,0.44,0.38) , and 𝑒2 =

(0.19,0.33,0.38) for 𝑤2 = 0.25, 𝑤2 = 0.75, 𝑤2 = 1.25, and 𝑤2 = 1.75 respectively. 

 

According to figure (3) as the value of 𝑤2 increases, the predator population increases while that 

of prey (susceptible and infected) decreases. Figure (4) shows the influence of varying the value 

of 𝑤3 at some selected values while the rest of parameters fixed at those values given in equation 

(42). 
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Fig. 4: The trajectories of system (2) using the set of data (42) with different values of 𝑤3 and starting from multi 

initial points. (a) 3D phase plot converges to 𝑒2 = (0.26,0.26,0.28) when 𝑤3 = 0.1. (b) 3D phase plot converges to 

𝑒1 = (0.32,0.32,0) when 𝑤3 = 0.38. (c) 3D phase plot converges to 𝑒0 when 𝑤3 = 0.71. 

 

  The system's solution is seen to approach 𝑒2, 𝑒1, and 𝑒0 for 𝑤3 that belongs to (0,0.37), 

[0.37,0.7], and (0.7,1], respectively. When 𝑤4 grows, the influence on the system's behavior (2) 

is similar to what is seen when 𝑤3 is varied. The effects of changing the parameters 𝑤5, 𝑤6, and 

𝑤7, respectively, at chosen values are now described in figures (5), (6), and (7). 
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Fig. 5: The trajectories of system (2) using the set of data (42) with different values of 𝑤5 and starting from multi 

initial points. (a) 3D phase plot converges to 𝑒1 = (0.8,0.2,0) when 𝑤5 = 0.02. (b) 3D phase plot converges to 𝑒2 =

(0.27,0.2,0.04) when 𝑤5 = 0.3. (c) 3D phase plot converges to 𝑒1 = (0.16,0.1,0) when 𝑤5 = 0.4. (d) 3D phase 

plot converges to 𝑒0 when 𝑤5 = 0.51.  
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Fig. 6: The trajectories of system (2) using the set of data (42) with different values of 𝑤6 and starting from multi 

initial points. (a) 3D phase plot converges to 𝑒1 = (0.5,0.5,0) when 𝑤6 = 0.35. (b) 3D phase plot converges to 𝑒2 =

(0.15,0.15,0.3) when 𝑤6 = 0.12.  

 

Fig. 7: The trajectories of system (2) using the set of data (42) with different values of 𝑤7 and starting from multi 

initial points. (a) 3D phase plot converges to 𝑒2 = (0.36,0.36,0.13) when 𝑤7 = 0.12. (b) 3D phase plot converges 

to 𝑒1 = (0.5,0.5,0) when 𝑤7 = 0.16.  
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It is found that, for 𝑤5  in the ranges (0,0.04] , (0.04,0.33] , (0.33,0.5] , and 𝑤5 > 0.5 , the 

solution of system (2) converges 𝑒1, 𝑒2, 𝑒1, and 𝑒0 respectively, however for 𝑤6 in the ranges 

(0,0.39], and (0.39,1], the solution of system (2) converges 𝑒1, and 𝑒2, respectively, while for 

𝑤7  in the ranges (0,0.2] , and (0.2,1] , the solution of system (2) converges 𝑒2 , and 𝑒1 

respectively. The impact on the system's behavior (2) as 𝑤8  increases is comparable to that 

observed when 𝑤7 is altered. 

 

7. CONCLUSIONS 

In this study, a prey-predator system has been constructed mathematically. The prey is thought 

to be a species with a stage structure that includes juveniles and adults. While the adult prey species 

possesses antipredator abilities against the predator, the predator cooperates in pursuing juvenile 

prey. Additionally, the prey was believed to be under the influence of harvest. System (2) was 

shown to have three nonnegative equilibrium points. The system's persistence as well as local and 

global analyses of stability were investigated. The Sotomayor theorem is used to describe local 

bifurcation. It is determined that system (2) has saddle-node and transcritical bifurcation as its two 

types of bifurcation. Finally, using a fictitious set of parameter values, the following findings are 

derived numerically. The persistence and stability of the system at the positive equilibrium point 

are positively influenced by the cooperative hunting rate and the conversion rate of the hunted prey 

biomass to predator biomass. All other system parameters, on the other hand, have a negative 

impact on the system's persistence and stability at the positive equilibrium point. 
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